duality on the (co)chain type levels of...

Post on 29-Apr-2018

217 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Duality on the (co)chain type levels of

maps

Katsuhiko KURIBAYASHI

Shinshu University

The University of Tokyo, EACAT4, December 6, 2011

1

§1 Overview of the levels of DG modules over a DG algebra

DGM−A : the category of differential graded right modules (DG

modules) over a DG algebra A / K a field.

Definitoin A DG module F : A-semifree if ∃ a filtration

F (0) ⊂ F (1) ⊂ · · · ⊂ F (k) ⊂ · · · ⊂∪k

F (k) = F

s.t. F (0) and F (k)/F (k − 1) are A-free on a basis of cycles.

FACT

For any M in DGM−A, ∃ ΓM ' //M : a semifree resolution of M.

2

§1 Overview of the levels of DG modules over a DG algebra

DGM−A : the category of differential graded right modules (DG

modules) over a DG algebra A / K a field.

Definitoin 1.1 A DG module F : A-semifree if ∃ a filtration

F (0) ⊂ F (1) ⊂ · · · ⊂ F (k) ⊂ · · · ⊂∪k

F (k) = F

s.t. F (0) and F (k)/F (k − 1) are A-free on a basis of cycles.

FACT

For any M in DGM−A, ∃ ΓM ' //M : a semifree resolution of M.

2-a

D(A) : the derived category of DG A-modules;

ObD(A) := Ob(DGM−A)

HomD(A)(X,Y ) := HomDGM−A(ΓX,ΓY )/chain homotopy '

D(A) : a triangulated cat. with the shift Σ; (ΣM)n = Mn+1.

The distinguished triangles comes from mapping cone construc-

tions in DGM−A,

//N //C(φ) //ΣM ; C(φ) = N ⊕ ΣM, dC(φ) =

(dN φ0 −dM

)

3

D(A) : the derived category of DG A-modules;

ObD(A) := Ob(DGM−A)

HomD(A)(X,Y ) := HomDGM−A(ΓX,ΓY )/chain homotopy '

D(A) : a triangulated cat. with the shift Σ; (ΣM)n = Mn+1.

The distinguished triangles comes from mapping cone construc-

tions in DGM−A,

//N //C(φ) //ΣM ; C(φ) = N ⊕ ΣM, dC(φ) =

(dN φ0 −dM

)

3-a

A : a DGA over a field KD(A) : the derived category of DGM’s over A

C ∈ Ob(D(A))

Definition (the level of M)

(Avramov, Buchweitz, Iyengar, Miller, 2006)

The 0th thickening thick0D(A)(C) := 0

thick1D(A)(C) : the smallest strict full subcategory which con-

tains C and is closed under taking finite coproducts, retracts

and all shifts.

4

Moreover for n > 1 define inductively the nth thickening

thicknD(A)(C)

by the smallest strict full subcategory of D(A) which is closed

under retracts and contains objects M admitting a distinguished

triangle M1 →M →M2 → ΣM1, where

M1 ∈ thickn−1D(A)(C) and M2 ∈ thick1

D(A)(C).

The C-level of M

levelCD(A)(M) := infn ∈ N ∪ 0 |M ∈ thicknD(A)(C).

5

Moreover for n > 1 define inductively the nth thickening

thicknD(A)(C)

by the smallest strict full subcategory of D(A) which is closed

under retracts and contains objects M admitting a distinguished

triangle M1 →M →M2 → ΣM1, where

M1 ∈ thickn−1D(A)(C) and M2 ∈ thick1

D(A)(C).

The C-level of M

levelCD(A)(M) := infn ∈ N ∪ 0 |M ∈ thicknD(A)(C).

5-a

levelCD(A)(M)

high level

...

C3

... ... ...

· · ·

===

====

===

C2=

====

====

=

===

====

===

ΣN2C2=

====

====

= · · ·

level ≤ 4

;;;

;;;;

;;;;

@@

C1;

;;;;

;;;;

;;

@@

ΣN1C1;

;;;;

;;;;

;;

@@ · · ·

level ≤ 2

<<<

<<<<

<<<

AA

ΣN0C<

<<<<

<<<<

<

AA

<<<

<<<<

<<<

AA

level = 1 · · ·

AA

AA C

AA · · ·

low level6

A triangular inequality on the level:

Proposition 1.2. For any M, C and C′ in D(A),

levelCD(A)M ≤ levelCD(A)C′ · levelC

′D(A)M

7

§2 The cochain type levels

T OPB : the category of spaces over a space B:

Objects α : Y → B. Morphisms Yφ

//

α AAA

AAAA Y ′

α′||||

|||

B

C∗(X;K) : the singular cochain complex of a space X withcoefficients in a field K.For α : s(α) → B ∈ Ob(T OPB),C∗(s(α);K) is a DGM over the DGA C∗(B;K).

C∗(s( );K) : T OPB //D(C∗(B;K))

levelD(C∗(B;K))(s(α)) := levelC∗(B;K)

D(C∗(B;K))(C∗(s(α);K)).

8

§2 The cochain type levels

T OPB : the category of spaces over a space B:

Objects α : Y → B. Morphisms Yφ

//

α AAA

AAAA Y ′

α′||||

|||

B

C∗(X;K) : the singular cochain complex of a space X withcoefficients in a field K.For α : s(α) → B ∈ Ob(T OPB),C∗(s(α);K) is a DGM over the DGA C∗(B;K).

C∗(s( );K) : T OPB //D(C∗(B;K))

levelD(C∗(B;K))(s(α)) := levelC∗(B;K)

D(C∗(B;K))(C∗(s(α);K)).

8-a

§2 The cochain type levels

T OPB : the category of spaces over a space B:

Objects α : Y → B. Morphisms Yφ

//

α AAA

AAAA Y ′

α′||||

|||

B

C∗(X;K) : the singular cochain complex of a space X withcoefficients in a field K.For α : s(α) → B ∈ Ob(T OPB),C∗(s(α);K) is a DGM over the DGA C∗(B;K).

C∗(s( );K) : T OPB //D(C∗(B;K))

levelD(C∗(B;K))(s(α)) := levelC∗(B;K)

D(C∗(B;K))(C∗(s(α);K)).

8-b

Proposition 2.1 [K, 2008, 2010] Suppose that there exists a se-

quence of fibrations

Sm1 → Y1π1−→ B, Sm2 → Y2

π2−→ Y1, .....,

Smc → Ycπc−→ Yc−1

in which B is simply-connected and mj ≥ 2 for any j. We regard

Yc as a space over B via the composite π1 · · · πc. Then

levelD(C∗(B;K))(Yc) ≤ 2c (levelD(C∗(B;Q))(Yc) ≤ c+ 1 if mj is odd).

9

The cochain type level : debut in ECAT2, 2008

”The level is related to the Lusternik-Schnirelmann category.”

10

The cochain type level : debut in ECAT2, 2008

”The level is related to the Lusternik-Schnirelmann category.”

10-a

§3 The chain type levels and the L.-S. category

For any object f : s(f) → B in T OPB,

ΩB

holonomy act.

Ff // s(f)f

//B

C∗(F(−);K) : T OPB → D(C∗(ΩB;K))

levelD(C∗(ΩB;K))(Ff) := levelC∗(ΩB;K)D(C∗(ΩB;K))(C∗(Ff ;K))

11

§3 The chain type levels and the L.-S. category

For any object f : s(f) → B in T OPB,

ΩB

holonomy act.

Ff // s(f)f

//B

C∗(F(−);K) : T OPB → D(C∗(ΩB;K))

levelD(C∗(ΩB;K))(Ff) := levelC∗(ΩB;K)D(C∗(ΩB;K))(C∗(Ff ;K))

11-a

B(K, A,A) → K → 0 : the bar resolution of K as a right A-module.

Define a sub A-module EnA of B(K, A,A) by EnA = T (ΣA)≤n⊗A.

Definition 3.1 [Kahl, 2003] The E-category for M in DGM-A.

EcatAM := infn | ∃M → EnA in DGM-A

.

Theorem 3.2 [Kahl] For a map f : X → Y from a connected

space to a simply-connected space,

EcatC∗(ΩY )C∗(Ff)≤catf.

12

B(K, A,A) → K → 0 : the bar resolution of K as a right A-module.

Define a sub A-module EnA of B(K, A,A) by EnA = T (ΣA)≤n⊗A.

Definition 3.1 [Kahl, 2003] The E-category for M in DGM-A.

EcatAM := infn | ∃M → EnA in DGM-A

.

Theorem 3.2 [Kahl] For a map f : X → Y from a connected

space to a simply-connected space,

EcatC∗(ΩY )C∗(Ff)≤catf.

12-a

Theorem 3.3. [K, 2010] Let f : X → Y be a map from a con-

nected space to a simply-connected space. Then one has

EcatC∗(ΩY )C∗(Ff)≤ levelD(C∗(ΩY ))(Ff) − 1≤dimH∗(X) − 1.

FACT

• If X and Y : 1-connected, EcatC∗(ΩY )C∗(Ff) = Mcatf in the

sense of Halperin and Lemaire [Kahl].

•Mcat(idX) = catX for a rational 1-conn. space X [Hess, 1991].

Corollary 3.4. Let X be a simply-connected rational space. Then

catX ≤ levelD(C∗(ΩX;Q))Q − 1.

13

Theorem 3.3. [K, 2010] Let f : X → Y be a map from a con-

nected space to a simply-connected space. Then one has

EcatC∗(ΩY )C∗(Ff)≤ levelD(C∗(ΩY ))(Ff) − 1≤dimH∗(X) − 1.

FACT

• If X and Y : 1-connected, EcatC∗(ΩY )C∗(Ff) = Mcatf in the

sense of Halperin and Lemaire [Kahl].

•Mcat(idX) = catX for a rational 1-conn. space X [Hess, 1991].

Corollary 3.4. Let X be a simply-connected rational space. Then

catX ≤ levelD(C∗(ΩX;Q))Q − 1.

13-a

Theorem 3.3. [K, 2010] Let f : X → Y be a map from a con-

nected space to a simply-connected space. Then one has

EcatC∗(ΩY )C∗(Ff)≤ levelD(C∗(ΩY ))(Ff) − 1≤dimH∗(X) − 1.

FACT

• If X and Y : 1-connected, EcatC∗(ΩY )C∗(Ff) = Mcatf in the

sense of Halperin and Lemaire [Kahl].

•Mcat(idX) = catX for a rational 1-conn. space X [Hess, 1991].

Corollary 3.4. Let X be a simply-connected rational space. Then

catX ≤ levelD(C∗(ΩX;Q))Q − 1.

13-b

Example 3.5. levelC∗(ΩX;Q)Q = levelC∗(ΩX;Q)(FidX).

X : a simply-connected rational H-space with dimH∗(X;Q) <∞.

H∗(X;Q) = ∧(x1, ..., xl): primitively generated.

H∗(ΩX;Q) ∼= Q[y1, ..., yl] as an algebra, where deg yi = degxi − 1.

l = c(X) ≤ catX ≤ levelD(C∗(ΩX;Q))Q − 1 ≤ pdH∗(ΩX)Q = l.

We have catX + 1 = levelD(C∗(ΩY ;Q))Q = l+ 1.

14

Example 3.5. levelC∗(ΩX;Q)Q = levelC∗(ΩX;Q)(FidX).

X : a simply-connected rational H-space with dimH∗(X;Q) <∞.

H∗(X;Q) = ∧(x1, ..., xl): primitively generated.

H∗(ΩX;Q) ∼= Q[y1, ..., yl] as an algebra, where deg yi = degxi − 1.

l = c(X) ≤ catX ≤ levelD(C∗(ΩX;Q))Q − 1 ≤ pdH∗(ΩX)Q = l.

We have catX + 1 = levelD(C∗(ΩY ;Q))Q = l+ 1.

14-a

For an 1-conn. space B,

D(C∗(ΩB;K)) T OP/BC∗(F( ))

ooC∗(s( ))

//D(C∗(B;K))

the chain type level the cochain type level

Koszul duality: For a nice DGA A,

D(ExtA(K,K)-mod)h' //

D(A)t

oo

Adams’ cobar construction:

ExtC∗(B)(K,K) ∼= H∗(ΩB;K) as an algebra.

15

For an 1-conn. space B,

D(C∗(ΩB;K)) T OP/BC∗(F( ))

ooC∗(s( ))

//D(C∗(B;K))

the chain type level the cochain type level

Koszul duality: For a nice DGA A,

D(ExtA(K,K)-mod)h' //

D(A)t

oo

Adams’ cobar construction:

ExtC∗(B)(K,K) ∼= H∗(ΩB;K) as an algebra.

15-a

For an 1-conn. space B,

D(C∗(ΩB;K)) T OP/BC∗(F( ))

ooC∗(s( ))

//D(C∗(B;K))

the chain type level the cochain type level

Koszul duality: For a nice DGA A,

D(ExtA(K,K)-mod)h' //

D(A)t

oo

Adams’ cobar construction:

ExtC∗(B)(K,K) ∼= H∗(ΩB;K) as an algebra.

15-b

The cochain type level : ObD(C∗(X;K)) → N ∪ 0,∞≤ #fibrations which construct a given space

The chain type level : ObD(C∗(ΩX;K)) → N ∪ 0,∞≥ The L.-S. category

Duality ??

16

The cochain type level : ObD(C∗(X;K)) → N ∪ 0,∞≤ #fibrations which construct a given space

The chain type level : ObD(C∗(ΩX;K)) → N ∪ 0,∞≥ The L.-S. category

Duality ??

16-a

§4 Duality on the (co)chain type levels

Theorem 4.1. [K, 2010] Let B be a simply-connected space

and f : X → B an object in T OPB. Then one has (in)equalities

(1) dimH∗(X;K) ≥ level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

(2) dimH∗(Ff ;K) ≥ level C∗(B)

D(C∗(B))(C∗(X)) = level K

D(C∗(ΩB))(C∗(Ff)).

17

On the equalities on Theorem 4.1:

Theorem 4.2. [K, 2010] One has commutative diagrams

T OPBC∗(F(−))

rr

C∗(s(−))

))

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' //

D(C∗(B)),−⊗L

C∗(B)B(C∗(ΩB))∨oo

T OPBC∗(F(−))

rr

C∗(s(−))

))

D(C∗(ΩB)) φ∗

**VVVVVVVVVVVVVVVVVVVVVV D(B(C∗(B))∨) D(B(C∗(B)))tD

oo D(C∗(B)),RC∗(B)

oo

D(ΩC∗(B))

Θ'OO

−⊗LΩC∗(B)

C∗(ΩB)'

jjVVVVVVVVVVVVVVVVVVVVVV

in which all the functors between derived categories are exact.

18

On the equalities on Theorem 4.1:

Theorem 4.2. [K, 2010] One has commutative diagrams

T OPBC∗(F(−))

rr

C∗(s(−))

))

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' //

D(C∗(B)),−⊗L

C∗(B)B(C∗(ΩB))∨oo

T OPBC∗(F(−))

rr

C∗(s(−))

))

D(C∗(ΩB)) φ∗

**VVVVVVVVVVVVVVVVVVVVVV D(B(C∗(B))∨) D(B(C∗(B)))tD

oo D(C∗(B)),RC∗(B)

oo

D(ΩC∗(B))

Θ'OO

−⊗LΩC∗(B)

C∗(ΩB)'

jjVVVVVVVVVVVVVVVVVVVVVV

in which all the functors between derived categories are exact.

18-a

• level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' / /

D(C∗(B)), exact−⊗L

C∗(B)B(C∗(ΩB))∨oo

ψ∗ tD RC∗(ΩB)(C∗(ΩB)) = KC∗(B)

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) ≥ level K

D(C∗(B))(C∗(s(f))

19

• level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' / /

D(C∗(B)), exact−⊗L

C∗(B)B(C∗(ΩB))∨oo

ψ∗ tD RC∗(ΩB)(C∗(ΩB)) = KC∗(B)

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) ≥ level K

D(C∗(B))(C∗(s(f))

19-a

• level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB))RC∗(ΩB)

//D(B(C∗(ΩB))tD

//D(B(C∗(ΩB)∨))ψ∗' / /

D(C∗(B)), exact−⊗L

C∗(B)B(C∗(ΩB))∨oo

ψ∗ tD RC∗(ΩB)(C∗(ΩB)) = KC∗(B)

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) ≥ level K

D(C∗(B))(C∗(s(f))

19-b

The second diagram in Theorem 4.2:

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB)) φ∗

++WWWWWWWWWWWWWWWWWWWW D(B(C∗(B))∨) D(B(C∗(B)))tD

oo D(C∗(B)), exactRC∗(B)

oo

D(ΩC∗(B))Θ'OO

−⊗LΩC∗(B)

C∗(ΩB)'kkWWWWWWWWWWWWWWWWWWWW

tD RC∗(B)(KC∗(B)) = Θ φ∗(C∗(ΩB)).

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) ≤ level K

D(C∗(B))(C∗(s(f)))

20

The second diagram in Theorem 4.2:

T OPBC∗(F(−))

rr

C∗(s(−))

**

D(C∗(ΩB)) φ∗

++WWWWWWWWWWWWWWWWWWWW D(B(C∗(B))∨) D(B(C∗(B)))tD

oo D(C∗(B)), exactRC∗(B)

oo

D(ΩC∗(B))Θ'OO

−⊗LΩC∗(B)

C∗(ΩB)'kkWWWWWWWWWWWWWWWWWWWW

tD RC∗(B)(KC∗(B)) = Θ φ∗(C∗(ΩB)).

level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(s(f)))

20-a

Corollary 4.3. Let f : X → B be a map with B simply-connected.

(1) level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) is finite if and only if so is dimH∗(X;K).

(2) level C∗(B)

D(C∗(B))(C∗(X)) is finite if and only if so is dimH∗(Ff ;K).

If levelKD(A)(M) <∞, then dimH∗(M) <∞.

dimH∗(X;K) ≥ level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

dimH∗(Ff ;K) ≥ level C∗(B)

D(C∗(B))(C∗(X)) = level K

D(C∗(ΩB))(C∗(Ff)).

21

Corollary 4.3. Let f : X → B be a map with B simply-connected.

(1) level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) is finite if and only if so is dimH∗(X;K).

(2) level C∗(B)

D(C∗(B))(C∗(X)) is finite if and only if so is dimH∗(Ff ;K).

If levelKD(A)(M) <∞, then dimH∗(M) <∞.

dimH∗(X;K) ≥ level C∗(ΩB)D(C∗(ΩB))(C∗(Ff)) = level K

D(C∗(B))(C∗(X))

dimH∗(Ff ;K) ≥ level C∗(B)

D(C∗(B))(C∗(X)) = level K

D(C∗(ΩB))(C∗(Ff)).

21-a

§5 A computational example of the cochain type level.

Example 5.1. Let BG be the classifying space of a connected

Lie group G. Consider the sequence of (homotopy) fibrations

BG∆→ (BG)×2 → · · · 1×∆→ (BG)×n.

Suppose that H∗(BG;K) is a polynomial algebra.

n ≤ levelD(C∗((BG)×n;K))(BG) ≤ (n− 1)dimQH∗(BG;K) + 1.

In particular, levelD(C∗((BS1)×n;K))(BS1) = n.

22

Let A be a DGA. A map f : M → N in D(A) : a ghost if H(f) = 0.For M ∈ D(A), the ghost length of M [Hovey and Lockridge]:

gh.len.M = supn |M f1→ Y1

f2→ · · · fn→ Yn non-trivial in D(A), fi :ghost

Lemma 5.2. [Schmidt 2008] For any M ∈ D(A), one has

gh.len.M + 1 ≤ levelAD(A)(M).

Each integration along the fibre (1 × ∆)! is a ghost.

C∗(BG)∆!→ C∗((BG)×2) → · · · (1×∆)!→ C∗((BG)×n).

G→ BGl−1 1×∆→ BGl

The composite (1×∆)!· · ·∆! : C∗(BG) → C∗(BG×n) is non-trivialin D(C∗(BG×n)).

23

Let A be a DGA. A map f : M → N in D(A) : a ghost if H(f) = 0.For M ∈ D(A), the ghost length of M [Hovey and Lockridge]:

gh.len.M = supn |M f1→ Y1

f2→ · · · fn→ Yn non-trivial in D(A), fi :ghost

Lemma 5.2. [Schmidt 2008] For any M ∈ D(A), one has

gh.len.M + 1 ≤ levelAD(A)(M).

Each integration along the fibre (1 × ∆)! is a ghost.

C∗(BG)∆!→ C∗((BG)×2) → · · · (1×∆)!→ C∗((BG)×n).

G→ BGl−1 1×∆→ BGl

The composite (1×∆)!· · ·∆! : C∗(BG) → C∗(BG×n) is non-trivialin D(C∗(BG×n)).

23-a

Let A be a DGA. A map f : M → N in D(A) : a ghost if H(f) = 0.For M ∈ D(A), the ghost length of M [Hovey and Lockridge]:

gh.len.M = supn |M f1→ Y1

f2→ · · · fn→ Yn non-trivial in D(A), fi :ghost

Lemma 5.2. [Schmidt 2008] For any M ∈ D(A), one has

gh.len.M + 1 ≤ levelAD(A)(M).

Each integration along the fibre (1 × ∆)! is a ghost.

C∗(BG)∆!→ C∗((BG)×2) → · · · (1×∆)!→ C∗((BG)×n).

G→ BGl−1 1×∆→ BGl

The composite (1×∆)!· · ·∆! : C∗(BG) → C∗(BG×n) is non-trivialin D(C∗(BG×n)).

23-b

For the free loop space LBG, the homotopy pull-back

Gn−1 //LBG×BG · · · ×BG LBG ∆ //

evaluation

LBG

ev. at n points

Gn−1 //BG∆(n):=(1×∆)···∆

//BG×n

The integration along the fibre (∆)!, which is an ”extension”

of (∆(n))! = (1×∆)! · · · ∆! in D(C∗(BG×n)), is non-trivial (the

Eilenberg-Moore spectral sequence argument).

(∆(n))! 6= 0 in D(C∗(BG×n)). We have

n− 1 + 1 ≤ gh.len.C∗(BG) + 1 ≤ levelD(C∗((BG)×n;K))(BG).

24

For the free loop space LBG, the homotopy pull-back

Gn−1 //LBG×BG · · · ×BG LBG ∆ //

evaluation

LBG

ev. at n points

Gn−1 //BG∆(n):=(1×∆)···∆

//BG×n

The integration along the fibre (∆)!, which is an ”extension”

of (∆(n))! = (1×∆)! · · · ∆! in D(C∗(BG×n)), is non-trivial (the

Eilenberg-Moore spectral sequence argument).

(∆(n))! 6= 0 in D(C∗(BG×n)). We have

n− 1 + 1 ≤ gh.len.C∗(BG) + 1 ≤ levelD(C∗((BG)×n;K))(BG).

24-a

Prospect:

The (co)chain type levels give ”estimates” for the length of loop

(co)products in string topology on Gorenstein spaces containing BG

and manifolds.

25

• In rational case, L.-S. category 6= the chain type level in

general.

X : an infinite wedge of spheres of the form∨α S

nα.

catXQ = catX = 1.

By applying Corollary,

level C∗(ΩX)D(C∗(ΩX))Q = ∞.

In fact, H∗(X;Q) is of infinite dimension.

26

On coderived categories:

(A, dA, εA) : an augmented DG algebra over K.(C, dC, εC) : a cocomplete, coaugmented DG coalgebra over K.

τ : C → A : a twisted cochain, a K-linear map of degree +1 suchthat εA τ εC = 0 and

dA τ + τ dC + µA (τ ⊗ τ) ∆C = 0.

M : a right DG module over A.The twisted tensor product M ⊗τ C : the comodule M ⊗C over Cwith

d = dM ⊗ 1 + 1 ⊗ dC − (µM ⊗ 1)(1 ⊗ τ ⊗ 1)(1 ⊗ ∆C).

For a DG comodule N over A, we define the DG module M⊗τ Asimilarly.

27

On coderived categories:

(A, dA, εA) : an augmented DG algebra over K.(C, dC, εC) : a cocomplete, coaugmented DG coalgebra over K.

τ : C → A : a twisted cochain, a K-linear map of degree +1 suchthat εA τ εC = 0 and

dA τ + τ dC + µA (τ ⊗ τ) ∆C = 0.

M : a right DG module over A.The twisted tensor product M ⊗τ C : the comodule M ⊗C over Cwith

d = dM ⊗ 1 + 1 ⊗ dC − (µM ⊗ 1)(1 ⊗ τ ⊗ 1)(1 ⊗ ∆C).

For a DG comodule N over A, we define the DG module M⊗τ Asimilarly.

27-a

D(C) : the coderived category which is a triangulated category,namely the localization of the category ComcC of cocompletecomodules over C.

Theorem 4.2 [Lefevre-Hasegawa, 2003]Let τ : C → A be a twist-ing cochain. Then one has adjoint functors

D(C)L:=−⊗τA//

D(A)R:=−⊗τCoo

between triangulated categories.

Let A be a DG algebra. By using the natural twisting cochainτ : B(A) → A; [x] 7→ x, we have a pair of adjoint functors

D(B(A))LA:=−⊗τA//

D(A).RA:=−⊗τB(A)

oo

28

D(C) : the coderived category which is a triangulated category,namely the localization of the category ComcC of cocompletecomodules over C.

Theorem 4.2 [Lefevre-Hasegawa, 2003]Let τ : C → A be a twist-ing cochain. Then one has adjoint functors

D(C)L:=−⊗τA//

D(A)R:=−⊗τCoo

between triangulated categories.

Let A be a DG algebra. By using the natural twisting cochainτ : B(A) → A; [x] 7→ x, we have a pair of adjoint functors

D(B(A))LA:=−⊗τA//

D(A).RA:=−⊗τB(A)

oo

28-a

D(C) : the coderived category which is a triangulated category,namely the localization of the category ComcC of cocompletecomodules over C.

Theorem 4.2 [Lefevre-Hasegawa, 2003]Let τ : C → A be a twist-ing cochain. Then one has adjoint functors

D(C)L:=−⊗τA//

D(A)R:=−⊗τCoo

between triangulated categories.

Let A be a DG algebra. By using the natural twisting cochainτ : B(A) → A; [x] 7→ x, we have a pair of adjoint functors

D(B(A))LA:=−⊗τA//

D(A).RA:=−⊗τB(A)

oo

28-b

top related