koos kortland gert-jan nooren

Post on 01-Feb-2016

63 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Faculteit Betawetenschappen Departement Natuur- en Sterrenkunde • Instituut SubAtomaire Physica (SAP) • Centrum Natuurkunde-Didactiek (CND) Cluster Utrecht HiSPARC High-School Project on Astrophysics Research with Cosmics. Koos Kortland Gert-Jan Nooren. Universiteit Utrecht. Uitwerking. - PowerPoint PPT Presentation

TRANSCRIPT

Faculteit BetawetenschappenDepartement Natuur- en Sterrenkunde• Instituut SubAtomaire Physica (SAP)• Centrum Natuurkunde-Didactiek (CND)

Cluster Utrecht

HiSPARC High-School Project on Astrophysics Research with Cosmics

Koos KortlandGert-Jan Nooren Universiteit Utrecht

Uitwerking

Kosmische stralingBronnen en detectie• Ontdekking• Interactie met aardatmosfeer• Detectie

1.1 Sterevolutie

Hoe ontstaan supernova’s, zwarte gaten en quasars?

1.1 Sterevolutie

1 • Spectraalanalyse > oppervlaktetemperatuur• Lichtkracht- en afstandmeting > absolute lichtkracht

1.1 Sterevolutie

2 • Waterstof-, helium- en koolstoffusie… > explosie en implosie

1.2 Onderzoek

Hoe is in het begin van de vorige eeuw het bestaan van kosmische straling ontdekt?

1.2 Onderzoek

2 • Aardoppervlak• Kosmos• Metingen ’s nachts of tijdens zonsverduistering

1.2 Onderzoek

3 • Structuur aardmagnetisch veld – vergelijk Noorderlicht

1.3 Bronnen

Waar liggen de bronnen van hoogenergetische kosmische straling?

1.3 Bronnen

1 • 1 pc = 206.265 AE = 3,086·1013 km = 3,26 lichtjaar• Diameter Melkwegstelsel: 0,03 Mpc• Afstand Andromedastelsel: 0,8 Mpc

2.1 Elementaire deeltjes

Hoe ontstaan pionen en muonen bij de inslag van een primair kosmisch deeltje?

2.1 Elementaire deeltjes

1 • Fe = 9·109·q1·q2/r 2 en Fg = 6,7·10–11·m1·m2/r 2 • Fe = 9·109·(1,6·10–19)2/r 2 = 2,3·10–28/r 2

• Fg = 6,7·10–11·(9,1·10–31)2/r 2 = 5,5·10–71/r 2

• Fe ≈ 1043·Fg

2.1 Elementaire deeltjes

3 • Creatie uū- en dđ-paar = ongeladen pion (π0):uud + uud > uud + uud + uū + dđ• Creatie dđ-paar. Hergroepering quarks in een proton (p+: uud) en dđ-paar levert neutron (n0: udd) en positief pion (π+: uđ):uud + uud > uud + uud + dđ > uud + udd + uđ

2.2 Muon-verval

Hoe ver komt een muon met een levensduur van slechts 2,2·10–6 s in de richting van het aard-oppervlak?

2.2 Muon-verval

1 • Ek = ½·m·v 2 > v = (2·Ek/mμ) = 1,3·109 m/s met mμ = 207·me

• v > c : niet mogelijk

2.2 Muon-verval

2 • m0,μ = 105,6 MeV/c 2 = 1,88·10–28 kg > m0,μ/me = 207

2.2 Muon-verval

3 • E0 = m0·c 2 = 105,6 MeV > E0/E = 0,1

• E = m ·c 2 en m = m0/((1 – v 2/c 2)) > v = c ·(1 – E0

2/E 2)

• v = c ·(1 – 0,12) = 0,995·c = 2,985·108 m/s• s = v ·t = 0,7 km met t = 2,2·10–6 s

2.2 Muon-verval

4 • E = 10·E0 > v 2/c 2 = 1 – E02/E 2 = 0,99

t = t0/((1 – v 2/c 2)) = t0/0,1 = 2,2·10–5 s >

t = 10·t0

• s = v ·t = 7 km

2.2 Muon-verval

5 • E 2x zo groot > v c > v blijft even groot• E 2x zo groot > t 2x zo groot > s 2x zo groot (dus: s = 14 km)

2.3 Airshowers

Welke soorten airshowers zijn er, wat zijn hun eigenschappen en hoe is daaruit de richting en de energie van een primair kosmisch deeltje te bepalen?

2.3 Airshowers

1 • FL = B·q ·v = Fc = m ·v 2/r > B·q ·r = m ·v = p• v c (zie 2.2 Muon-verval) > p = m ·c = E/c (want: E = m ·c 2) = 1 GeV/c• |q| = e > r = p/(B ·e) = 7·104 m• Showerhoogte 10 km, baanstraal 70 km > baankromming verwaarloosbaar. Bovendien: E groter > p groter > r groter.

2.3 Airshowers

2 • Verticaal showerprofiel (figuur 7): eerst toename Ne door productie bij interacties, dan (als productie gestopt is vanwege afgenomen deeltjes-energie) afname Ne door verstrooiing in atmosfeer.• Horizontaal showerprofiel (figuur 8): N groot bij showerkern door impulsbehoud, afname N bij toename r door verstrooiing.• Nμ bij showerkern voor h-showers (p en Fe) 10x groter dan voor em-showers (γ), bij ruwweg dezelfde Ne en Nγ (grootte-orde 10 resp 1).

• Onderscheid op grond van gemeten verhouding tussen Nμ enerzijds en Ne en/of Nγ anderzijds.

2.3 Airshowers

3 • Energie primair deeltje: sommeren van het product van de energie per deeltje en het aantal deeltjes voor de drie verschillende soorten deeltjes (muonen, elektronen en fotonen).• Inslagrichting primair deeltje: verschil in aankomsttijd van shower op de verschillende detectiestations.

2.3 Airshowers

4 • HiSPARC-detectiestations meten alleen muonen, en kunnen dus geen onderscheid maken tussen h- en em-showers. Er wordt gewerkt met een door ander onderzoek onderbouwde aanname dat een gedetecteerde shower hadronisch van aard is.

2.3 Airshowers

5 • HiSPARC-detectiestations meten alleen de muonendichtheid en niet de energie van de gedetecteerde muonen. De energie van het primaire deeltje moet worden geschat op grond van de overeenkomst tussen de resultaten van deze metingen en simulaties.• HiSPARC-detectiestations meten wel de aankomsttijd van de shower, zodat het in vraag 3 gegeven antwoord over het schatten van de inslagrichting van het primaire deeltje juist is.

3.1 Detector

Hoe werkt een scintillatiedetector?

3.1 Detector

1 • k = 2 MeV/(g/cm2) bij E = 1 GeV• ΔE = k· ρ· l = 4 MeV

3.1 Detector

2 • Nf = 4·106/100 = 4·104 (fotonen)

3.1 Detector

3 • n = 1,58 > ig = 40°

• 2-dimensionaal: i < ig > ca. 50% verlies.

• 3-dimensionaal: weglengte langer, absorptie-kans groter.• Afwijkende geometrie lichtgeleider: minder totale reflectie. • Nf,K = 0,01·Nf = 4·102 (fotonen)

3.1 Detector

4 • Ne,K = ε ·Nf,K = 1,1·102 (elektronen)

• Ne,A = G ·Ne,K = 3,4·108 (elektronen)

3.1 Detector

5 • Δt 10 ns (pulslengte – zie opmerking in bijschrift bij figuur 2)• I = ΔQ/Δt = Ne,A·e/Δt = 5,4·10–3 A (5,4 mA)

• U = I ·R = 0,27 V (270 mV)• Grootte-orde vergelijkbaar. Belangrijkste onzekerheden: percentage van de geproduceerde fotonen dat PMT bereikt (opdracht 3), voedings-spanningsafhankelijke waarde van versterkings-factor G van PMT (opdracht 4).

3.1 Detector

6 • Pulshoogtehistogram: vergelijkbaar met Landau-verdeling.

3.1 Detector

7 • Pulshoogtehistogrammen ten opzichte van elkaar enigszins horizontaal verschoven.

3.1 Detector

8 • Muonenteller (zie 3.3 Detector testen).

3.2 Detector bouwen

Hoe bouwen we een scintillatiedetector?

3.3 Detector testen

Hoe testen we een gebouwde scintillatiedetector: hoe bepalen we de juiste instelling en hoe meten we de efficiëntie van zo’n detector?

3.3 Detector testen

1 • Top Landau-verdeling: 60 à 70 mV• Ruis? Ander soort deeltje?

3.3 Detector testen

2 • UPMT hoger > uitrekking spectrum langs horizontale as.• Meettijd langer > uitrekking spectrum langs verticale as.

3.3 Detector testen

5 • ε = Nm/Nμ = 0,95 – 0,98 (plaats 7 resp. 4)

3.3 Detector testen

6 • Δε = ΔNm/Nμ (1000)/1000 = 0,03 > geen plaatsafhankelijkheid

3.3 Detector testen

7 • Relatieve onzekerheid: ΔN/N = N/N = 1/N.• Meettijd langer > N groter 1/N kleiner.

3.3 Detector testen

8 • ε = Nm/Nμ = 6834/7089 = 0,964

• Δε /ε = ΔNm/Nm = 1/ 6834 = 0,0121

• Δε = 0,013 > ε = 0,96 ± 0,013

3.4 Detectiestation

Hoe werkt een detectiestation?

3.4 Detectiestation

1 • fBnaA = fAnaB = fA·fB·Δt

• ft = 2·fA·fB·Δt

• ft = 2·fA·fB·Δt 2·102·102·10–6 = 2·10–2 Hz

3.4 Detectiestation

2 • fe = fm – ft

Nm = 580 h–1 > fm = 0,161 Hz

NA = 5702 min–1 en NB = 5339 min–1 >

fA = 95 Hz en fB = 89 Hz >

ft = 2·fA·fB·Δt = 2·95·89·10–6 = 0,017 Hz

fe = fm – ft = 0,161 – 0,017 = 0,144 Hz

3.4 Detectiestation

3 • Δfm/fm = ΔNm/Nm = 1/Nm = 1/580 = 0,0415 >fm = 0,161 ± 0,007 Hz

• Δft/ft = ((ΔNA/NA)2 + (ΔNB/NB)2) = ((1/5702)2 + (1/5339)2) = 0,019 >ft = 0,017 ± 0,0003 Hz

• Δfe = ((Δfm)2 + (Δft)2) = (0,007)2 + (0,0003)2) = 0,007 >fe = 0,144 ± 0,007 Hz

3.5 Detectiestation installeren

Hoe bouwen en installeren we een detectiestation met twee scintillatiedetectors en apparatuur voor signaalregistratie en -verwerking?

3.6 Detectienetwerk

Hoe ziet een gewenst netwerk van detectiestations er uit, gegeven de lokale situatie?

3.7 Richting primair kosmisch deeltje

Hoe bepalen we de inslagrichting van het primair kosmisch deeltje uit de data bij een coïncidentie tussen tenminste drie detectiestations?

3.7 Richting primair kosmisch deeltje

1 • Impulsbehoud > showerkern in verlengde van baan primair deeltje.• Geometrie van de airshower (bron op 40 tot 10 km hoogte, showerdiameter met grootte-orde 1 km bij aardoppervlak) > showerfront en aardoppervlak als plat vlak en hoogteverschillen detectiestations verwaarloosbaar klein.

3.7 Richting primair kosmisch deeltje

5 • Aangepast coördinatenstelsel:

Detectiestation x (m) y (m) t (μs)A 0 0

0B –400 50

0,29C –300 –500 0,42

• Azimut-hoek: m = –2,05 > ξ = 116° > φ = 26°• Zenit-hoek: v = 1,164·109 m/s > θ = 15°

3.7 Richting primair kosmisch deeltje

6 • GPS-data: aankomsttijden shower bij detectiestations B en C 0,1 resp. 1,2 μs• Azimut-hoek: m = 0,819 > ξ = 219° > φ = 129°• Zenit-hoek: v = 6,318·108 m/s > θ = 28°

3.8 Energie primair kosmisch deeltje

Hoe maken we een schatting van de energie van het primair kosmisch deeltje uit de data bij een coïncidentie tussen tenminste drie detectiestations?

3.8 Energie primair kosmisch deeltje

1 • Afstand r tot showerkern groter > deeltjes-dichtheid S kleiner.• Constante k in formule [1] groter, waardoor deeltjesdichtheid S groter bij alle waarden van r.

3.8 Energie primair kosmisch deeltje

2 • Zenit-hoek θ = 15° > η = 3,91• S (r0) = 100 met α = 1,2 en η =3,91 > k = 667• Met rekenblad_1 eerste schatting P (–150,–250) bij aangepaste k (2000)• Met rekenblad_2 beste schatting P (–205,–225) bij aangepaste k (2250). Berekende deeltjes-dichtheid in A, B en C resp. 10,2, 7,3 en 11,9 (gemeten: 10, 7 en 12)• Met k = 2250 in formule [1] toegepast in formule [2]: E = 2,2·1017 eV.• Ondergrens

3.8 Energie primair kosmisch deeltje

3 • Procedure: zie opdracht 2.

3.8 Energie primair kosmisch deeltje

4 • Schatting ondergrens energie: η in formule [1] nodig, en dus zenit-hoek θ > minstens twee detectiestations. • Aanname: showerkern op verbindingslijn stations.

3.8 Energie primair kosmisch deeltje

5 • Zenit-hoek θ = 28° > η = 3,73• S (r0) = 100 met α = 1,2 en η =3,73 > k = 577• Met rekenblad_1 eerste schatting P (400,–275) bij aangepaste k (2000)• Met rekenblad_2 beste schatting P (400,–275) bij aangepaste k (2350). Berekende deeltjes-dichtheid in A, B en C resp. 3,1, 2,0 en 3,0 (gemeten: 3, 2 en 3)• Met k = 2350 in formule [1] toegepast in formule [2]: E = 3,2·1017 eV

top related