positron emission tomography (pet) and pet/ct...positron emission tomography (pet) and pet/ct...

Post on 20-Sep-2020

10 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

PositronEmissionTomography(PET)andPET/CT

Positron(β+)Emission

Z

20 40 60 80 100 120 140 160N

Z

20

40

60

80

100

Neutron-poorregiondecayto‘lineofstability’isbypositronemission(orEC)

p+ → n + β + +ν

Z=N

lineofstability

PositronEmission

RadioacIvedecay•  startwithneutron-deficientisotope•  decaystostableformbyconverIngaprotontoaneutronandejectsa'positron'toconserveelectriccharge

•  positronannihilateswithanelectron,releasingtwoanI-colinearhigh-energyannihilaIonphotons

np

np

n

pnp n

pn

p

np

p

pn

p n

pn

p

n

p n np

np

n

pnp n

pn

p

np

n

pn

p n

pn

p

n

p n

~2mm

18F 18O

~180deg

E=mc2=511keV

β+

e-

annihilaIonphoton

Energy Spectrum of Emitted Positrons

LevinPMB1999

MedicallyUsefulPositronEmiYngIsotopes

Isotope Half life (min)

Most probable energy (keV)

FWHM of positron range* in water (mm)

109.7 203 0.102

1.3 1384 0.169

20.3 326 0.111

10.0 432 0.142

2.0 696 0.149

918F

3782Rb

611C

713N

815O

*verylongtails90%ofallclinicalstudies

ScinIllaIonDetectors

high energy511 keV photon

optical photons (~ 1eV)

scintillator(e.g. BGO Dense yet transparent)

current pulse for each UV photon

detected

photomultipliertubes (PMTs)gain of ~ 106

ScinIllatorstriedinPET

Usedincommercialscanners

PETDetectorBlock

ReflecIvelightsealingtape

Two dual photocathode PMTs

Annihilationphoton

scintillationlight

signalouttoprocessing

•  PETscannersareassembledinblockmodules

•  EachblockusesalimitednumberofPMTstoencodeanarrayofscintillationcrystals

PETScannerDetectorRing

PaulKinahan

Block matrix6 x 8 crystals (axial by transaxial)Each crystal:

6.3 mm axial4.7 mm transaxial

Scanner constructionAxial:

4 blocks axially = 24 rings15.7 cm axial extent

Transaxial:70 blocks around = 560 crystals88 cm BGO ring diameter70 cm patient port

13,440 individual crystals

BlockformaIonforacurrentPETscanner

KeyfeatureofPET:LineofresponsecollimaIonbycoincidenceIming

Dt < 10 ns?

detector A signal

detector B

record coincident event for this line

of response (LOR)

scannerFOV

β+ + e- annihilation

• InSPECTthisisachievedthoughuseofacollimator• InCTtheknowngeometryfromsourcetodetectorisused

scinIllaIoneventdetecIon

Time of Flight (TOF) PET/CT c = 3x1010cm/s with ∆t = 600 ps in timing resolution yields ∆d = 10 cm spatial resolution

∆d = c ∆t/2

timing resolution uncertainty∆d

best guess for location (d)

β+ + e- annihilation

PETImagingEquaIonWithenoughcoincidenteventsforeachlineofresponse,wecanapproximatemeasuresasline-integraldataoftheradioisotopeconcentraIon

φ(l,θ ) = A(x(s), y(s))ds−∞

∫Theintegralisalongaline

L(l,θ ) = (x, y) x cosθ + ysinθ = l{ }

s

A(x, y)

SolvingthePETImagingEquaIon

Wehaveasimple2Dx-ray(Radon)transform,i.e.lineintegral,thatcanbeexactlysolvedbyfilteredbackprojecIon(FBP)

′φ (l,θ ) = A(x(s), y(s))ds−∞

A(x, y) = ρ Φ(ρ,θ )e j2πρl dρ−∞

∫()*+,-dθ

0

π

Φ(ρ,θ ) = F1D ′φ (l,θ ){ }where

PET Imaging equation

FBP solution

Typicalusecase:Glucosemetabolismimaging

FDG-6-PO4is‘trapped’andisamarkerforglucosemetabolicrates*

glucose

glucose 6-phosphate

pyruvate lactate

gylcolysis (anaerobic, inefficient)

TCA (oxidative, efficient)

HOCH2

H 18F

H

OH HHO

H

OH

H

radioactive fluorine

O

[18F]fluorodeoxyglucose (FDG)

positron emitter, i.e. what we see

FDG

FDG 6-phosphate

X

CTimageshowingsuspiciousnodule PETimageconfirmingcancer

CombinedPET/CTimagingcombinesfuncIonalandanatomicalimaging(likeSPECT/CT)

PETImageofFuncIon FuncIon+Anatomy CTImageofAnatomy

PET/CTscannerarrangement

All3(couch,CTandPET)mustbeinaccuratealignment

Commercial/ClinicalPET/CTScannerPETdetectorblocksthermalbarrierrotaIngCTsystem

Confoundingeffects

Lost (attenuated)event

Scattered coincidenceevent

Random coincidenceevent

incorrectly determined LORs

Compton scatter

no detection (i.e. no LOR)

CorrecIonshavetobeappliedfortheseeffects

scinIllaIoneventdetecIon

AnenuaIoninPETImaging2anI-colinearphotonsalongthelineofresponse(LOR)

annihilation location

detector A: number of events detected = NA

detector B: number of events detected = NB

attenuation distance from annihilation location to detector B

NA = N0 exp − µ(x( "s ), y( "s );E)d "sS0

R

∫{ }NB = N0 exp − µ(x( "s ), y( "s );E)d "s

−R

S0

∫{ }photons detected from a single

annihilation location at s0

AnenuaIoninPETImagingTotalnumberofannihilaIonphotonsarrivingincoincidenceNCisNO(acIvityatsO)reducedbytheproductoftheanenuaIonfactors

WecannowallowforadistributedsourceofpositronsalongLOR

evenbener,wenowhaveanenuaIonasasimplemulIplicaIon

NC = N0 exp − µ(x( ′s ), y( ′s );E)d ′sS0

R

∫{ }exp − µ(x( ′s ), y( ′s );E)d ′s−R

S0∫{ }= N0 exp − µ(x( ′s ), y( ′s );E)d ′s

−R

R

∫{ }

φ(l,θ ) = K A(x(s), y(s))exp − µ(x( $s ), y( $s );E)d $s−R

R

∫{ }ds−R

R

φ(l,θ ) = K A(x(s), y(s))ds−R

R

∫ ⋅exp − µ(x(s), y(s);E)ds−R

R

∫{ }

keystepiscombiningintegrals

notdependentonssocantakeoutofintegral

ComparisonofImagingEquaIons

AnenuaIonCorrec9oninPETImagingWenowhaveanenuaIonasasimplemulIplicaIonSoiswecansomehowmeasureanenuaIonalongtheLOR,i.e.ThenwecanwriteWhichweknowhowtosolveforA(x,y)RecallthatA(x,y)istheradiotracer(positroneminer)concentraIonthatwewanttoknow

φ(l,θ ) = K A(x(s), y(s))ds−R

R

∫ ⋅exp − µ(x(s), y(s);E)ds−R

R

∫{ }

a(l,θ ) = exp − µ(x(s), y(s);E = 511keV)ds−R

R

∫{ }

′φ (l,θ ) = φ(l,θ )Ka(l,θ )

= A(x(s), y(s))ds−∞

HowtomeasureanenuaIon?

1.  PETtransmissionsource(68Ge/68Ga):CoincidentannihilaIonphotons(mono-energeIc@511keV),265dayhalflife

2.  X-rayCTscan:X-rayswithadistribuIonofenergiesfrom~30to130keV(effecIveenergyof~70keV)

E

I0(E) X-raysourcespectra

PETanenuaIonimaging

•  µ(x,y)valuesaremeasuredatdesiredenergyof511keV•  Near-sidedetectors,however,sufferfromdeadImeduetohighcountrates•  AlsosubjecttobiasfromemissionphotonsfrompaIent

orbiIng68Ge/68Gasource

PETscanner

near-sidedetectors

511keVannihilaIonphoton

paIent

X-rayCTanenuaIonimaging

•  µ(x,y,E)ismeasuredasaweightedaveragefrom~30-130keV,soweneedtoconverttotµ(x,y,E=511keV),potenIallyintroducingbias

•  Photonfluxisveryhigh,soverylownoiseandfasterthanPETtransmissionimaging

orbiIngX-raytube

X-raydetectors

30-130keVX-rayphoton

paIent

PETTX:3min,E=511keVunbiasedesImate,highnoise

X-rayCTTX:20s,E=30-120keVbiasedesImate,lownoise

ComparisonofanenuaIonimagingmethods

DuetodiagnosIcsuperiorityofPET/CT,allPETscannersarereallyPET/CTscannerssowecanuseCTforanenuaIoncorrecIon

CT-basedAnenuaIonCorrecIon

0

25,000

50,000

75,000

100,000

0 100 200 300 400 500 600

keV

ITransform?

•  Weusethefactthatthemass-anenuaIoncoefficient(µ/ρ)issimilarforallnon-bonematerialssinceComptonscanerdominatesforthesematerials

•  Bonehasahigherphotoelectriccross-secIonduetocalcium•  Canusetwodifferentscalingfactors:oneforboneandonefor

everythingelse

0.01

0.10

1.00

10.00

100.00

10 100 1000keV

µ/ρ

Bone, Cortical

Muscle,SkeletalAir

bone

everythingelse

70 511

CT-basedAnenuaIonCorrecIon

0.00

0.05

0.10

0.15

0.20

-1000 -500 0 500 1000 1500

CT Hounsfield Units

linea

r at

tenu

atio

n co

effc

ient

(µ)

CT-basedAnenuaIonCorrecIon•  Bi-linearscalingmethodsapplydifferentscalefactorsforboneandnon-bonematerials

•  ShouldbecalibratedforeverykVpand/orcontrastagent

air-water mixture

water-bone mixture

air soft tissue dense bone

•  CTimagesarealsousedforcalibraIon(anenuaIoncorrecIon)ofthePETdata

•  Notethatimagesarenotreallyfused,butaredisplayedasfusedorside-by-sidewithlinkedcursors

•  NotealsothattheCTisusedforanenuaIoncorrecIon,thusasignificantpotenIalforerrorifthereisamis-alignmentorinaccuratescaling

DataFlowandProcessing

X-rayacquisi0on Anatomical(CT)Reconstruc0on

PETEmissionAcquisiIon

CTImage

TranslateCTtoPETEnergy(511keV)

SmoothtoPETResoluIon

AnenuaIonCorrectPETEmissionData

FuncIonal(PET)ReconstrucIon

PETImage

DisplayofPETandCTimagevolumes

MaterialarIfact:MetalClip

Artifact

CT PET with CTAC

Courtesy O Mawlawi MDACC

PosiIonalarIfact:PaIentand/orbedshiuing

LargechangeinanenuaIonatlungboundaries,soverysuscepIbletoerrors

PETimagewithoutanenuaIoncorrecIon

PETimagewithCT-basedanenuaIoncorrecIon

PETimagefusedwithCT

RespiratoryMoIonArIfacts

Attenuation artifacts can dominate true tracer uptake values

PET Signal, Bias, and Noise

True coincidence (T): line integral signal we want but effected by photon counting noise

Random coincidence (R): different type of bias added to data, also noise

Scattered coincidence (S): bias and noise added to data

Components of measured PET data

!  IfwecanesImateSandRasS’andR’(howisbeyondscopeofthislecture)then:

!  WecansolvethiswithFBP

P =℘ aT{ }+℘ S{ }+℘ R{ }MeasuredProjections

attenuatedTrueSignal

biasfromScatter

biasfromRandomevents

T = ′φ (l,θ ) = A(x(s), y(s))ds−∞

∫℘ x{ },Poisson random process with mean x

A(x(s), y(s))ds

−∞

∫ !1aP − ′S − ′R( )

Signal to Noise Ratio (SNR)•  SignalisthetruecountsT•  ThenoiseisthetotalnoiseinthedataP•  WecanesImatenoisebyrealizingthatphotoncounIngisaPoissonprocess,sothevarianceisequaltothemean

NEC = T 2

T + S +αR< T

αdependsonrandomsesImaIonmethod

SNR = Tσ P( ) ≈

TT + S +αR

= NEC

σ (P) = T + S +αR

NECiscalledthe‘noiseequivalentcount’rate,i.e.theusefulcountrate

TheNECisalwayslessthanT

PET Acquisition: 2D vs. 3D Mode 3D mode typically has higher NEC than 2D mode for activity levels of interest

2D PET uses axial ‘septa’ 3D PET uses no septa

detector crystals

septa & end shielding

blocked

scatter & randoms

Impactof3Dand2DmodeonNECrates

TypicalclinicalacIvityrange

idealcountrate

•  Positron Physics –  Positron Range –  Photon Non-colinearity

•  Detectors –  Response function

•  Ring Geometry –  Non-uniform LOR sampling –  Depth-of-interaction

•  Reconstruction Filters

SpaIalResoluIoncomponentofSNR

Rsystem = Rpos. phys.2 + Rdet

2 + Rsampl2 + Rrecon

2

Resolution components add in quadrature

Size-DependentResoluIonLosses

•  Spherediamof10,13,17,22,28,and37mm

•  Target/backgroundraIo4:1

•  MaxandmeanacIvityconcentraIonsmeasuredvia10mmdiameterregions

20x30cm,similartoabdominalx-secIon

ModifiedNEMANU-2IQPhantom

CT

PET

Recoverycoefficient(RC)=measured/true(ideally100%)

size-dependentbias

SNMTorsophantomwith1cmspheres

10mmsmoothing4mmsmoothing 7mmsmoothing

0.85

0.92

0.52

0.80

0.40

0.72

Increasingsmoothingreducesbothsignalandnoise

Clinicalexamples

PaulKinahan

1. Scout scan (5-10 sec)

CT PET

4. Whole-body PET (15-30 min)

CT PET

TypicalPET/CTScanProtocol

3. Helical CT (10 - 20 sec)

CT PET

2. Selection of scan region

Scout scan image

•  CTimagesarealsousedforcalibraIon(anenuaIoncorrecIon)ofthePETdata

•  Notethatimagesarenotreallyfused,butaredisplayedasfusedorside-by-sidewithlinkedcursors

Reminder:DataFlowandProcessing

X-rayacquisi0on Anatomical(CT)Reconstruc0on

PETEmissionAcquisiIon

CTImage

TranslateCTtoPETEnergy(511keV)

SmoothtoPETResoluIon

AnenuaIonCorrectPETEmissionData

FuncIonal(PET)ReconstrucIon

PETImage

DisplayofPETandCTimagevolumes

PET/CT for precise localization

•  68-y-old man, 3 y after partial gastrectomy for adenocarcinoma of stomach

•  Referred for 18F-FDG PET/CT for evaluation of mass detected on routine follow-up gastroscopy and equivocal biopsy results

•  (A) 18F-FDG PET show increased 18F-FDG uptake in region of stomach (arrow)

•  (B) Hybrid PET/CT axial image (top) precisely localizes and defines uptake as physiologic activity at gastric stump (arrowhead). Suspicious mass in anastomotic region (arrow), seen on corresponding hybrid and CT slices (bottom) obtained during same acquisition, shows no uptake of 18F-FDG.

•  Findings on PET/CT were interpreted as physiologic 18F-FDG uptake in stomach and nonviable residual mass.

•  Patient showed no evidence of disease for follow-up of 7 mo.

PET/CT for precise characterization

•  A 35-y-old man, 22 mo after treatment for colon cancer

•  Negative high-resolution contrast-enhanced CT and normal levels of serum tumor markers, was referred for 18F-FDG PET for further assessment of pelvic pain

•  (A) Coronal PET images show area of increased 18F-FDG uptake in left pelvic region (arrow), interpreted as equivocal for malignancy, possibly related to inflammatory changes associated with ureteral stent or to physiologic bowel uptake

•  (B) Hybrid PET/CT axial image (top) precisely localizes uptake to soft-tissue mass adjacent to left ureter, anterior to left iliac vessels. Mass (arrow) was detected only retrospectively on both diagnostic CT and CT component of hybrid imaging study

•  Patient received chemotherapy, resulting in pain relief and decrease in size of pelvic mass on follow-up CT.

PET/CT for precise localization

•  A 33-y-old man with Hodgkin’s disease in left cervical region was referred for 18F-FDG PET for staging

•  No other sites of disease were reported on CT

•  (A) PET images show infradiaphragmatic focus of abnormal 18F-FDG uptake in medial border of liver, consistent with either liver involvement (stage IV disease?) or nodal disease in porta hepatis (stage III disease?)

•  (B) Hybrid PET/CT axial image precisely localizes 18F-FDG uptake to adenopathy (abnormally large lymph node) at porta hepatis, only retrospectively detected on corresponding CT image (arrow)

•  Patient was treated as having stage III disease and achieved complete response, showing no evidence of disease for follow-up of 12 mo.

top related