anomalous non-additive dispersion interactions in systems of three one -dimensional wires

Post on 26-Feb-2016

54 Views

Category:

Documents

9 Downloads

Preview:

Click to see full reader

DESCRIPTION

押山科研費 /10Mar'14/15+5min. ( 東大工 6). Anomalous non-additive dispersion interactions in systems of three one -dimensional wires. Ryo Maezono. rmaezono@mac.com. School of Information Science, JAIST, Ishikawa, Japan. 本科研費期間中の原著業績. DIB 分子結晶の量子拡散モンテカルロ法電子状態計算 / - PowerPoint PPT Presentation

TRANSCRIPT

Ryo Maezono

School of Information Science, JAIST, Ishikawa, Japan.

押山科研費 /10Mar'14/15+5min

Anomalous non-additive dispersion interactions

in systems of three one-dimensional wires

rmaezono@mac.com

( 東大工6)

本科研費期間中の原著業績

クロム二量体結合の量子モンテカルロ計算 /K. Hongo and R. Maezono,Int. J. Quant. Chem. 112, 1243 (2012).

DIB 分子結晶の量子拡散モンテカルロ法電子状態計算 /K. Hongo and T. Iitaka, M.W, A.A, and R. Maezono, submitted to J. Chem. Theory Comput. (2014).

金属ナノワイヤ間の分散力相互作用と非加算性 /A.J. Misquitta, R. Maezono, N.D.D., A.J. Stone, R.J.N, Phys. Rev. B 89, 045140 (2014)

半導体二層膜の中密度域におけるバイエキシトン気体R. Maezono, P.L. Rios, T. Ogawa, and R.J. Needs,Phys. Rev. Lett. 110, 216407 (2013).

DNA 塩基間引力の量子モンテカルロ法電子状態計算 ,K. Hongo N.T. Cuong, and R. Maezono.J. Chem. Theory Comput. 9, 1081 (2013).

GPGPU に適した量子モンテカルロの新しい配位更新法 /Y. Uejima and R. Maezono.J. Comput. Chem. 34, 83 (2013). 化合物半導体構造相転移の量子モンテカルロ計算 /

C.N.M. Ouma, M.Z.M., N.W.M., G.O.A., and R. Maezono.Phys. Rev. B 86 104115 (2012).

チタン酸化物の量子モンテカルロ計算 /M. Abbasnejad, E.S., M.R.M., M.A., and R. Maezono,Appl. Phys. Lett. 100, 261902 (2012).

チタン酸化物の密度汎関数計算 /M. Abbasnejad, M. R. M. and R. Maezono,Europhys. Lett. 97, 56003 (2012).

vdW in Nano Wire

+++

- - -+++

- - -

Equilateral Triangle Geometry

vdW in Nano Wire

・ Metallic Wire

・ Difficulty of conventional DFT

・ Non-additivity

XC functionals for Dispersion force

(Different Power law)

→ local polarization not well be defined...

Additive modeling ... valid only for local polarizations

(Screening Length)

An interesting QMC challenge.

Previous Studies

J.F. Dobson   et.al., PRL96, 073201 (2006)

Between Insulating wires

Metal wires/RPA

A. Misquitta   et.al., Phys. Rev. B, 82 , 075312, (2010).

N.D. Drummond et.al., Phys. Rev. Lett. 99, 247401 (2009).

Metal-Semiconductor/SAPT

Metal/QMC

HuckelSAPT ( TB + Perturbation )

J. Spencer and A. Alavi, (thesis)

- Coulson and Davies, Trans. Faraday Soc. (1952).

Much earlier works for 1-dim.

- Longuet-Higgins and Salem, Proc. R. Soc. A. (1961).

Modeling

+++

- - -+++

- - -

Equilateral Triangle Geometry

・ Intra-Wire ; Anti-symetrized products of PW orbitals

N=55, 111

Bi-wire interaction

Non-additive contribution; Energy/wire @ Bi (Tri)-wire system

・ Inter-Wire ; treated as Distinguishable particles

1D HEG → No Nodal problem.

・ Odd number of electrons ; Real WF.

DMC (diffusion Monte Carlo) method

Rs = 1.0

Rs = 3.0

Diffusion Monte Carlo by RM (2012)

α=2.541

Rs = 10.0

09

Kink in the exponent

Note; correlation effect makes kink broader [Misquetta/SAPT, 2010]22

Huckel

2nd order perturbation

inter-molecular interactions

integral representation

18

Longuet-Higgins Representationof dispersion energy

multi-pole expansion

H. C. Longuet-Higgins, Discuss. Faraday Soc. 40, 7 1965.

non-local polarizability

19

Exponent of decay

Induced dipole-dipole int.Rank of tensor -->

lowest possible contribution-->

20

Inv.Sq. contribution

-->

Insulator (localized) ;

; localization length

inv-sq. contribution vanishes; integral region valid for multi-pole expansion gets larger --> integral gets disappear 21

Kink in the exponent

Note; correlation effect makes kink broader [Misquetta/SAPT, 2010]22

Rs = 3.0

Diffusion Monte Carlo by RM (2012)

α=2.541

Exponents

Long-ranged interactions ; α< 3

2 体相互作用 3 体非加算性寄与

Exponents of DecaySumming up interactions…

We expect it not diverging.

; Energy per wire

→ Finite

→ Diverge !

; Num. of wires per unit area

15

Possible mechanisms making it finite.

1) Divergence of(c.f., Our equilateral triangle gives repulsive )

2) Exponent falls off more rapidly at larger distances.(at which we cannot perform accurate calculations)

Exponents of Decay

cancelled by and higher.

3) Relativistic retardation reducing the interaction at larger distances.

non-additivitytwo-body superposition

Exponents

Long-ranged interactions ; α< 3

2 体相互作用 3 体非加算性寄与

今回の仕事

甲は、ギャップのある系にしか適用出来ない。

乙はメタルに適用出来るが、 は切り分けられない

乙は、一次元メタルに適用したが、甲は、 の水素鎖に適用。

先行研究はいずれも、分極率評価に簡素な近似を適用したもの

分極率評価に第一原理計算を用いて何か新しい事が見つかるか?

甲、

乙、 DMC で評価(こちらは摂動表式ではなく、第一原理で評価)

の範囲で、 DFT 摂動計算の枠組み (SAPT) で評価。

/R. Maezono

/A.J. Misquitta

先行研究 / 非加算性寄与

を 3 つのダイポール間の相互作用で扱う。

; n 体相互作用から来る 3 次の寄与

[13] P. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943). [14] Y. Muto, Proc. Phys.-Math. Soc. Japan 17, 629 (1943).

/ 非常に短距離な寄与を帰結 →"Axilrod-Teller-Muto contribution"

我々の今回の結論;

昭和 18 年

逆 9 乗の短距離 ATM 型ではなく、逆 2.5 乗程度の長距離型非加算寄与

摂動論による分散力寄与

非加算性寄与

Longuet-Higgins の一般化表式

・重み

非加算性寄与

・分母 / どの配置間での相互作用が生じているか

/ 分散力に関わる分子内励起の「起こりやすさ」

多重極展開

から、

の上添え字; に関する非局所積分の事情を反映テンソルを込めた分極率

下添え字;テンソル と組む事情、

すなわち異方性の事情

幾つかの極限状況先行の結論を導くことが出来る

ギャップの大きな系のみで有効な結果

[D.E. Stogryn, Mol. Phys. 22, 81 (1971)]

1)系のギャップが大きい場合

非局所積分の事情を反映する の上添え字はつぶれて、

Stogryn の結果

摂動による 3 体 3 次の分散力寄与

に帰着。

→ 非局所性弱くなる

幾つかの極限状況

2)双極子部分のみ考慮し、テンソルに関する異方性を方位平均化

Axilrod–Teller–Muto の形に帰着

SAPT 算定

分極率 をコーンシャム摂動理論で評価

DFT 計算は NWChem/PBE 汎関数を用い、

ダイマリゼーション・パラメタを含んだ の水素鎖に適用。

KSPT 計算は CamCASP/LDA の線形応答核

基底系 Sadlej-pVTZ上記の分散エネルギーは「 Dispersion 」というコード実装で評価。

SAPT解析からの結論

ギャップを減らしていくと、ベキは上から 3 に近づく。(c.f., DMC 算定では、系が低密度となると冪は下から 3 に近づく)

ギャップが小さくなると非加算寄与の増長

2 体相互作用はファクター 2倍だが、非加算性寄与は 4倍の増長。

の SAPT/DFT 摂動計算評価

SAPT解析からの結論

2 体 , 3 体と展開していくと、どれもが r 逆ベキの遅い収束、

→展開が良くないことを示唆。

代わる提案として、自己無撞着分極モデル- L. Silberstein, Phil. Mag. 33, 92 (1917).

- J. Applequist et.al., J. Am. Chem. Soc. 94, 2952 (1972).

3 体非加算性が正の寄与となる理由;+- に対して -+ が誘起されて、更に其れにより +- が誘起されると、元の +- に対して同符号・斥力となるため。

且つ、交番級数的

(尚、 DMC は全てを自己無撞着に扱う事に相当 )

まとめ従来型の逆 9 乗と異なる、逆 2.5 乗程度

の非加算相互作用

+++

- - -+++

- - -

Equilateral Triangle Geometry

SAPT からも支持され

る。

top related