prof. dr. juan ignacio rodríguez...

Post on 29-Aug-2020

4 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Modelación Molecular

tiH

ˆ

Prof. Dr. Juan Ignacio Rodríguez Hernández Escuela Superior de Física y Matemáticas

Instituto Politécnico Nacional-México

Agosto 2018

I.1 The Schrödinger Equation

tiH

ˆ

VTH ˆˆˆ T is the kinetic energy operator

Vis the potential energy operator

Where H is the Hamiltonian operator:

Is the “famous” WAVE FUNCTION

The Schrödinger Equation

3

ALL INFORMATION of the

QUANTUM SYSTEM is obtained from

● single-valued

● continuous function and continuous n-th’s partial derivatives

● normalized (“quadratically integrable”= finite integral):

where the integral is over “all space”.

12

* dd

must be a “well behaved” function:

The Schrödinger Equation

4

),(),(),( *2txtxtx

If (x,t) is a one-particle (in 1D) wave

function where x is the spatial coordinate of

the particle then:

is the PROBABILITY DENSITY so that,

dxtx2

),(

is the PROBABILITY of finding the particle at

the position x at time t

The Schrödinger Equation

5

22)(),( xtx

If (potential energy operator)

is INDEPENDENT of time, it can be demonstrated*:

where 𝝍 is the time-independent wave

function which is a solution of the

STATIONARY Schrödinger equation:

)(ˆˆ xVV

The STATIONARY Schrödinger Equation

6

EH ˆ

VTH ˆˆˆ T is the kinetic energy operator

V is the potential energy operator

E is the ENERGY of the system

H is again the Hamiltonian operator:

The STATIONARY Schrödinger Equation

7

EH ˆ

● single-valued

● continuous function and continuous n-th’s partial derivatives

● normalized (“quadratically integrable”= finite integral):

where the integral is over “all space”.

12

* dd

must be a “well behaved” function:

● single-valued

● continuous function and continuous n-th’s partial derivatives

● normalized (“quadratically integrable”= finite integral):

where the integral is over “all space”.

12

* dd

The STATIONARY Schrödinger Equation

8

EH ˆ

If (potential energy operator)

is independent of time, ALL IFORMATION of

the system is obtain from ψ, which is obtained

In turn from the STATIONARY Schrödinger

equation:

)(ˆˆ xVV

The STATIONARY Schrödinger Equation

9

EH ˆ

«Operational» USE:

syssyssyssystem EH ˆQuantum

System systemH

sys ALL INFORMATION

OF THE SYSTEM!!!

???

The STATIONARY Schrödinger Equation

10

EH ˆ

Quantum

System

???

Molecules (water, aspirin,

oligomers, etc..)

Solids (gold, silicon, polymers,

galium arsenide, diamond,

etc.)

Nanosystems (clusters,

fullerens, rods, wires, etc. )

The Schrödinger Equation

11

EH ˆ

Highly predective:

eVEn 598.131 eVIE 598.13exp !!

Theory Experiment

The Schrödinger Equation

12

12

Experiment Theory (DFT PBE TZ)

C60 fullerene

RH= 1.453A (<1% error)

RH= 527 cm-1

Bond Length:

IP=7.61 eV IP=7.87 eV (<4% error)

RH= 526 cm-1

Rcc5= 1.458A

Rcc5= 1.401A RH= 1.399A (<1% error)

IR spectra:

(<1% error)

RH= 576 cm-1 RH= 576 cm-1 (<.1% error)

RH= 1183 cm-1 (<1% error) RH= 1179 cm-1

Ionization potential:

D. Sabirov RSC Adv. 3,194030(2013); J.Zhao Phys. Rev. B 65, 193401 (2002).

The Schrödinger Equation

13

EH ˆ

Highly predective:

Water

Isotropic Polarizability:

Molecule TZP/FC QZ4P/AE Exp.(a.u.)

CO 11.4 13.44 13.16a

C2H6 28.38 30.21 30.24b

p-nitroaniline 97.27 108.99 114.73c

The Schrödinger Equation

14

Highly predective:

Na6 Au20

Approximation

Approximation

TZP-FC 98.25 TZP-FC 134.72

TZP-AE 97.37 ZORA-TZP-FC 117.59

ETQZ3P 104.43 ZORA-TZP-AE 117.78

ETQZ3P1D 102.03 ZORA-QZ4P-AE 122.18

ETQZ3P2D 103.52 Idrobo et al.c 116.00

ETQZ3P3D 103.48

Fernández et al.d 104.32

Kummel et al.a 104.4 Zhao et al.e 129.27

Exp.b 111.8

The Schrödinger Equation

15

• Electronic properties

• optical properties

• Protein Folding

• X-ray spectra

• NMR spectra

• IR, VCD, CD

Typical property calculation::

The Schrödinger Equation

16

EH ˆ

§- Partial differential equation VERY VERY VERY difficult to solve.

§- Analytical solutions only for few and simple systems (harmonic osccilator,

hydrogen atom, rotor.)

§- Number of independent variables proportional to the size of the system

(number of atoms in the system).

Au20

Partial differential equation with

4800 independent variables!!!!!

The Schrödinger Equation

17

EH ˆ

An-initio/first principles

Methods (Computational

demanding) :

- Hartree-Fock

- Density Functional Theory

(DFT)

- MP2, MP3,…, CC, CI…

-Quantum Monte Carlo

Semiempirical Methods

(NON Computational

demanding) :

- Molecular Dynamics

- AM1, Huckel

- TB-DFT

Semiclasical statistical

methods (NON

Computational

demanding) :

-- Metropolis Monte Carlo

The Schrödinger Equation

18

• Electronic properties

• optical properties

• Protein Folding

• X-ray spectra

• NMR spectra

• IR, VCD, CD

Typical property calculation::

ONLY WITH COMPUTERS !!!

ATOMIC PHYSICS

I.2 The hydrogen atom

The hydrogen atom

20

Natural

abundance:

1H 99.985 %

2H 0.015 %

3H unstable

~75% of universe’s

mass is 1H !!

~90% of universe’s

atoms are 1H !!

Experimental ionization energy: IE= 1312 kJ/mol = 13.5eV

The hydrogen atom

21

The Schrodinger equation

EH ˆ

21

hydhydhydhydrogen EH ˆHydrogen

Atom hydrogenH

hyd ALL INFORMATION

OF THE HYDROGEN ATOM !!!

??

The Hamiltonian function (in SI):

epe

e

p

p

hydrogenrr

e

m

p

m

pH

2

0

22

4

1

2

)(

2

)(

),,(

),,(

eee

ee

ppp

pp

zyxiip

zyxiip

The Hamiltonian operator:

ep

e

e

p

p

hydrogenrr

e

mmH

2

0

22

22

4

1

22ˆ

Transformation of H to

Quantum Operator

pr

er

22

The Hamiltonian function (in SI):

The Hamiltonian operator (NO RELATIVISTIC):

ep

e

e

p

p

hydrogenrr

e

mmH

2

0

22

22

4

1

22ˆ

pr

er

23

22

22

22ˆ

e

e

p

p mmT

ep rr

eV

2

04

Time

independent!!

The hydrogen atom

24

The STATIONARY

Schrodinger equation

EH

),(),(}4

1

22{

2

0

22

22

epep

ep

e

e

p

p

rrErrrr

e

mm

pr

er

The hydrogen atom

25

The Schrodinger equation

),(),(}4

1

22{

2

0

22

22

epep

ep

e

e

p

p

rrErrrr

e

mm

Step 1: Solving SE

Step 2:Computing Properties

Solving SE: Transforming to CMS

26

),(),(}4

1

22{

2

0

22

22

epep

ep

e

e

p

p

rrErrrr

e

mm

ep

ep

eepp

rrr

mm

rmrmR

rmm

mRr

rmm

mRr

ep

p

e

ep

ep

?

Transforming to CMS

27

),,ˆ,ˆ(ˆepep rrppH

Chain rule

),,ˆ,ˆ('ˆ rRppH rR

),,,( epep rrppH

),,,(' rRppH rR

),,ˆ,ˆ('ˆ rRppH rR

It is better doing the transformation “before” (transformation of the

Hamiltonian FUNCTION:

Better transforming Hamiltonian function H

28

rmm

mRr

rmm

mRr

ep

p

e

ep

ep

r

ep

p

Re

r

ep

eRp

vmm

mvv

vmm

mvv

222222

2

1

2

1

2

1

2

1

2

)(

2

)(rReepp

e

e

p

pvMvvmvm

m

p

m

pT

Total mass: ep mmM

Reduced mass: ep

ep

mm

mm

The hydrogen atom SE

in the CMS system

),(),()}(22

{ 22

22

epepepe

e

p

p

rrErrrrVmm

),(),()}(22

{ 22

22

rRErRrVM

rR

29

Central Pontential

Separation of Schrodinger Equation

),(),()}(22

{ 22

22

rRErRrVM

rR

)()(2

22

RERM

RR

)()()}(

2{ 2

2

rErrV rr

rR EEE

rRrR

)()(),(

30

Separating the SE in the CMS

),(),()}(22

{ 22

22

rRErRrVM

rR

)()(2

22

RERM

RR

)()()}(

2{ 2

2

rErrV rr

31

The Schrodinger Equation for the

reduced mass particle

)()()}(

2{ 2

2

rErrV rr

Fictitious particle with mass μ,

e

e

ep

ep

m

mmm

mm

9994557.0

Note: Equation very similar to Born Oppenheimer approximation equation

Subjected to Coulomb potential

r

erV

1

4)(

0

2

kgm

kgm

e

p

31

27

10109.9

10673.1

ep mm 1837

32

33

Remember that this transformation can be

applied for any CENTRAL POTENTIAL

)()()}(2

{ 22

rErrV rr

Transforming to spherical coordinates

)()()}(

2{ 2

2

rErrV rr

)()()}(]sin

1cot

112[

2{

2

2

2222

2

22

22

rErrVrrrrrr

r

)()()}(ˆ2

1]

2[

2{ 2

22

22

rErrVLrrrr

r

}sin

1cot{ˆ

2

2

22

222

L

34

Angular Momentum Operator

}sin

1cot{ˆ

2

2

22

222

L

35

),,()(ˆˆzyx

riirprL r

prL

Angular momentum FUNCTION:

Angular momentum OPERATOR:

)(ˆ;)(ˆ;)(ˆx

yy

xiLz

xx

ziLy

zz

yiL zyx

2222ˆzyx LLLL

In spherical coordinates:

Transforming to spherical coordinates

)()()}(

2{ 2

2

rErrV rr

)()()}(]sin

1cot

112[

2{

2

2

2222

2

22

22

rErrVrrrrrr

r

)()()}(ˆ2

1]

2[

2{ 2

22

22

rErrVLrrrr

r

}sin

1cot{ˆ

2

2

22

222

L

36

Separating the SE in the CMS

),(),(ˆ2 ffL

)()()}(ˆ2

1]

2[

2{ 2

22

22

rErrVLrrrr

r

)()()})((2]2

[{ 2

2

222 rRrRErVr

rrrr r

),()(),,( frRr

37

The angular equation

)()( 2

2

2

m

d

d

)()(),( f

),(),(ˆ2 ffL

),(),(}sin

1cot{

2

2

22

22

ff

)()(}sin

cot{22

2

2

2

m

d

d

d

d

38

Solution of the angular equation:

Spherical Harmonics

imm

l

m

l ePml

mllYf )(cos

)!(4

)!)(12(),(),(

l

ml

mlm

l

m

l wdw

dw

lwP )1()1(

!2

1)( 222

Associated Lengendre Polynomials:

,...2,1,0l llllm ,1,...,2,1,0,...,1,

39

Solution of the angular equation:

Spherical Harmonics

,...2,1,0l llllm ,1,...,2,1,0,...,1,

),()1(),(ˆ 22 m

l

m

l YllYL

Conditions coming from the well behaved requirement on ψ

''

'

'

0

2

0

sin),(),(* mmll

m

l

m

l ddYY

40

The “radial” equation

)()1()()})((2]

2[{ 22

2

222 rRllrRErVr

rrrr r

1

0

21

12

1212

!)!12()!1(

})!{()1()()(

ln

k

kk

rl

ll

lnkklkln

lnL

d

dL

,...3,2,1n 1,...,2,1,0 nl

)2(})!{(2

)!1()

2()

2()( 12

3

3 naZrLrelnn

ln

na

Z

na

ZrR l

ln

lnaZrl

nl

2

2

04

ea

''

0

2

'' )()( llnnlnnl drrrRrR

41

The associated Laguerre polynomials:

Laguerre polynomials:

)()(

ed

deL r

r

r

r

Hydrogen Wave Functions and Energies

42

1,...,2,1,0 nl

llllm ,1,...,2,1,0,...,1,

,...3,2,1n

),()(),,( m

lnlnlm YrRr

222

0

42

222

0

42 1

8

1

)4(2 nh

eZ

n

eZEE rn

Principal quantum number

Azimuthal quantum number

magnetic quantum number

;1,...,2,1,0 nl llllm ,1,...,2,1,0,...,1, ;,...3,2,1n

Hydrogen eigenfunctions and eigenvalues

),,(),,(ˆ rErH nlmnnlm

r

eH r

1

42ˆ

0

22

2

),,( rnlm eigenfunctions

nE eigen values

43

Eigen -functions degeneracy

),,(),,(ˆ rErH nlmnnlm

),,( rnlm

nEThe degree of DEGENRACY is

equal to n2

44

;1,...,2,1,0 nl llllm ,1,...,2,1,0,...,1, ;,...3,2,1n

Once the problem (ES) is solved,

what else?

45

Hydrogen Properties!

Energy!

222

0

42

222

0

42 1

8

1

)4(2 nh

eZ

n

eZEE rn

eV

J

JsmNC

CkgZ

h

eZEn

598.13

1017868.2

)1062607.6)(/108541878.8(8

)6021765.1)(1010938.99994557.0(

8

18

2342212

4312

22

0

42

1

46

eVE 598.131 ???

Energy??

47

3

0

2

4 r

reF

Ley de Coulomb:

pr

er

r

r

dr

rdVVF

)(

This force produces a central potential:

2

0

2 1

4

)(

r

e

dr

rdV

Energy??

48

2

0

2 1

4

)(

r

e

dr

rdV

Cr

drerV 2

0

2

4)(

0)( rVr

erV

1

4)(

0

2

Energy??

49

0)( rV

r

0V

Hydrogen Properties!

Energy!

222

0

42

222

0

42 1

8

1

)4(2 nh

eZ

n

eZEE rn

eV

J

JsmNC

CkgZ

h

eZEn

598.13

1017868.2

)1062607.6)(/108541878.8(8

)6021765.1)(1010938.99994557.0(

8

18

2342212

4312

22

0

42

1

eVEn 598.131 eVIE 573.13exp !!

Theory Experiment 50

Ionization Energy:

eVEn 598.131 eVIE 573.13exp !!

Theory Experiment

51

eVEn 598.131 eVIE 598.13exp !!

Theory Experiment

52

eVEn 598.131 eVIE 598.13exp !!

Theory Experiment

epe

e

p

p

hydrogenrr

e

m

p

m

pH

2

0

22

4

1

2

)(

2

)(

pr

er

Quantized Energies: Quantum States

53

Hydrogen energies: quantum states

54

photon

Hydrogen energies: quantum states

55

photon

Series n 1

56

)1

1(8 222

0

42

11nh

eZEEE nn

)1

1(8

11232

0

42

1nch

eZE

chn

1710520973731568.1 mRtheory

32

0

42

8 ch

eZR

Lyman series

57

)1

1(1

2nR

17

exp 1009737315.1 mR eriment

1710520973731568.1 mRtheory

Hydrogen energies: quantum states

58

Spectral series n m

59

(ultraviolet)

(visible)

(infrared)

1,...,2,1,0 nl llm ,0,...,,...3,2,1n

Hydrogen eigenfunctions

),()(),,( m

lnlnlm YrRr

60

pr

er

222

0

42

222

0

42 1

8

1

)4(2 nh

eZ

n

eZEE rn

),,(),,(ˆ rErH nlmnnlm

1,...,2,1,0 nl llm ,0,...,,...3,2,1n

Hydrogen-like eigenfunctions

),()(),,( m

lnlnlm YrRr

61

pr

er

222

0

42 1

8 nh

eZEn

EH ˆ

N

),,(),,(ˆ rErH nlmnnlm

1Z ZZ

ep

ep

mm

mm

eN

eN

mm

mm

? He+

Li2+

Be3+

B4+

Hydrogen-like eigenfunctions

),()(),,( m

lnlnlm YrRr

62

)2(})!{(2

)!1()

2()

2()( 12

3

3 naZrLrelnn

ln

na

Z

na

ZrR l

ln

lnaZrl

nl

2

2

04

ea

222

0

42 1

8 nh

eZEn

Dependence on Z and :

Hydrogen-like eigenfunctions

),()(),,( m

lnlnlm YrRr

63

imm

l

m

l ePml

mllY )(cos

)!(4

)!)(12(),(

Complex

Hydrogen-like ORBITALS

),()(),,( m

lnlnlm YrRr

64

An ORBITAL function can be defined as an ONE-ELECTRON FUNCTION:

Hydrogen-like ORBITAL

Real Spherical Harmonics

65

imm

l

m

l

imm

l

m

l ePNePml

mllY )(cos)(cos

)!(4

)!)(12(),(

,...3,2,1;)(cos2)(2

1

,...3,2,1;cos)(cos2)(2

1

0

),(

0

msenmPNYYi

mmPNYY

mifY

Y

m

l

m

l

m

l

m

l

m

l

m

l

m

l

m

l

l

m

l

Notation:

,...,,,,,

,...5,4,3,2,1,0

hgfdps

l

Real hydrogen-like orbitals

66

A linear combination of eigenfunctions of the same

degenerate eigenvalor is eigenfunction.

),()(),,( m

lnlnlm YrRr

Are they eigen funtions of the hydrogen-like Hamiltonian?

Real hydrogen-like orbitals

67

n

l

m

Symbol for

Complex orbital

Symbol for real orbital

1 0 0 1s 1s 2 0 0 2s 2s 2 1 1 2p+1 2pX 2 1 0 2p0 2py 2 1 -1 2p-1 2pz

3 0 0 3s 3s 3 1 1 3p+1 3pX 3 1 0 3p0 3py 3 1 -1 3p-1 3pz 3 2 2 3d+2 3dz2 3 2 1 3d+1 3dxz 3 2 0 3d0 3dyz 3 2 -1 3d-1 3dx2-y2 3

2 -2 3d-2 3dxy

Real hydrogen-like orbitals

68

aZrea

Zs /2/3

2/1)(

11

aZrea

Zr

a

Zs 2/2/3

2/1)2()(

)2(4

12

xea

Zp aZr

x

2/2/5

2/1)(

)2(4

12

yea

Zp aZr

y

2/2/5

2/1)(

)2(4

12

zea

Zp aZr

z

2/2/5

2/1)(

)2(4

12

n=1

n=2

Real hydrogen-like orbitals

69

aZrea

rZ

a

Zr

a

Zs 3/

2

222/3

2/1)21827()(

)3(81

13

xea

Zr

a

Zp aZr

x

3/2/5

2/1

2/1

)6()()(81

23

n=3

yea

Zr

a

Zp aZr

y

3/2/5

2/1

2/1

)6()()(81

23

zea

Zr

a

Zp aZr

z

3/2/5

2/1

2/1

)6()()(81

23

Real hydrogen-like orbitals

70

)13()()6(81

13 23/2/7

2/12 zea

Zd aZr

z

xzea

Zd aZr

xz

3/2/7

2/1

2/1

)()(81

23

n=3

yzea

Zd aZr

yz

3/2/7

2/1

2/1

)()(81

23

)()()2(81

23 223/2/7

2/1

2/1

22 yxea

Zd aZr

yx

xyea

Zd aZr

xy

3/2/7

2/1

2/1

)()2(81

23

Hydrogen orbitals

),()(),,( m

lnlnlm YrRr

71

Fourth Postulate:

rdrnlm

2),,(

Probability of finding the electron in a

infinitesimal volumen around ),,(),,( zyxrr

v

What information????

Probability Density

72

???????),,(),,(2

'''

2rdrrdr mlnnlm

Probability of finding the

electron in a infinitesimal

volumen around ),,( rr

rdrrdr mlnnlm

2

'''

2),,(),,(

Probability of finding the

electron in a infinitesimal

volumen around ),,( rr

?????

Probability Density

73

Probability of finding the

electron IN THE STATE nlm

in a infinitesimal volumen

around ),,( rr

rdrrdr mlnnlm

2

'''

2),,(),,(

Probability of finding the

electron IN THE STATE n’l’m’

in a infinitesimal volumen

around ),,( rr

Probability Density

74

Probability of finding the

electron IN THE STATE 2px

in a infinitesimal volumen

around ),,( rr

rdrprdrp zx

22),,(3),,(2

Probability of finding the

electron IN THE STATE 3pz

in a infinitesimal volumen

around ),,( rr

Radial Distribution Function

75

r

ddrdrYYrRrD m

l

m

lnlnl sin),(),()()(

2

0 0

2*

22)]([)( rrRrD nlnl

1sin),(),(

2

0 0

*

ddYY m

l

m

l

Radial Distribution Function

76

r 22)]([)( rrRrD nlnl

Probability of finding the electron in

the state nl at a distance r from the

nucleus (proton)

Radial Distribution Function

77

Amme

a 529.010529.04 10

2

2

00

a0 is the Bohr radius:

1s

2s

2p { 2px , 2py , 2pz }

3s

3p { 3px , 3py , 3pz }

3d { 3dz2

, 3dxz , 3dyz , 3dx2 – y

2 , 3dxy }

Radial Distribution Function

78

Radial distribution functions for the 2s and 3s density distributions

drrRrdrrrDr nlnl

0

3

0

)()(

)})1(

1(2

11{

2

0

2

n

ll

Z

anr

Electron Density

79

)(1)( electronsofnumberNrdr

gives the probability of finding an electron at position )(r r

2)()()( rerer

Charge density:

0

2 )()(

rrV

2)()( rr

Experimental quantity !!

80

2

1 )()( rr s

Electron density

contour maps: 1s case

81

Electron density contour maps: 2s & 2p cases

Orbital Density

2s

2p { 2px , 2py , 2pz }

aZrea

Zr

a

Zs 2/2/3

2/1)2()(

)2(4

12

yea

Zp aZr

y

2/2/5

2/1)(

)2(4

12

z

y

z

y

82

Electron density contour maps: 2s & 2p cases

Orbital Density

2s

2p { 2px , 2py , 2pz }

aZrea

Zr

a

Zs 2/2/3

2/1)2()(

)2(4

12

yea

Zp aZr

y

2/2/5

2/1)(

)2(4

12

z

y

z

y

83

Electron density contour maps: 3d and 4f cases

Orbital (3dxz) Density

Orbital (4fxz2)

Average values: Properties

84

rdrPrPP nlmnlm

),,(ˆ),,(ˆ *

a the property operator P

Atomic Units (a.u.)

85

1 1em 02 e=

)()(}1

42{

0

22

2

rErr

er

)()(}1

2

1{ 2 rEr

rr

Atomic Units (a.u.)

86

5 1 15 31 27.2 2.20 10 6.58 10 2.63 10 / .)Hartree eV cm Hz kJ mol

)()(}1

2

1{ 2 rEr

rr

HartreesuaE 5.0..5.0

mABohr 111029.5529.01

Energy:

Lenth:

Mass: kgme

31101095.9

Charge:

Ce 19106022.1

Many Electron Atoms

87

),(),(}1

2

1

2{

11

2

1

222

ii

N

i

N

ij ji

N

i j

N

i

rR

n

rRErRrrrR

e

M i

EH

For gold N=79, so we have 3*79+3=240 independent variables !!!

top related