ﻮﻳداﺮﻟا ٢٠٠٧ advances in microwave & millimeter- wave ... › documents ›...

Post on 27-Jun-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Advances in Microwave & Millimeter-wave Integrated Circuits

Amin K. EzzeddineAMCOM Communications, Inc.

22300 Comsat DriveClarksburg, Maryland 20871, USA

Tel: 301-353-8400 email: amin@amcomusa.com

الراديو شمس عين جامعة -الهندسة آلية

٢٠٠٧مارس ١٥-١٣

Twenty FourthNational Radio Science Conference(NRSC’2007)

Presentation Outline

• Introduction to MMICs

• MMIC semiconductors and devices

• MMIC manufacturing and packaging

• MMIC design guidelines

• MMIC surveys and examples of novel MMIC circuits

• Conclusion and future trends

Wireless Systems OutlineTX Power

DigitalSignalProcessing

AmpDigitalModulator

BBLO

Amp PA

RF / MWLO

Synthesizer

RF Mixer

CrystalReference

Amp Amp LNA

RF MixerAudio & VideoTransducer

RX Power

RF / MWLO

DigitalDemod.

BBLO

Synthesizer

DigitalSignalProcessing

CrystalReference

Audio & VideoTransducer

MMIC Applications• Linear Components:

–– Switches: SPDT, SPNT, NPMT, ..etcSwitches: SPDT, SPNT, NPMT, ..etc–– Amplifiers: Amplifiers: LNAsLNAs, , PAsPAs, Drivers, Drivers–– Attenuators: Fixed, variable, digitalAttenuators: Fixed, variable, digital–– Phase Shifters: Fixed, variable, digitalPhase Shifters: Fixed, variable, digital

• Nonlinear Components:–– MixersMixers–– Frequency MultipliersFrequency Multipliers–– VCOsVCOs–– Phase DetectorsPhase Detectors–– Integrated Digital Circuits with RF circuitsIntegrated Digital Circuits with RF circuits

• Subsystems– RF front end: Down/Up-converters, LNB– PLL– Transmit/Receive Modules

MIC versus MMIC Solution?

•• MIC Advantages:MIC Advantages:–– Fast & Low Cost DevelopmentFast & Low Cost Development–– Better Performance such as: NF, Efficiency, PBetter Performance such as: NF, Efficiency, P1dB1dB–– Variety of Dielectric MaterialsVariety of Dielectric Materials–– Integration of Different Semiconductor Technologies: Integration of Different Semiconductor Technologies:

MesfetsMesfets, Bipolar, Pin Diodes, Digital, Bipolar, Pin Diodes, Digital……etcetc–– Higher Levels of Integration is possible Higher Levels of Integration is possible

• MMIC Advantages:– Low unit Cost– Performance Uniformity from Unit to Unit– Very Small Size– Very Broadband Performance due to few parasitic effects– Simple Assembly Procedure

Semiconductor Materials for MMICs

High power, limited availabilityHEMT130 W/ºC/mLow8.90.08m2/V/sGallium Nitride (GaN)

mm-wave MESFET, HEMT68 W/ºC/mLow140.60m2/V/sIndium Phosphide (InP)

Very high power below 5GHzMESFET430 W/ºC/mLow100.05m2/V/sSilicon Carbide (SiC)

Mature for low power mixed signal applications

LDMOS, RF CMOS, SiGe HBT (BiCMOS)145 W/ºC/mHigh11.70.14m2/V/sSilicon (Si)

PA, LNA, mixers, attenuators, switches, …etc

MESFET, HEMT, pHEMT, HBT, mHEMT

46 W/ºC/mLow12.90.85m2/V/sGallium Arsenide (GaAs)

ApplicationActive Device Technology

Thermal Conductivity

RF Lossεr

Electron Mobility

MMIC Semiconductors

FET & Bipolar Device Structures

µ

(Not to scale)

Typical FET Structure Typical HBT Structure

Typical Fabrication Steps of GaAs MESFET Process

µ

µ )

µ

µ

Wafer & MMIC Examples

6” GaAs wafer

Ku-Band PA MMIC

Output Matching

MMIC Component Snapshots

Single FET MMIC Components

MMIC Recommended Processes

GaAs HBT1 -100GHzVCOSiGe BiCMOS1 – 50GHzLow Power Mixed SignalpHEMT20–100GHzMesfet0.1 – 20GHzSwitches for digital attenuators

and phase shifters

GaN10 – 30GHz

GaAs Mesfet, GaN, SiC1 - 10GHzHigh Power (> 100W)

pHEMT10 –100GHz

GaAs HBT, GaAs Mesfet1 -10GHzMedium Power (< 10W)

InP> 100GHz

GaAs pHEMT10 –100Ghz

GaAs Mesfet1-10GHzLow Noise AmplifiersDevice ProcessFrequencyApplication

List of MMIC Foundries Worldwide

Only offers foundry services0.15µm, 0.5µm pHEMT and 1µm ,2µm HBT6” GaAsTao Yuan Shien,

TaiwanWIN Semiconductor

Offers foundry services &has a product line

0.15µm, 0.25µm pHEMT and 2µmHBT 4” GaAsUlm, Germany

Orsay, FranceUnited MonolithicSemiconductor

Offers foundry services &has a product line

0.15µm MHEMT,0.13,0.25, 0.35,0.5µm pHEMT,0.5µm & 0.6µmMesfet, 0.5µm, HFET,3µm InGaPHBT

6” GaAs &GaN

Portland, OR& Dallas, TX,USA

TriquintSemiconductor

Offers foundry services &has a product line

0.25µm & 0.5µm PHEMT, HFET &MESFET6” GaAsTainan, TaiwanTranscom

Offers foundry services &has a product lineSiGe BiCMOSSiGeOttawa, Ontario,

CanadaSiGe Semiconductor

Offers new foundry services& has a product lineGaN HEMTGaN on 4“

SiliconRaleigh, NC,USA

Nitronex

Offers foundry services &has a product line

0.18µm ,0.5µm & 1µmpHEMT,0.5µm & 1µm Mesfet, MSAG4” GaAs

Lowell, MA &Roanoke, VA,USA

M/A COM

Offers foundry services &has a product lineInGaP HBT6” GaAsIksan, S. KoreaKnowledge ON

Only offers foundry services0.18µm,0.25µm,0.35µm,0.5µm SiGeBiCMOS & 0.13µm, 0.18µm,0.25µmRFCMOS

SiliconBurlington, VT,USAIBM

Only offers foundry services0.5µm pHEMT, InGaP & InP HBT6” GaAsTorrance, CA,USAGCS

Offers foundry services &has a product line0.2µm pHEMT6” GaAsSanta Clara,

CA, USAFiltronics CompoundSemiconductors

Offers SiC foundry services& has a product lineGaN HEMT & SiC Mesfet3" SiC & GaNDurham, NC,

USACree

MarketProcesses offeredCapabilityLocationFoundry

Essential MMIC Assembly Equipment

Class 10,000 Clean Room Eutectic Die Attach

Automatic BonderDie Pick & Place

Packaging Examples: Carrier mounted

10W Module C-Band T/R Module

Low Cost Packaged MMICs & Devices

a) Ceramic Drop-in b) SMT Ceramic c) SMT Plastic

d) Finished Products

MMIC & Device Empty Packages

MMIC Development Steps

DeviceSelectionSpecifications Block

Diagram

Preliminary Analysis & Layout

Design of Wafer DC & RF Tests

PackageDesign orSelection

AreSpecifications

Met?

Yes

No

MMIC Test Fixture Design

AreSpecifications

Met?

GaAs WaferFabrication

DC & RFTesting

Yes

No

New IIteration

New Design Configuration

To Pre ProductionPhase

FinalAnalysis &Layout

• 6 to 12 months• Foundry Service: $50,000 - $120,000

MMIC Production Steps

Pre-ProductionSpecifications DC & RF

Testing

PreliminaryDataSheets

Life test Environmental Testing

AreSpecifications

Met?

Yes

No

To ProductionPhase

Final DataSheets

AreSpecifications

Met?Yes

No

Adjust Process

Tighten Process Parameters

DC & RF

all met

MMIC DESIGN GUIDELINES

• Device Characterization

• Device Scaling

• Circuit Design and Simulation

• Chip Yield

• Thermal Analysis

• MMIC testing

Device Characterization

• Device characterization accounts to 50% of design effort.

• Small signal testing include: S-parameters, NF …etc

• Large signal testing: DC data, I-V characteristics, power load-pull, efficiency, IMD & EVM

• Modeling should include all pads and transmission lines connected to test device

Device Scaling

• Invariant parameters are: voltage, gain, NF, efficiency (η), linearity, fmax & fT

• Scaled parameters such as: current, P1dB , Psat , Zin, Zout, Zopt are all proportional to device periphery

• Device dimensions should be less than 5% of wavelength (λ)

• Device building block such as gate length (Lg) and gate width (Wg) cannot be scaled and should remain invariant.

MMIC Design & Simulation

• Make it simple and use small number of matching elements

• Bode / Fano Theorem implies using resistive matching to achieve broadband matching

• Keep at least one substrate height between elements to avoid EM coupling

• Understand sources of simulation errors: EM coupling, non-standard library elements, layout inaccuracy, process variations, modeling errors

Bode / Fano Theorem

o 0

1ln .| ( ) | o

dR C

πωω

≤Γ∫ min.| | exp( )

( )b a o oR Cπ

ω ωΓ = −

2-PortMatchingNetwork Co Ro

Γ(ω)

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20Load Quality Factor (QL)

Min

imum

Ref

lect

ion

Mis

mat

ch

50% BW

20% BW

10% BW

Chip Yield

exp( )

exp( )

g g c c

m g g c cWafer CostWafer Area

Yield A D A D

Chip Cost A A D A D

= − −

= +

Ag is the total MMIC device gate or emitter area

Ac is the total MMIC capacitor area

Am is the MMIC chip area

Dg & Dc are critical defects per unit area

• Maximum MMIC area is 10 to 20mm2

• For very low cost the maximum area is usually < 2 to 3mm2

Thermal Analysis

• Maximum junction device temperature Tj < 175ºC

• High reliability applications < 120ºC

• Divide power stage device into small cells to spread the heat

• Take into account solder and package heat resistance when calculating Tj

On-Wafer Calibration Patterns FET for on-wafer characterization

Packaged MMIC TF

MMIC RF Testing

• S-parameters, power, IMD …etc

• On-wafer vs Test Fixture testing

• Calibration methods

RF Measurement Equipment

On-Wafer Probe Station

Vector Network Analyzer

Automated Power Test Bench

Power MMIC Survey

0

10

20

30

40

50

0.00 50.00 100.00 150.00 200.00Frequency (GHz)

Pow

er (d

Bm

)

GaAs FETGaNInPSiCGaAs HBTLDMOS

Pf2 = Constant Law

LNA MMIC Survey

0

2

4

6

8

10

0.00 50.00 100.00 150.00 200.00Frequency (GHz)

NF

(dB

)

ABCSGaAsGaNInPSiGe & CMOS

HIFET Voltage Waveforms

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

Vin

3Vm

Vd = 4Vm

2Vm

Vm

C1

C2

C3

R2

R1

R1

R1

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

-1 .5

-1

-0 .5

0

0 .5

1

1 .5

0 1 2 3 4 5 6 7

Zopt

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

4W 0.03 to 3GHz HiFET MMICBias 20V, 150mA, 400mA

-25

-20

-15

-10

-5

0

5

10

15

20

25

0 1 2 3 4 5Frequency (GHz)

Ret

urn

Loss

(dB

)

-50

-40

-30

-20

-10

0

10

20

30

40

50

Gai

n (d

B)Gain

S11

S22

Bias @ 20V/550mA

15

20

25

30

35

40

0 0.5 1 1.5 2 2.5 3Frequency (GHz)

P1d

B (d

Bm

)

0

10

20

30

40

50

Effi

cien

cy (%

)

P1dB

EfficiencyMMIC Photo Die Size 2.2x1.8mm

Power CMOS HiFET at 1GHz

640µm 4 in-Series HiFET at 1GHz & Bias 8V / 202mA

5

10

15

20

25

30

-15 -10 -5 0 5Pin (dBm)

Gai

n (d

B) &

Pou

t (dB

m)

0

10

20

30

40

50

Effic

ienc

y (%

)

Pout(dBm)GAIN(dB)EFF

Ropt= 40 Ω(2.5 Ω for 2560µm device)

MMICs for Wireless Applications

PAT/R SW

LNA IF AmpMixer

Modulator

MMIC PA for 802.11bRF Front End for ETC Applications

C-Band T/R Module for Phase Array

TX

RX

To BB

2 – 25GHz Millimeter-wave PA

DC – 40GHz SPDT Switch

44GHz 4-bit Phase Shifter MMIC

Conclusion and Future Trends

• GaAs MMICs dominate power, low noise and passive applications at microwave and will continue to do so in the near future

• Improvements in power levels & efficiency will continue to happen for pHEMT and HBT GaAs MMIC

• BiCMOS & SiGe MMIC is maturing for SOC and RF front end applications

• GaN MMIC are expected to mature in few years and may fulfill the need for 10W to 100W power levels up to mm-waves.

• SiC and LDMOS Silicon MMIC will continue to serve applications for >10W below 5GHz

• High power mm-wave MMICs will necessitate flip-chip designs• 3-D MMICs will mature for mm-waves and higher level of integration in

Silicon.

top related