pediatric hematology oncology, schneider children’s medical center of israel, petal-tikva,

Post on 12-Jan-2016

35 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

לויקמיה ולימפומה בילדים דר. יצחק יניב מנהל המחלקה להמטולוגיה ואונקולוגיה ילדים מרכז שניידר לרפואת ילדים בישראל. Pediatric Hematology Oncology, Schneider Children’s Medical Center of Israel, Petal-Tikva, Sackler School of Medicine, Tel Aviv University, Israel. Childhood malignancy. - PowerPoint PPT Presentation

TRANSCRIPT

לויקמיה ולימפומה לויקמיה ולימפומה בילדיםבילדים

דר. יצחק יניבדר. יצחק יניבמנהל המחלקה להמטולוגיה מנהל המחלקה להמטולוגיה

ואונקולוגיה ילדיםואונקולוגיה ילדיםמרכז שניידר לרפואת ילדים בישראלמרכז שניידר לרפואת ילדים בישראל

Pediatric Hematology Oncology,

Schneider Children’s Medical Center of Israel, Petal-Tikva,

Sackler School of Medicine, Tel Aviv University, Israel.

Childhood malignancy

Cancer Cell, 2002

Childhood leukemia

97% Acute leukemia 75% Acute lymphoblastic leukemia 20% Acute myeloblastic leukemia Acute mixed lineage leukemia Acute undifferentiated leukemia

3% Chronic leukemia Chronic myelocytic leukemia Juvenile myelomonocytic leukemia

Risk Factors for Childhood Acute Leukemia

Genetic Down ALL, AMLNF1 ALL, AML, JMMLBloom ALL, AMLSchwachman ALL, AMLAtaxia Telangiectasia ALLFanconi Anemia AMLKostmann GranulocytopeniaAML

Environmental Ionizing Radiation ALL, AML

In Utero X-ray ALLBenzene

AMLPesticide AMLAlkylating /Topo-II Inhib.

AMLIn Utero Topo II Inhib.

Infant Und L.DNA damaging

Higher incidence among identical twins

ALL- Epidemiology

The most common malignancy in childhood

Incidence 3-4 cases per 100000 children

Peak incidence between 2-5 y Boys > Girls White >BlackGenetic predisposition <5%

Age distribution

Clinical Features at Diagnosis in Children with

Acute Lymphoblastic Leukemia

Clinical features/ Symptoms % of patients

Fever 61Bleeding (petechiae or purpura) 48Bone pain 23Lymphadenopathy 50Splenomegaly 63Hepatosplenomegaly 68

Laboratory Features at Diagnosis in Children with

Acute Lymphoblastic Leukemia

Laboratory features % of patients

Leukocyte count (mm3)<10,000 5310,000-49,000 30>50,000 17

Hemoglobin (g/dl)<7.0 437.0-11.0 45>11.0 12

Platelet count (mm3)<20,000 2820,000-99,000 47>100,000 25

ALL testicular involvement

CNS leukemia

Differential Diagnosis in Childhood Acute Lymphoblastic Leukemia

Nonmalignant conditionsJuvenile rheumatoid arthritisInfectious mononucleosisIdiopathic thrombocytopenic purpuraPertussis; parapertussisAplastic anemiaAcute infectious lymphocytosis

MalignanciesNeuroblastomaRetinoblastomaRhabdomyosarcoma

Unusual presentationsHypereosinophilic syndrome

Diagnosis

Blood count and smear Bone marrow: Morphology

Cytochemical stains

Immunophenotype

Cytogenetics

Haemopoiesis

FAB L1

FAB L2

FAB L3

Cytochemical stains

Lymphoid differentiation

T phenotype ALL Incidence 15% (Israel – 20 %)

Median age : 12y

Male > Female

High blood count

Mediastinal mass

Organomegaly

CR < 90 %

High relapse rate, CNS, Extra medullary

15 לפני גיל ALL ילדים מפתח 2000אחד מתוך •ברובם הארוע הראשון קורה ברחם• אך רק אחוז אחד מהם 212;1 נןשא טרנסלוקציה 1/100•

יפתח לויקמיהדרוש ארוע נוסף כדי שהלויקמיה תופיע וזה יכול להיות •

קשור בזיהום או בתגובה לזיהום וגם במבנה הגנטי הקיים DNAלגבי מטבוליזם של תרופות ותיקון נזקי

Genetic (somatic) Abnormalities in Childhood Cancer

Numerical Chromosomal changes

Structural Chromosomal changesTranslocationInversionDeletionAddition / duplicationAmplification

Childhood ALL

Hyperdiploid

cep4/cep10

Ca-Cytogenet. -SCMCI

G-banding FISH

Cep4: centromere 4

Cep10: centromere 10

Genetic (somatic) Abnormalities in Childhood Cancer

Numerical Chromosomal changes

Structural Chromosomal changesTranslocationInversionDeletionAddition / duplicationAmplification

Genetic Abnormalities in Childhood Cancer

Protooncogen ActivationSuppressor gene Inactivation

Altered function of: Growth factorsGrowth factor receptorsKinase inhibitorsSignal transducersTranscription factors

Altered down stream Genes Expression

bcr/abl

Childhood ALL

Ca-Cytogenet. -SCMCI

Philadelphia chromosomeG-banding FISH

46,XY,t(9;22)(q34;q11)

bcr: 22q11

abl: 9q34

ALL-B lineage Chromosomal rearrangement

Activation of transcriptional control Genes

ALL Translocation Genes Frequency

Early B t(12;21)(p12;q22) TEL-AML1 25%Pre. B t(1;19) (q23;p13) E2A-PBX1 5%Pro. B t(17;19)(q22;p13) E2A-HLF <1%

t(4;11) (q21;q23) MLL-AF4 4%

B cell/Burkitt t(8;14) (q24;q32) MYC (IgH) 5%t(2;8) (p12;q24) MYC (IgL) <1%t(8;22) (q24;q11) MYC (IgL) <1%

B cell t(3;11) (q27;q23) BCL6 1%

46,XY,t(12;21)(p13;q22),der(12)t(1;12p)

SKY

FISH

Childhood ALL – t(12;21) (TEL/AML1),del(12p)

H.M. Ca-Cytogenet. -SCMCI

G-band

Expression profiles of diagnostic bone marrow ALL blasts

Yeon, Cancer Cel 2002

Cancer Cell, 2002

Molecular subtypes of ALL

Pui, NEJM, 1998

Childhood ALL, Event Free Survival by Genetic Features St Jude

Prognostic Risk Factors in ALL

Age: 1-6, 1-10yWBC: 20.000, 50.000Phenotype.: T, “B”, CALLA neg.

Ploidy: <2n, 3nCytogenetic:t(9;22),t(4;11)

t(12;21)Gene Expression Profile ?

Early response to treatment !!!!!!

PB D8, BM D15, D33Morphology, MRD

Sex, Race, CNS, Testicular involvement

Early response to therapy

D-8 ( PB ; BM ) D- 14 ( BM ) D- 33 ( BM ) MRD Slop by

BM aberrant phenotype

BM clonal Ig/TCR rearrangement

M R D Minimal Residual Disease

Precise definition of remission

Prognostic significance (blast <0.01% )

Treatment modification

Immunogobuline gene rearrangement

van Dongen ASH 2002

.therapy antileukemic Patterns of early cellular responses to

Pui, 2000

International BFM Study Group

Risk MRD 5 year Relapse

TP1 TP2 Rate - %

Low <10-4 <10-4 2

Intermediate 24

High >10-3 10-3 84

Combined Information of MRD from Time Points 1+2

Low risk group pRFS = 0.98 ± 0.02Intermediate risk group pRFS = 0.76 ± 0.06 p<0.001High risk group pRFS = 0.16 ± 0.08

0 1 2 3 4 5 6 7 8 9

years from time point 2

0.0

0.2

0.4

0.6

0.8

1.0Low risk group (n=55)neg at tp 1

Intermediate risk group (n=55)< 10e-3 at tp 2

High risk group (n=19)≥ 10e-3 at tp 2

Principles of treatmentRisk group

Combination chemotherapy:

Remission induction

• CNS prevention

Consolidation

Maintenance

Irradiation

BMT

Late effect consideration

Leukemic cell kinetics

Event- Free Survival of ALL children- St. Jude

Pui, 1998 NEJM

CHILDHOOD-ALL

ISRAEL NATIONAL STUDIES. EFS

Years Aug 2002

181614121086420

Cum

Sur

viva

l

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

0.0

INS-98

INS-89

INS-84

CHILDHOOD ALL-INS 89

EFS by RISK-GROUPS

Years Aug 2002

1614121086420

Cu

m S

urv

iva

l

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

.0

Non-HRG: 79%

(N=259)

HRG: 33%

(N=43)

Host Pharmacogenetics Affects Treatment Response

excessive toxicity

responders

non-

responders

Determinants of Treatment Response in Leukemia

Drug resistanceGrowth potential

Leukemia

Host Tumor burden

Age

Pharmacogenomics

Therapy

Drug dosage

Drug interactions

Treatment response

Same treatmentto all patients

Impact of Pharmacogenomics on Treatment Response

No Benefit+ Toxicity

No BenefitNo Toxicity

Treat with alternative drug

+ Benefit+ Toxicity

+ Benefit+ No Toxicity

Optimizetreatment

withindividualized

dose

BMT – (BFM-95) t ( 9 ; 22 ) or BCR /ABL recombination

t ( 4 ; 11 ) or MLL / AF4 recombination

No CR D – 33

PPR + T immunophenotype

pre B immunology

WBC > 100000

סיבוכים מאוחרים של קרינה למ.ע.מ. וכמותרפיה אינטנסיבית

קרינהגדולי מח משניים -אפיפודופילוטוקסינים. תרופות מאלקלותלאוקמיה משנית -

אנטרהציקליניםאנטרהציקליניםקרדיומיופתיה - גלוקוקורטיקואידים,קרינה, מטוטרקסאתאנצפלופתיה -קרינה, גלוקוקורטיקואידיםקומה נמוכה -

קרינההשמנה - קרינה, גלוקוקורטיקואיד, אנטימטבוליטיםאוסטאופורוזיס -

גלוקוקורטיקואיד נמק אווסקולרי לעצמות -

Relapse remains the major problem of childhood leukemia!!

Cancer Cell, 2002

Science, 1997

AML-M2, t(8;21)

NEJM, 1999

AML

Ca-Cytogenet. -SCMCI

G-banding FISH

Eto: 8q22

AML1: 21q22

Bennet, leukemia 2000

AM-M3, Hypergranular, t(15;17)

Grimwade, Blood, 1998

AML-MRC-10. Overall Survival by Cytogenetic abnormalities

AML-MRC-10. Overall Survival by Cytogenetic abnormalities

Grimwade, Blood, 1998

Cancer Cell, 2002

LymphomasClassification along three axes

Classification by cell of origin (B vs. T vs. NK)

Classification by grade – Low grade, intermediate grade, high-grade

Hodgkin disease (HD) vs. Non-Hodgkin Lymphoma (NHL)

Lymphoma

• Malignancies of the lymphoid system

• Classification by cell of origin (B vs. T)

• Classification by grade – Low/intermediate/high

In children – only high-grade lymphomas

• Hodgkin disease (HD) vs. Non-Hodgkin Lymphoma (NHL)

Pediatric lymphomas

Non-Hodgkin Lymphoma in Children

• B-Cell – Burkitt’s lymphoma (40%)

Diffuse large B-cell (DLBCL) (20%)

B-cell lymphoblastic lymphoma (5%)

• T-Cell – Lymphoblastic Lymphoma (25%)

• Anaplastic Large Cell Lymphoma (ALCL) (10%)

Burkitt’s lymphoma - Pathogenesis

• The B-Lymphocyte is produced in the bone marrow

• It differentiates into an antibody producing cell (Immunoglobulin-Ig)

• It can be found in all lymph nodes and extra-nodal organs

• Burkitt’s lymphoma and DLBCL are thought to arise in germinal centers of lymph nodes during B-cell development

The normal lymph node

Malignancies of B-lymphocytes

Burkitt’s lymphoma - Pathogenesis

• Cell of origin – B-cell centroblast (relatively mature B-cell)

• t(8;14) – C-MYC

• Role of EBV

• African (Endemic) vs. Sporadic form

Burkitt’s lymphoma - Pathogenesis

• Cytogenetics t(8;14), t(2;8), t(22;8)

• Common theme – Chr. 8 – C-MYC - a cellular oncogene

• Partners – Immunoglobulin regulatory regions

Burkitt’s lymphoma - Pathogenesis

Regulator C-MYC

Chromosome 8 ¥▅_▅_▅____▅__▅__

Regulator Ig

Chromosome 14 ¥ ▅_▅_▅____▅__▅__

Burkitt’s lymphoma - Pathogenesis

C-MYC Regulator Ig

Chromosome 8;14 ▅_▅_▅____▅__▅__

Ig Regulator C-MYC

Chromosome 14;8

▅_▅_▅____▅__▅__

Burkitt’s lymphoma - Pathogenesis

• The regulatory region of the Ig gene, which is usually very active in B-Cells, now drives the expression of C-MYC

• C-MYC is an oncogene – the cell enters the cell cycle and divides

• The result – the B-cell is driven to proliferate

Burkitt’s lymphoma - Pathogenesis

Burkitt’s Lymphoma is the tumor with the greatest proliferative capacity with a doubling time of 24-48 hours.

The role of EBV in Burkitt’s lymphoma

• EBV – a DNA herpesvirus

• The cause of infectious mononucleosis – a self limiting infection of B-cells

• The genome of EBV can be found in Burkitt’s lymphoma cells: 100% of cases of African Burkitt’s, ~50% of cases in Latin America, and only in 20% of cases in the west.

• Its exact role in lymphomagenesis is unclear

The role of EBV in Burkitt’s lymphoma

• In normal hosts - EBV causes a transient lymphoproliferation that is controlled by the immune system

• In the immunocompromised host – EBV can cause a lymphoproliferative state than can be polycolonal or monoclonal (PTLD)

• Immunodeficiency or chronic infection (malaria) allows continuous proliferation of EBV-infected B-cells that may be the reservoir of cells vulnerable to malignant transformation

Burkitt’s Lymphoma – Clinical Features• Commonest location – abdomen – Localized (ileocecal intussusception) - Disseminated mesenteric, peritoneal - Renal involvement

• Head and neck – pharynx, Waldeyer ring, paranasal sinuses, tonsils, gums

• Epidural, ovary, bone

• African form – Jaw tumors

• Spread to extra lymphatic organs – CNS, BM (20%)

• Rapid growth – metabolic derangements

Burkitt’s - Diagnostic Evaluation

• Diagnostic biopsy

- lymph node

- abdominal mass

- bone marrow (stage 4 - B-cell leukemia)

- intestinal resection (intussusception)

Burkitt’s lymphoma - Pathology

• Rapidly proliferating B-Cells (MIB1)

• Starry sky appearance (macrophages)

• Subtypes – Burkitt’s, Burkitt-like, (DLBCL)

Burkitt’s lymphoma - Pathology

Burkitt’s- Diagnostic Evaluation

• Clinical extent

• Lab- CBC, Uric acid, LDH, P, Ca, K, renal function

• Imaging – CT

• Radionucleide scan – Gallium, PET

• Bone marrow, CNS involvement

• Pre-treatment - Echo,Fertility preservation

Burkitt’s Lymphoma - Staging

St. Jude/NCI system

• Stage I – One nodal group- resected• Stage II – Localized disease (AR) (Intussusception)• Stage III – Extensive abdominal or mediastinal disease, epidural• Stage IV – Extra nodal disease – CNS, Bone marrow (BM - Burkitt’s (B-cell) leukemia) Most patients present with advanced disease (Stages III, IV)

Burkitt’s Lymphoma - Staging

LMB (FAB – International) System

• Group 1 – One nodal group- resected

• Group 2 – Extensive localized disease - abdominal or mediastinal, epidural, high LDH

• Group 3 – Extra nodal disease – CNS, Bone marrow (BM - Burkitt’s (B-cell) leukemia)

Burkitt’s lymphoma - Treatment

Metabolic stabilization – Tumor lysis syndrome (TLS)

Stage (Group) dependent Chemotherapy Intensive, short duration therapy Minimal (if any) role for radiation therapy Surgery – localized abdominal disease (intussusception) High cure rate in newly diagnosed patients

Relapse is rarely curable

Tumor Lysis Syndrome

• Rapid proliferation and death of cells

• Tumor cells outstrip their own blood supply and die

• Breakdown of nucleic acids – DNA – uric acid, phosphate

• Spontaneous cell death → Severe TLS can occur before treatment

Tumor Lysis Syndrome

Diseases with rapid cellular turnover

• Lymphomas – Burkitt’s, lymphoblastic

• Leukemias – ALL, AML

• Solid tumors – less common – NB, RMS

Burkitt’s lymphoma - Chemotherapy

• Begin after metabolic stabilization

• Active agents– Cyclophosphamide, HD MTX, HD ARA-C, vincristine, doxorubicin, steroids, ifosfamide, VP-16,

• CNS directed therapy – intrathecal (XRT unnecessary)

• Greatest dose-intensity possible (minimal interval between cycles)

Vincristine Cyclophosphamide –– Total 5.5 grams/M2Doxorubicin –– Total 180 mg/M2MTX -– Total 15 gram/M2PrednisoneARA-CVP-16

Burkitt’s Lymphoma – Treatment The LMB approach

Reductionphase

Burkitt’s lymphoma - Outcome

• Modern therapy is highly effective.

Most patients are cured: 95% group B, 80% Group C.

Period of risk for relapse is short – 9-12 months

• Acute toxicity is substantial – Infections, mucositis, acute mortality ~ 1-3%.

• Long term toxicity– mainly gonadal (cardiac)

Reduction in therapy?

Results of LMB-89 trial for Pediatric B-cell NHL

Patte C et al Blood 2001:97, 3370-9

B-NHL - Outcome by group

B-NHL - Outcome by stage

Outcome in group C – Importance of CNS disease

Gonadal Toxicity

• Mainly caused by alkylating agents

Cyclophosphamide, ifosfamide, busulfan, procarbazine

• Damage to gonads is related to cumulative dose

• Cyclophosphamide >6 grams is toxic

Burkitt’s lymphoma – Challenges

• Preserve cure rates while reducing acute and long term toxicity

• Treatment of relapse

Relapsed Burkitt’s Lymphoma

• Relapse Burkitt’s lymphoma is currently incurable in the overwhelming majority of patients

• Targeted therapy - Anti CD - 20 (rituximab) Ibritumomab-tiuxetan Y90

Anti CD22 – Epratuzumab hLL2-DOTA- Y90

Anti CD52 – Campath-1H, Alemtuzumab• Allo-BMT

top related