structures of hydrated alkali metal cations, using infrared photodissociation spectroscopy haochen...

Post on 04-Jan-2016

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Structures of Hydrated Alkali Metal Cations, using Infrared Photodissociation Spectroscopy

Haochen Ke, Christian van der Linde,

James M. Lisy

Department of Chemistry, UIUC

ISMS-RG 06

• Alkali metals (Li, Na, K, Rb and Cs) are important chemical and biochemical elements.– Na and K are essential elements– Balance of electrolyte and osmotic pressure[1]

– Electroneurographic signal transmission[1]

– Li and Rb are used in treatment of bipolar disorder and depression [2,3]

Introduction

2

[1] Berg, J. M., Tymoczko, J. L., Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, 2010.[2] Baldessarini, R. J., Tondo, L., Davis, P., Pompili, M., Goodwin, F. K., Hennen, J. Bipolar Disord. 2006, 8 (2), 625–639.[3] Torta, R., Ala, G.; Borio, R., Cicolin, A., Costamagna, S., Fiori, L., Ravizza, L. Minerva Psichiatr. 1993, 34 (2), 101–110.

• M+(H2O)n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems.

– Structures of (H2O)n [4]

– Structures of H+(H2O)n [5]

Introduction

3[4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009, 5 (4), 1016–1026.[5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am. Chem. Soc. 2000, 122, 1398-1410[6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, 12302-12311

“The name ‘MB’ arises because there are three hydrogen-bonding arms, arranged as in the Mercedes Benz logo” [6]

4

Introduction

• M+(H2O)n, (M = Li, Na, K, Rb and Cs) are the ubiquitous and basic form in biochemical systems.

– What are the structures of M+(H2O)n ?

– Many calculations [7-9]

– Limited experimental data [10,11]

……

[7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067.[8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116.[9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem. Phys. 2007, 126, 74302.[10] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393–15404.[11] Miller, D. J., Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381–15392.

Research Methods—Experiment

Q2

Detection ChamberDifferentialChamber

10 Hz Nd3+:YAG (1064 nm)~500 mJ/pulse

Tunable LaserVision OPO/A 1.35~10 µm

~ 5mJ/pulse

Triple Quadrupole Mass Spectrometer

Tunable Infrared Laser

Source Chamber

InfraRed PhotoDissociation Spectroscopy (IRPD)

Negligible multiple-photon absorption [12,13]

Q1 Q3

5[12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.[13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135, 44302.

Research Methods—Calculation

• Ab initio calculations– Stable structures and energies

– MP2 level

– O, H, Ar, Li+ and Na+, aug-cc-pVDZ

– K+, Rb+ and Cs+, Los Alamos double-ζ basis sets (LANL2DZ)

– No Basis Set Superposition Error (BSSE) correction

• Rice-Ramsperger-Kassel-Marcus Evaporative-Ensemble (RRKM-EE) calculations– Unimolecular dissociation rate

– Effective cluster temperature (50~150K[12])

– Kinetic shift effect (negligible for M+(H2O)n in this apparatus[13])

6[12] Ke, H., van der Linde, C., Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.

53.5 kJ/mol

5.5 kJ/mol

Energy Threshold

(38.3) (39.5) (40.7) (41.9) (43.1) (44.3) (45.5) Equivalent Photon Energy (kJ/mol)

Spectral and Energy Analysis

Na+(H2O)5Ar

Frequency (cm-1)

7

N5f 17.0 kJ/mol

N5c 11.7 kJ/mol

N5b 11.8 kJ/mol

N5a 4.7 kJ/mol

<53.5 kJ/mol suppressed

>53.5 kJ/mol survived

Structures of M+(H2O)3Ar

2+13+0

8

Structures of M+(H2O)4Ar

3+14+0 C4

9

Structures of M+(H2O)5Ar

4+1

3+1+1

5+0 C45+0 C5

10

3+2 ?

Summary

• M+(H2O)3Ar

• M+(H2O)4Ar

3+0 2+1

Li, Na CsK, Rb

3+1 4+0 C4

Li, Na, K, Rb Cs

11

12

• M+(H2O)5Ar

Summary

3+1+1Li, Na

5+0 C4Rb, Cs

4+1Li, Na, K, Rb, Cs

5+0 C5

Cs3+2 ?

Li

Future Work

• Quantitative characterization, charge density vs structure

• Estimate H2O binding energy

– M+(H2O)n → M+(H2O)n-1 + H2O [12]

• Biochemical molecules, i.e. 2-amino-1-phenyl ethanol and ephedrine/pseudoephedrine

• M+(H2O)1Arn rotational structures

– Christian van der Linde’s presentation

– RJ11, Room 274, Medical Sciences Building, 04:25 PM 

13[12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.

Acknowledgement

• Colleagues– Prof. James M. Lisy and Dr. Christian van der Linde– Prof. Benjamin McCall’s Group

• National Science Foundation

CHE11-24821

14

• [1] Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, Seventh Edition; W. H. Freeman, 2010.• [2] Baldessarini, R. J.; Tondo, L.; Davis, P.; Pompili, M.; Goodwin, F. K.; Hennen, J. Bipolar Disord. 2006,

8 (5p2), 625–639.• [3] Torta, R.; Ala, G.; Borio, R.; Cicolin, A.; Costamagna, S.; Fiori, L.; Ravizza, L. Minerva Psichiatr. 1993,

34 (2), 101–110.• [4] Bryantsev, V. A.; Diallo, M. S.; Van Duin, A. C. T.; Goddard III, W. A. J. Chem. Theory Comput., 2009,

5 (4), 1016–1026.• [5] Jiang, J.; Wang, Y.; Chang, H.; Lin, S. H.; Lee, Y. T.; Niedner-Schatteburg, G.; Chang, H. J. Am.

Chem. Soc. 2000, 122, 1398-1410• [6] Hribar, B.; Southall, N. T.; Vlachy, V.; Dill, K. A. J. Am. Chem. Soc. 2002, 124, 12302-12311• [7] Glendening, E. D.; Feller, D. J. Phys. Chem. B. 1995, 99, 3060–3067.• [8] Park, J.; Kołaski, M.; Lee, H. M.; Kim, K. S. J. Chem. Phys. 2004, 121, 3108–3116.• [9] Kołaski, M.; Lee, H. M.; Choi, Y. C.; Kim, K. S.; Tarakeshwar, P.; Miller, D. J.; Lisy, J. M. J. Chem.

Phys. 2007, 126, 74302.• [10] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15393–15404.• [11] Miller, D. J.; Lisy, J. M. J. Am. Chem. Soc. 2008, 130 (46), 15381–15392.• [12] Ke, H.; van der Linde, C.; Lisy, J. M. J. Phys. Chem. A. 2014, 118 (8), 1363–1373.• [13] Beck, J. P.; Lisy, J. M. J. Chem. Phys. 2011, 135, 44302.

Reference

15

top related