strategy challenges of solar energy players-1

Post on 10-May-2015

2.637 Views

Category:

Business

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

This study looks at one of the emerging energy alternatives, solar energy.The gap between demand and supply of energy is huge, specially in developing countries like china and India.Most part of Europe is dependent on Russian gas for its winter supply of energy. Solar energy is one of the alternatives for energy in these countries, as fuel ( sunlight) is free and non polluting. Here the focus is on three countries Germany, USA and India. The choice is based on the emergence of the different needs of these countries, which are in different stages of development of solar energy. This makes an interesting observance.

TRANSCRIPT

1

”... I'd put my money on the sun and solar energy. What a source of power!” Thomas elva edison

Prepared by Pranay Kumar Under guidance of Prof. Patrick Courtin

HULT International Business School One Education Street

Cambridge, MA – 02141, USA

STRATEGYCHALLENGESOFSOLARENERGYPLAYERS

2

TableofContentsContentsPages1.Executivesummary12.SolarEnergyTechnologies2‐73.Comparisonoftechnologies‐Applicationsenvironment8‐94.GovernmentPoliciesandsocio‐politicaldimensions10‐145.IssuesandChallengesforsolarenergyplayers15‐166.StrategyChallengesforsolarenergyplayers17‐207.TechnologyIllustrations21‐278.Appendix‐Governments28‐339.Valuechainofselectcompanies34‐3810.Manufacturingpolysilicion‐costanalysis39‐4011.Bibliography41

3

ExecutiveSummaryWorldisfacingnewchallengesinrapidlyevolvingscenariossuchasclimatechange,carbonemissions,watercrisisindevelopingcountries,warsoveroil.Energyandwaterhavecometotheforefrontasthetwomostimportantissues.Thisstudylooksatoneoftheemergingenergyalternatives,solarenergy.Thegapbetweendemandandsupplyofenergyishuge,especiallyindevelopingcountrieslikeChinaandIndia.Solarenergyisoneofthealternativesforenergyinthesecountriesasthefuel(sunlight)isfree.Butthefocusofthestudyisonthreecountries,Germany,USAandIndia.Thechoiceisbasedontheemergenceofthedifferentneedsofthesecountries.Thesecountriesareindifferentstagesofdevelopmentofsolarenergy,whichmakesitinterestingtoobserveassolarenergyplayers.Inthisstudywelookatdifferenttechnologies,establishedandemerging.Welookatadvantagesanddisadvantageofeachtechnologyandusagecompatibilitywithdifferentgeographiesanddifferentcustomersacrosstheworld,butfocusingonthreecountriesofourchoice.GovernmentIncentivesandprogramsformthebackboneofthesolarenergyasthisindustryisinnascentstageofdevelopment,costishighandawarenessamongstthepublicislow.Economiesofscaleislowsocostishigh,thusinstallationisalsolow(3.5Gigawattin2007throughouttheworld).Herewelookatdifferentprogramsandimplicationsandfuturescenarios.Issuesandchallengesfacingthesetechnologiesincontextwiththecountriesarediscussed.Strategychallengesbasedonusage,issuesandtechnologiesarediscussedtolookintothefutureuntil2015.Asthetechnologiesaredevelopingandtryingtoreachequivalenceincosttotheconsumersandgovernmentsaretestingdifferentmethodologiesforsolarenergysupportprograms,thefuturedependsonhowthesefactorswillplayout.

4

SolarEnergyTechnologiesTheSolarenergyisclaimedtobetheenergyofthefuture.Thistechnologysectionlooksintodifferenttypesoftechnologiesavailablenowandinfuture.Thestudyalsolooksatfuturistictechnologieslikenanotechnology,whichhavethepotentialtobelowcostenergysolutions.Thissectionintentionistolookatsolarenergytechnologiesfrombusinessperspective,ratherthanbeingatechnologyreport.ThetotalenergytheSunproducesatitssurfaceis4*1026watts/second.Thismeanspowerproducedby2.5billionspowerplantsof5000megawattseach.Thetotalenergytheearthgetsonanaverageis164Wattspersquaremeter.[Technology appendix- A1, A2]

TheSunproducessolarflux(energyperunitareapersecond)accordingtotheformulagivenbelow:SolarfluxattheEarth=TheSun'ssurfaceflux×(Sun'sradius/Earth'sdistance)2=1366watts/meter2

Basisofsolarenergytechnologies:Alltechnologiesarebasedonanyofthethreemethodslistedbelow:

1)Increasingthesurfaceareaforabsorptionofsunlight.

2)Theotherbasisiswattageorintensityoflightperunitarea.

3)Usingdifferentlayerstoincreasecaptureoftheincidentlightontheprincipleoftotalinternalreflection

Photovoltaicgenerationsandtechnologies

PhotovoltaicEffect:Whenthesunlight(photons)strikethesemiconductormaterialwithinasolarcell,negativelychargedelectronsflowfreelytoproduceelectricity.AselectricityproducedisDC(directcurrent),ithastobeconvertedtoAC(alternatingcurrent)electricitybyaninverter.

GenerationsofPVtechnologiescanbecategorizedonbasisofrawmaterialsused.

ThefirstPVgenerationcanbeconsideredtobebasedoncrystallinesilicontechnology(monoandpoly).Bothmonoandpolycrystallinetechnologiesarewellestablishedanduseoneofthemostabundantelementsonandinsidetheearth,silicon.

Thesecondgenerationisbasedonthinfilmstechnologies:CadmiumTelluride(CdTe),CopperIndiumdiselenide(CISandCIGS),amorphoussiliconandtandem(amorphous+crystallinelayers),andpolycrystallinethinfilms.(see Technology illustration 1 for working of PV cells)

5

Thecombinationsofmaterialsareusedtomaximizeabsorptionofphotonsandgenerateelectricityorheat.ExtremelythinsemiconductorlayersareprovidedthroughtheuseofpolycrystallineCdSandCdTe.ThirdgenerationPVtechnologiesarebasedonorganic,hybridanddyesolarcells(DSC).HereonlyDSCispresentlyinthemarketingphase.Thetechnologyisbasedonapplicationofdifferenttransparent/semi‐transparentdyeswhichabsorbs/filtersparticularwavelengthstomaximizelightintensitytogenerateelectricity.Principlesoftotalinternalreflection,diffractionareusedformaximizingthecaptureoflight/photons.Theseapplicationshavelimitationsofbeingonlyusedwithhorizontallyinclinedstructuresandcan’tbeusedinverticalwindows,presently.MonocrystallineSiliconCutfromasinglecylindricalcrystalofsilicon,ithashigherefficiencyof16‐18%inproduction.Thisisthenslicedintothinwafersandassembledintosolarcells.38%oftotalPVmanufacturingMulticrystallineSiliconComposedofmulticrystallinelayersofsiliconit’slessexpensivethanMonocrystallinebutlessefficientalso14‐16%inproduction.Differentprocesseslikesingleandmultipleribbontechnologyareusedtoproducewafersdirectlyfromsiliconcrystalthusreducingwastageandcost.EvergreensolarisoneofthepioneersusingtechnologydevelopedbyDr.EmanuelSachs(whonowisheading1366technologies).ThinFilmTechnologiesCdTeMostcommerciallyadvancedinthinfilmtechnologieshasapotentialdownsidethatitcouldbetoxicduetocadmium.Secondly,telluriumisararemineralontheearthanditsproductioncanbeaconstraintinfuture1.CIGSCopper‐indium‐gallium‐selenideisapromisingtechnologyandcanbeusedtoproduceflexiblematerial,openingthepathtoBIPV(buildingintegratedPV).Itsefficiencyisquitelow(5‐11%)AmorphousSiliconLowcostglass,aluminum,polymerorsteelcanbecoatedwithamorphouslayersmakingitveryflexible.Stillintheearlystagesofcommercializationit’ssuitedforBIPVapplicationsthoughithaslowefficiency(6%)untilnow.Researchisgoingonfullerenestoproducemoreefficientcells,whichcouldbepotentiallyinexpensive,asthereisnoneedtoproducewafers.OrganicPVManufacturedusingthinfilmsoforganicsemiconductors.Thesesemiconductorsaremadethroughbiosynthesisormodificationsofnaturalpolymers.It’seasytofabricate,lightweight,flexibledisposablewithminimalenvironmentalimpact.Unproventechnologyinthefiledandlowefficiency(5%)isitschallenge.KonarkaTechhasdevelopedOPVwhichcanbeprintedorcoatedandmanufacturedasaroll.

6

1~http://minerals.er.usgs.gov/minerals/pubs/commodity/selenium/mcs‐2008‐tellu.pdfNano‐structuredPV‐Thesestructuresmakeuseofsomeofthesamethin‐filmlightabsorbingmaterialsbutareoverlainasanextremelythinabsorberonasupportingmatrixofconductivepolymerormesoporousmetaloxidehavingaveryhighsurfaceareatoincreaseinternalreflections(andhenceincreasetheprobabilityoflightabsorption.Nanosolarisoneoftheleadingcompaniesinthistechnology[See, Technology appendix A 3, for different PV technologies and

processes](Technology illustration 2 for different PV technologies)

KeyadvantagesofPVtechnology 1)PVpanelsarelightandcanbeusedwithtrackingsystemtoincreaseproductionofelectricity2)Establishedandproventechnology3)Nodirectimpactontheenvironment4)Minimalmaintenance5)Availabilitythroughouttheworld6)Canbeinstalledandoperatedinareasofdifficultaccess7)Cheappowersource8)Longlifeanddurability9)Lowoperatingcosts. [see Technology appendix A4 for Polysilicon manufacturing cost analysis]

10)Usableindecentralizedplantsaswellasinlarger,centralpowerplants11)Canbebuiltinsizesfromcm2uptokm2andcanbeusedinmanydifferenttypesoflocations12)Nottheleast,thefuelisfree!DisadvantagesofPVtechnology1) Lowefficiency(5‐17%)2) Lowsupplyofsiliconcreatingaglitchforprogressofsiliconbasedtechnologies3) Highextractionpriceofsiliconfromsand(SI02 ) andcomplexprocessconsuminga large

amountofenergy4) Installationchallengesandintegrationwithbuildings5) Largeareasrequiredtoproducelowamountofenergyduetolowefficiency.6) Challengedbylowcost,moreefficientemergingtechnologieslikeCSP,CPV.7) SomethinfilmapplicationscouldbetoxiclikeCdTeorGaAsConcentratedPhotovoltaic(CPV)CPVsystemscanbethoughtofas“telescopes,”(see Technology Illustration 3)trainedonthesun’spositionandfeedingtheconcentratedlighttothecell.Referredtoas“III‐V”or“Multi‐junction”,itwasoriginallydevelopedforspaceapplications.ThemagnificationratiousedindifferentCPVsystemdesignsvariessowidelythatthreeclassesofsystemshavedeveloped:•Lowconcentration,wherethemagnificationratioislessthan10X;•Mediumconcentration,between10Xand100X;•Highconcentration,wheretheratioliesabove100X,butisusuallylessthan1000X

7

Therearetwomaintypesofconcentratingopticalsystemsinusetoday:refractivetypesthatuseFresnellenses,andreflectivesystemsthatuseoneormoremirrors.Regardlessofthechosenopticalsystem,theresultisconcentratedsunlightbeingaimedatthesensitivefaceofthecell,toproducemoreenergyfromlessphotovoltaicmaterial.Advantages:

1) Highefficiency30‐35%ofthemulti‐junctioncells2) Lowcostperunitareaduetoconcentrationandminimaluseofhighcostmateriallike

Silicon(10‐15%)3) ScalabilityduetoestablishedPVtechnology4) Economicalinhigh‐sunlightintensityarea

Disadvantages

1) VerylowefficiencyduringlessintensesunlightorhazydaysascomparedtoPVtechnology,worksbestinsunnyconditionswithhighdirectsunlight

2) Lowfieldofvieworacceptanceangle(areaexposedtosunlightverylow,decreaseswithincreasingconcentrations),sorequiretrackingononeortwoaxes.

3) Cannotbeusedinlowintensitylightorhazyconditions

ExtremelyConcentratedPhotovoltaic(XCPV)Inthistechnologylightgatheringcapacityisincreasedbyaconverginglenstoincreasetheintensityoflightby1600timesonmoreefficientPV[triplejunction]cellsincreasingtheefficiencyto37%andreducingthecostdrasticallyto5cents/Kwh(asclaimedbySunrgi).Thereisaspecialheatremovaltechnology,sothatcellsdonotgetdamaged.Thistechnologyisledbyonecompany,SUNRGI.(Technology illustration 6)Advantages

1) Mostinexpensivetechnologypresentlyat5cents/Kwh2) GreaterefficiencymeanslessPVcells,lessdependenceonsilicon3) Lessarearequiredtoproduceaunitofelectricity

Disadvantages

1) Notproventechnologyonfield2) Heatmayreducetheefficiencyofcellsoveraperiodoftime3) Notusableacrossallintensitiesoflighthencegeographies

ConcentratedSolarPower(CSP)Concentratingthesunlightbyuseofmirrors,parabolictroughs(likeintelecommunicationtechnology)orsemicirculardishproducepower.Thisisthebasisofthetechnology.Heatisstoredinatransfermediumlikemoltensalt(asinnuclearreactor),whichisusedtoboilwaterandproducesteamanddriveaturbinetoproducepowerlikenormalthermal/nuclearpowerplant.

8

DifferentTechnologiesParabolicTroughMostcommerciallyadvancedandmaturesolarthermalelectrictechnology.Thesetroughsusearraysofparabolicmirrorstoconcentratesunlighttoheatupfluids,runningthroughpipesundermirrors.Heattransferfluid(HTF)isheated,whichisusedtogeneratesuperheatedsteamtorunturbines.Itcanbehybridizedwithnaturalgas‐firedtocomplimentandproducepowerevenduringnight.(see Technology illustration 4)PowerTowerIndevelopingstage,thetechnologyusessuntrackingmirrors(heliostats)toconcentratesunlightonareceiver.HTF(moltennitratesalt)isusedtotransferheat.SolarChimneys(Tower)Heatunderlargesemi‐transparentcheapplastic(parabolicshape)coveredarea(collectorfield)isusedtodriveairunderneathit.Airthusbecomestheheattransferfluid.Thishotairisguidedtowardsatowerwhichcontainsaturbine,thusproducingpower.DishEngineAparabolicmirrorusedasacollectorfocusessunlighttowardaconcentratorplacedonastructurelocatedatmirror’sfocalpoint.Twoaxestrackingsystemisusedtofollowthesunandmaximizethepowerproducedduringtheday.(see Technology illustration 5)CompactLinearFresnelReflectorCLFRusesflat,suntrackingreflectors,whichisconcentratedwithaFresnellenstofocuslightonpipes,wheresteamisgenerateddirectly.MicroCSPUsesthesameconceptasCSPbutcanbeusedforresidentialandsmallcommercialpurposes.Sopogyistheleaderinthistechnology.Sponova4,Sopogy’smicroCSPpanel(12feetby5feet)canproduce2.56Kwh/day.Productionof1megawattofelectricityrequiresaround5.5acresofspace.Advantages

1) LessexpensivethanPVtechnologies2) Powergeneratedperunitarea,high3) Thermalstoragesystemsprovidepowereveninabsenceofthesun.4) Usesteelandglass,reducingcostanddependenceonsilicon5) Drycoolingcandecreasewaterconsumptionby90%6) Canbecombinedwithnaturalgas‐firedcombinedcycletoincreaseefficiencyand

reducecostDisadvantages

1) Requireshighintensityofsunlightsocannotbeusedthroughouttheyearorinareaswithlessintensesun.

2) ExceptforParabolictroughtechnology,nootherCSPisestablished.3) Requireslargeinvestmentasminimum25Kwcanbeproducedwithpresenttechnology4) MicroCSPrequireslargeareamakingitsinstallationfeasibleonlyinfewlocations

9

UpcomingTechnologiesCarbonNanotubeArelativelynewarea,carbonnanotubecanbeusedatransparentconductorfororganicsolarcells.Nanotubenetworksareflexibleandcanbedepositedonsurfacesavarietyofways.Withsometreatment,nanotubefilmscanbehighlytransparentintheinfrared,possiblyenablingefficientlowbandgapsolarcells.Nanotubenetworksarep‐typeconductors,whereastraditionaltransparentconductorsareexclusivelyn‐typetheavailabilityofaptypetransparentconductorcouldleadtonewcelldesignsthatsimplifymanufacturingandimproveefficiency.InflatableCPVAuniquewaytoharnessCPVtechnologybysuspendinginflatablemirrorswhichareinexpensiveandsavelandareaandwhichcanwithstand100mphwindspeedhasbeendevelopedbyDr.CummingswhoisthefounderofCOOLEARTH.Dr.Cummingsclaimsthatitispossibletobringdownthecostperwattto3centsbyusingthistechnology.(Seetechnologyfigure).Coatingandfilmtechnologies:Therearestartupslike1366whichareworkingon3differenttypesoftechnologiestobringdownthecostofsiliconPVcells.Glassconcentratorsareanothermethod.StarSolaranMITstartupisdeveloping“photoniccrystals”tocapturemorelighttoproducemoreenergy.Xerocoat,anAustralianstartupisdevelopingcoatings,whichincreaseanti‐reflectivepropertiesofanysurfacethusincreasingabsorptionofsunlight.Thesetechnologiesfocusonincreasingefficienciesofexistingtechnologies.KonarkaTechnologieshavedevelopedPowerPlasticTM,whichisalowpower,portable,lightabsorbingplastic,whichcanbeusedinsmallelectronicdevices(PDA,mobiles),architecturalmaterials(windowpanes,blinds).PowerPlastic’slowcost(about5timeslessexpensive),easyapplicabilityandintegrationmakesitanattractivetechnology.ConclusionThecurrenthighinvestmentinresearchanddevelopmentwilladvancemanytechnologiestoaneconomicallevelmakingsolarenergyaveryviableoptionwithin10years.ThesiliconbasedPVtechnologieswillretaintheirdominancewithreductionincostofmanufacturingbutupcomingtechnologieslikeCPVandorganicphotovoltaic(OPV)willcompetewithPV,duetoreductionincost.CSP,ifitabletoreducethecostfurtheranddevelopMicroCSPwillbeinpositiontochallengePV’sdominancewithinafewyears.Allthetechnologieswillbeabletoco‐exist,astheSun’sintensityandnaturaldayandnightcycleisanenablerofmanypossibilities.Thechallengesofefficiency,storageofenergy,andintegrationinsolartechnologywouldbedealtwithmoreR&Daswellmorefieldexperienceoftheindustry.Solartechnologyaswholewillco‐existwithrenewableenergytechnologiesandnonrenewabletechnologiesforalongtimetocome.Hybridtechnologies(wind‐solar,solar‐naturalgasetc)couldgetaboostwithadvancementsandintegrationoftechnologies.

top related