annular modes and the role of the stratosphere

54
Annular Modes and the Role of the Stratosphere Alan Plumb ( + Mike Ring, Cegeon Chan, Gang Chen & Daniela Domeisen) M. I. T.

Upload: others

Post on 06-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Annular Modes and the Role of the Stratosphere

Annular Modes and the Role of the Stratosphere

Alan Plumb

( + Mike Ring, Cegeon Chan, Gang Chen & Daniela Domeisen)

M. I. T.

Page 2: Annular Modes and the Role of the Stratosphere

Annular Modes

• Leading patterns of variability in

extratropics of each hemisphere

(EOFs: leading eigenvectors of

covariance matrix)

• Strongest in winter but visible year-

round in troposphere; present in

stratosphere during “active seasons”

[Thompson and Wallace, 2000]

Page 3: Annular Modes and the Role of the Stratosphere

U, JJA

Page 4: Annular Modes and the Role of the Stratosphere

Northern/southern annular mode indices: distribution

φAMλ,ϕ, z, t = PAMt EAMλ, ϕ, t

AM index AM structure

Page 5: Annular Modes and the Role of the Stratosphere

Eddy fluxes drive the mean flow changes

[Lorenz & Hartmann, J. Atmos. Sci(2001); J. Clim (2003)]

Page 6: Annular Modes and the Role of the Stratosphere

Impact of stratosphere during winter?

Ambaum & Hoskins (2002)

τNAO ∼ 10 d.

NAO PV500

NAO

surf

ace

500 K

Page 7: Annular Modes and the Role of the Stratosphere

Composite of 18 Weak Vortex Events

-90 -60 -30 0 30 60 90Lag (Days)

hPa

A10

30

100

300

1000

km

0

10

20

30

Composite of 30 Strong Vortex Events

-90 -60 -30 0 30 60 90Lag (Days)

hPa

B10

30

100

300

1000

km

0

10

20

30

Projection onto annular mode index at each height:

Composites with respect to 10 hPa

[Baldwin & Dunkerton, Science, 2001]

Page 8: Annular Modes and the Role of the Stratosphere

GCM response to global warming [Kushner et al., 2001]

Climate forcings and annular modes

Tropospheric response to ozone depletion [Thompson & Solomon, 2002]

Page 9: Annular Modes and the Role of the Stratosphere

Response to altered stratospheric radiative state[Kushner & Polvani, J Clim, 2004]

Page 10: Annular Modes and the Role of the Stratosphere

∂X∂t

+ LX + NX = F

Linearize about climatological state:

∂x∂t

+ Ax = f .

Steady forcing:

x = A−1f .

The fluctuation-dissipation theorem

Page 11: Annular Modes and the Role of the Stratosphere

∂X∂t

+ LX + NX = F

Linearize about climatological state:

∂x∂t

+ Ax = f .

Steady forcing:

x = A−1f .

The fluctuation-dissipation theorem

but we don’t know what A is: so how do we find out?

Page 12: Annular Modes and the Role of the Stratosphere

∂X∂t

+ LX + NX = F

Linearize about climatological state:

∂x∂t

+ Ax = f .

Steady forcing:

x = A−1f .

Unknown A, stochastic f = є(r,t)

A= VΛWT ;

VWT = I = WTV

∂∂t

WTx +ΛWTx = WTε

Cτ = xt + τxTt

Gτ = CτC0−1

→ G t = VΓτWT ,

Γτ = exp−Λτ .

The fluctuation-dissipation theorem

With no external forcing:

The vectors V are the principal oscillation patterns (POPs)

[e.g., Penland 2002]

Page 13: Annular Modes and the Role of the Stratosphere

∂X∂t

+ LX + NX = F

Linearize about climatological state:

∂x∂t

+ Ax = f .

Steady forcing:

x = A−1f .

Unknown A, stochastic f = є(r,t)

A= VΛWT ;

VWT = I = WTV

∂∂t

WTx +ΛWTx = WTε

Cτ = xt + τxTt

Gτ = CτC0−1

→ G t = VΓτWT ,

Γτ = exp−Λτ .

Cτ = ⟨WTxt + τxtW⟩

Cτ = exp−ΛτC0

The fluctuation-dissipation theorem; principal oscillation patterns (POPs)

With no external forcing:

Lag covariance of each principal component decays exponentially with decorrelation time τ = Λ-1

gfdsemi
タイプライターテキスト
Baldwin and Dunkerton, Science (2001)
Page 14: Annular Modes and the Role of the Stratosphere

∂X∂t

+ LX + NX = F

Linearize about climatological state:

∂x∂t

+ Ax = f .

Steady forcing:

x = A−1f .

A = VΛWT

ΛWTx = WTf

→ yn = τngn

Steady response to steady forcing:

The fluctuation-dissipation theorem; principal oscillation patterns (POPs)

Page 15: Annular Modes and the Role of the Stratosphere

∂X∂t

+ LX + NX = F

Linearize about climatological state:

∂x∂t

+ Ax = f .

Steady forcing:

x = A−1f .

A = VΛWT

ΛWTx = WTf

→ yn = τngn

Steady response to steady forcing:

The fluctuation-dissipation theorem; principal oscillation patterns (POPs)

Response of PC decorrelation time projection of forcing

Page 16: Annular Modes and the Role of the Stratosphere

Application to forced barotropic model [Gritsun & BranstatorJ. Atmos. Sci., 2007]

Page 17: Annular Modes and the Role of the Stratosphere

Model Setup

• GFDL dry dynamical core; no geography

• T30 resolution

• Linear radiation and friction schemes

• Held-Suarez-like reference temperature profile but modified for perpetual solstitial conditions

• Friction twice the value used by Held and Suarez (1994) to reduce decorrelation times

∂u∂t

+ . . . . . . . . . . = F − γu + ν∇6u

∂T∂t

+. . . . . . . . . . . = αTe − T

Page 18: Annular Modes and the Role of the Stratosphere

Troposphere “dynamical core” model with Held-Suarez-like forcing (Ring & Plumb 2007)

Mean and variability of control run

−80 −60 −40 −20 0 20 40 60 80

100

200

300

400

500

600

700

800

900

1000

Latitude (degrees)

Pre

ssu

re (

hP

a)

EOFs 1 and 2 of Zonal−Mean Zonal Wind

−6

−6−

5

−5−

5

−4−

4

−4

−4

−3

−3

−3

−3

−2

−2

−2

−2

−2

−1

−1

−1

−1

−1

11

1

11

1

2

2

2

2

2

3

3

3

3

44

4

5

5

−3

−3

−2

−2

−2

−1

−1

−1

−1

−1

−1

−1

−1

1

1

1

1

1

2

2

2

2

33

34

−80 −60 −40 −20 0 20 40 60 80

100

200

300

400

500

600

700

800

900

1000

Latitude (degrees)

Pre

ssu

re (

hP

a)

Control Run Time−Mean Zonal−Mean Zonal Wind

−10

−5

−5−

5

5

5

10

10

15

15

20

20

25

25

30

30

354

0

0

0

0

0

0

mean zonal wind first 2 EOFs of mean u

Page 19: Annular Modes and the Role of the Stratosphere

Behavior of a simplified GCM

(no longitudinal variations in

external conditions)

(Ring & Plumb, J Atmos Sci, 2007)

EOF1

+1σ

-1σ

Page 20: Annular Modes and the Role of the Stratosphere

+1σ

-1σ

F, .F

(Ring & Plumb, J Atmos Sci, 2007)

Page 21: Annular Modes and the Role of the Stratosphere

Responses to Mechanical Forcings

−60 −30 0 30 60

200

400

600

800

1000

Pre

ssu

re (

hP

a)

Torques − Trial L1

−0.7

5−0.

5

−0.25

0.2

5

0.5 0.75

−60 −30 0 30 60

200

400

600

800

1000

Response − Trial L1

−2

−1

11

1

2

2

−60 −30 0 30 60

200

400

600

800

1000

Pre

ssu

re (

hP

a)

Latitude (degrees)

Torques − Trial L3

−0.75−0.5

−0.2

5

0.2

50.5

0.7

5

−60 −30 0 30 60

200

400

600

800

1000

Latitude (degrees)

Response − Trial L3

−5

−5

−4

−4 −3

−3

−2

−2

−2

−2

−1

−1

−1

−11

1

1

1

2

2

2

2

3

3

4

4

5

6

gfdsemi
タイプライターテキスト
Ring and Plumb (2007)
Page 22: Annular Modes and the Role of the Stratosphere

Hypothesis: response in each EOF Un is proportional to projection of forcing onto Un

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10−5

−40

−30

−20

−10

0

10

20

30

40

50

SH Forcing and Response Projections

Projection of Forcing

Pro

jection o

f R

esponse

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10−5

−40

−30

−20

−10

0

10

20

30

40

NH Forcing and Response Projections

Pro

jection o

f R

esponse

Projection of Forcing

gfdsemi
タイプライターテキスト
Ring and Plumb (2007)
Page 23: Annular Modes and the Role of the Stratosphere

Reference Temperature Changes

Confined to Poleward of Jet

−60 −30 0 30 60

100

200

300

400

500

600

700

800

900

1000

Latitude (degrees)

Pre

ssure

(hP

a)

Teq

Difference − Trial P2

0.5

0.5

0.5

0.5

0.5

0.5

1

11

1

11

1.5

1.5

1.5

1.5

22

2

2

2.5

2.5

2.5

2.5

3

3

3

3

3.5

3.5

4

−80 −60 −40 −20 0 20 40 60 80

100

200

300

400

500

600

700

800

900

1000

Pre

ssure

(hP

a)

Latitude (degrees)

Change in ∂Tref

/∂φ for Selected Trial

−8

−8

−6

−6

−6

−4

−4

−4

−4

−2

−2

−2

−2

22

2

22

44

4

4 6

6

66 8

8

gfdsemi
タイプライターテキスト
Ring and Plumb (2007)
Page 24: Annular Modes and the Role of the Stratosphere

Wind Changes Resulting

From Poleward Side Tref Changes

−60 −30 0 30 60

200

400

600

800

1000

Pre

ssu

re (

hP

a)

[u] Diff. − Trial P1

−1

−0.5

−0.50

.5

−60 −30 0 30 60

200

400

600

800

1000

[u] Diff. − Trial P2

−4

−3

−2

−2 −

1

−1

1

1

2

2

3−60 −30 0 30 60

200

400

600

800

1000

Latitude (degrees)

Pre

ssu

re (

hP

a)

[u] Diff. − Trial P3

−5−4

−4

−3−

3

−2

−2

−1

−1

−1−

1

−1

1

1

2

2

3

3

4

−60 −30 0 30 60

200

400

600

800

1000

Latitude (degrees)

[u] Diff. − Trial P4

−7

−6

−6

−5−

5 −4

−4

−3

−3

−2

−2

−2

−2

−1

−1

−1

−1

−1−1

−1

1

1

2

2

3

3

4

4

5

6

2 K

Warm

ing

6 K

Warm

ing

4 K

Warm

ing

10 K

Warm

ing

Page 25: Annular Modes and the Role of the Stratosphere

Direct Response to Forcing4 K

Warm

ing

4 K

Coolin

g

4 K

Warm

ing

4 K

Coolin

g

−60 −30 0 30 60

200

400

600

800

1000

Pre

ssu

re (

hP

a)

SF Diff. Trial P2 − No Eddy Change

−0.7

5−

0.5

−0.5

−0.2

5

−0.2

5

0.2

5

0.25

0.2

5

0.5

0.5

0.7

51

−60 −30 0 30 60

200

400

600

800

1000

SF Diff. Trial P2 − Full Model

−20

−15 −

15

−10

−10

−5

−5

−5

−5

5

5

10

10

15

20

−60 −30 0 30 60

200

400

600

800

1000

Pre

ssu

re (

hP

a)

Latitude (degrees)

SF Diff. Trial P6 − No Eddy Change

−1−0.75

−0.5

−0.2

5

−0.2

5

−0.2

5

0.2

5

0.25

0.5

0.75

−60 −30 0 30 60

200

400

600

800

1000

Latitude (degrees)

SF Diff. Trial P6 − Full Model

−25

−20

−15−10

−10

−5

−5

5

5

5

5

10

10

10

15

15

20

25

Page 26: Annular Modes and the Role of the Stratosphere

Response to Forcing Including

Eddy Flux Changes4 K

Warm

ing

4 K

Coolin

g

4 K

Warm

ing

4 K

Coolin

g

−60 −30 0 30 60

200

400

600

800

1000

Pre

ssu

re (

hP

a)

SF Diff. Trial P2 − With Eddy Change

−15

−10

−10 −

5−5

5

510

15

20

25

−60 −30 0 30 60

200

400

600

800

1000

SF Diff. Trial P2 − Full Model

−25

−20

−15

−10

−5

−5

5

5

10

101

5

−60 −30 0 30 60

200

400

600

800

1000

Latitude (degrees)

Pre

ssu

re (

hP

a)

SF Diff. Trial P6 − With Eddy Change

−25

−20

−15

−10 −

5

−5

5

510

10

15

−60 −30 0 30 60

200

400

600

800

1000

Latitude (degrees)

SF Diff. Trial P6 − Full Model

−25

−20

−15

−10

−10

−5

−5

5

5

55

10

10

10

15

15

20

25

Page 27: Annular Modes and the Role of the Stratosphere

Responses to Poleward Side

Thermal Forcings

−4 −3 −2 −1 0 1 2 3 4

x 10−6

−15

−10

−5

0

5

10

15

20

SH Projection of Response Versus Forcing

Projection of Forcing

Pro

jection o

f R

esponse

−4 −3 −2 −1 0 1 2 3 4

x 10−6

−8

−6

−4

−2

0

2

4

6

8

Projection of Forcing

Pro

jection o

f R

esponse

NH Projection of Response Versus Forcing

gfdsemi
タイプライターテキスト
Ring and Plumb (2007)
Page 28: Annular Modes and the Role of the Stratosphere

∂X∂t

+ LX + NX = F

Linearize about climatological state:

∂x∂t

+ Ax = f .

Steady forcing:

x = A−1f .

A = VΛWT

ΛWTx = WTf

→ yn = τngn

Steady response to steady forcing:

The fluctuation-dissipation theorem; principal oscillation patterns (POPs)

Page 29: Annular Modes and the Role of the Stratosphere

ut + V ⋅∇u + v ⋅ ∇U − fv = −∇ ⋅ Fu − λu + h

T t + V ⋅ ∇T − κp ΩT + v ⋅ ∇Θ − κ

p ωΘ = −∇ ⋅ FT − αT + q

L

Governing eqs of system

Linearize about unforced time-mean state [U,V,Ω,Θ](φ,p)

Anomalies [u,v,ω,T, Fu,FT](φ,p,t)

Assume anomalous eddy fluxes depend linearly on anomalous u (and neglect time lags) + stochastic term:

∇ ⋅ Fu = Euu + εu ; ∇ ⋅ FT = ETu + εT

xt + Cx = g + ε

Page 30: Annular Modes and the Role of the Stratosphere

ut + V ⋅∇u + v ⋅ ∇U − fv = −∇ ⋅ Fu − λu + h

T t + V ⋅ ∇T − κp ΩT + v ⋅ ∇Θ − κ

p ωΘ = −∇ ⋅ FT − αT + q

L

Governing eqs of system

Linearize about unforced time-mean state [U,V,Ω,Θ](φ,p)

Anomalies [u,v,ω,T, Fu,FT](φ,p,t)

ap−1R cos2ϕ Tϕ = 2sinϕ uU + Ωacosϕp

Nonlinear balance:

ut + Au = f + ε

where

= Kuo-Eliassen response

Neglect advection of static stability anomalies

f = h − HL−1 1a

∂q

∂ϕ − 2 sinϕ

a3 cos3ϕ

p

R

∂∂phM

Page 31: Annular Modes and the Role of the Stratosphere

Effective Torques:

Mechanical Forcing

−90 −60 −30 0 30 60 90

200

400

600

800

1000

Pre

ssu

re (

hP

a)

Applied Forcing − Trial L4

−60

−40

−20

60

40

20

−90 −60 −30 0 30 60 90

200

400

600

800

1000

Effective Forcing − Trial L4

−15

−10

−5

−5

20

15

10

5

5

−90 −60 −30 0 30 60 90

200

400

600

800

1000

Latitude (degrees)

Pre

ssu

re (

hP

a)

Applied Forcing − Trial L5

−60

−40

−20

6040

20

−90 −60 −30 0 30 60 90

200

400

600

800

1000

Latitude (degrees)

Effective Forcing − Trial L5

−20

−15

−10

−5−

5

20

15

10

5

5

5

gfdsemi
タイプライターテキスト
Ring and Plumb (2007)
Page 32: Annular Modes and the Role of the Stratosphere

Effective Torques:

Thermal Forcing

−90 −60 −30 0 30 60 90

200

400

600

800

1000

Pre

ssu

re (

hP

a)

Applied Forcing − Trial P4

−3

−2

−1

3 21

−90 −60 −30 0 30 60 90

200

400

600

800

1000

Effective Forcing − Trial P4

−6−6 −4−4 −2

−2

8

8

6

6

4

4

2

2

2

−90 −60 −30 0 30 60 90

200

400

600

800

1000

Latitude (degrees)

Pre

ssu

re (

hP

a)

Applied Forcing − Trial P8

−3

−2

−1

3

2

1

−90 −60 −30 0 30 60 90

200

400

600

800

1000

Latitude (degrees)

Effective Forcing − Trial P8

−8

−8−

6

−6

−4

−4

−2−

2

−2

88 664

4 22

gfdsemi
タイプライターテキスト
Ring and Plumb (2007)
Page 33: Annular Modes and the Role of the Stratosphere

∂X∂t

+ LX + NX = F

Linearize about climatological state:

∂x∂t

+ Ax = f .

Steady forcing:

x = A−1f .

A = VΛWT

ΛWTx = WTf

→ yn = τngn

Steady response to steady forcing:

The fluctuation-dissipation theorem

Page 34: Annular Modes and the Role of the Stratosphere

Troposphere “dynamical core” model with Held-Suarez-like forcing (Ring & Plumb 2007)

Mean and variability of control run

−80 −60 −40 −20 0 20 40 60 80

100

200

300

400

500

600

700

800

900

1000

Latitude (degrees)

Pre

ssu

re (

hP

a)

EOFs 1 and 2 of Zonal−Mean Zonal Wind

−6

−6−

5

−5−

5

−4−

4

−4

−4

−3

−3

−3

−3

−2

−2

−2

−2

−2

−1

−1

−1

−1

−1

11

1

11

1

2

2

2

2

2

3

3

3

3

44

4

5

5

−3

−3

−2

−2

−2

−1

−1

−1

−1

−1

−1

−1

−1

1

1

1

1

1

2

2

2

2

33

34

−80 −60 −40 −20 0 20 40 60 80

100

200

300

400

500

600

700

800

900

1000

Latitude (degrees)

Pre

ssu

re (

hP

a)

Control Run Time−Mean Zonal−Mean Zonal Wind

−10

−5

−5−

5

5

5

10

10

15

15

20

20

25

25

30

30

354

0

0

0

0

0

0

mean zonal wind first 2 EOFs of mean u

Page 35: Annular Modes and the Role of the Stratosphere

POP Spatial Patterns

−60 −30 0 30 60

200

400

600

800

1000

Pre

ssure

(hP

a)

Eig. 1 of V − 8EOF − 10 Day Lag

−0.1

2

−0.1

−0.0

8−

0.0

6

−0.0

4

−0.0

2

−0.0

2

0.0

2

0.0

2

0.0

20.0

4

0.0

40.0

6

0.0

8

0.10.1

2

−60 −30 0 30 60

200

400

600

800

1000

Eig. 2 of V − 8EOF − 10 Day Lag

−0.12

−0.1

−0.0

8−

0.0

6

−0.0

4−0.0

4

−0.0

2

−0.0

2

0.0

2

0.0

2

0.0

2

0.0

2

0.0

4

0.0

4

0.0

4

0.04 0.0

6 0.0

8

0.1

0.1

2

−60 −30 0 30 60

200

400

600

800

1000

Latitude (degrees)

Pre

ssure

(hP

a)

Eig. 1 of W − 8EOF − 10 Day Lag

−0.12

−0.1

−0.0

8

−0.0

6

−0.0

4

−0.0

4

−0.0

2

−0.0

2

−0.0

2

0.0

2

0.0

2

0.0

2

0.02

0.0

4

0.0

4

0.06

0.0

8

0.1

−60 −30 0 30 60

200

400

600

800

1000

Latitude (degrees)

Eig. 2 of W − 8EOF − 10 Day Lag

−0.1

2

−0.1 −

0.0

8

−0.0

6

−0.04

−0.0

2 −0.0

2

−0.02

0.0

2

0.0

2

0.0

20.02

0.0

4

0.0

4

0.0

4

0.0

6

0.0

80.1

0.1

2

0.1

4

8 EOFs retained – 10 day lag

gfdsemi
タイプライターテキスト
Ring and Plumb (2007)
Page 36: Annular Modes and the Role of the Stratosphere

Response Versus Effective Torques:(Ring & Plumb 2008)

−3 −2 −1 0 1 2 3

x 10−5

−60

−40

−20

0

20

40

60

80

SH POP Analysis Forcing and Response Projections

Projection of Forcing on POP (m/s2)

Pro

jection o

f R

esponse o

n P

OP

(m

/s)

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10−5

−60

−40

−20

0

20

40

60

NH POP Analysis Forcing and Response Projections

Projection of Forcing on POP (m/s2)

Pro

jection o

f R

esponse o

n P

OP

(m

/s)

circles indicate mechanically forced trials; squares thermally forced trials

xn = λn−1gn = τngn

proj. of response onto mode proj. of forcing onto mode

decorrelation time of unforced mode

Page 37: Annular Modes and the Role of the Stratosphere

Response to altered stratospheric radiative state

[Kushner & Polvani 2004]

Page 38: Annular Modes and the Role of the Stratosphere

Chan & Plumb (2009)

Page 39: Annular Modes and the Role of the Stratosphere
gfdsemi
タイプライターテキスト
Chan & Plumb (2009)
Page 40: Annular Modes and the Role of the Stratosphere

τ = 262 d.

τ = 30 d.

gfdsemi
タイプライターテキスト
Chan & Plumb (2009)
Page 41: Annular Modes and the Role of the Stratosphere

τ = 262 d.

gfdsemi
タイプライターテキスト
Chan & Plumb (2009)
Page 42: Annular Modes and the Role of the Stratosphere

τ = 30 d.

gfdsemi
タイプライターテキスト
Chan & Plumb (2009)
Page 43: Annular Modes and the Role of the Stratosphere
gfdsemi
タイプライターテキスト
Chan & Plumb (2009)
Page 44: Annular Modes and the Role of the Stratosphere

pressure-weighted not pressure-weighted

Page 45: Annular Modes and the Role of the Stratosphere

POPs

[Domeisen]

Page 46: Annular Modes and the Role of the Stratosphere
gfdsemi
タイプライターテキスト
Anderson et al.
Page 47: Annular Modes and the Role of the Stratosphere

Conclusions

• FDT works reasonably well as a predictor of system response

• Response depends on projected effective forcing and on

autocorrelation time τ of “natural” fluctuations

• Model simulations need to have good EOFs (or POPs) and their autocorrelation times

• POP analysis suggests distinct stratospheric and troposphericmodes

• Hard to determine robust adjoint POPs for stratosphere-troposphere model to do accurate prediction from FDT

• Response to tropical forcing does not fit the pattern – strong Hadley circulation response

xn = λn−1gn = τngn

Page 48: Annular Modes and the Role of the Stratosphere

[Thompson et al., J AtmosSci, 2006]

Kuo-Eliassen response to observed forcing

∆ (div F) ∆Q

χ

ut

observed calculated

Page 49: Annular Modes and the Role of the Stratosphere
gfdsemi
タイプライターテキスト
Chan & Plumb (2009)
Page 50: Annular Modes and the Role of the Stratosphere

(Chen & Plumb, 2009)

Czz(τ)

Cmm(τ)

Cmz(τ)

∂z∂t

= m − D−1z

m = m + Bz

→ ∂z∂t

= m − τ−1z

τ−1 = D−1 − B

Page 51: Annular Modes and the Role of the Stratosphere

∂z∂t

= m − τ−1z

τ−1 = D−1 − B

gfdsemi
タイプライターテキスト
Chan & Plumb (2009)
Page 52: Annular Modes and the Role of the Stratosphere

(Chen & Plumb, 2009)

∂z∂t

= m − τ−1z

C zzΔt = ∫−∞

0 ∫−∞

0

Cmm Δt + r − s exp r + sτ ds dr

Page 53: Annular Modes and the Role of the Stratosphere

References Ambaum, M. H. P. and Hoskins, B. J., 2002: The NAO Troposphere--

Stratosphere Connection, J. Climate, 15:14, 1969-1978 Baldwin, M. P. and Dunkerton, T. J., 2001: Stratospheric harbingers of

anomalous weather regimes, Science 244, 581-584 Chan, C. J. and Plumb, R. A., 2009: The Response to Stratospheric Forcing

and Its Dependence on the State of the Troposphere, J. Atmos. Sci., 66, 2107-2115

Chen, G., Plumb, R. A., 2009: Quantifying the Eddy Feedback and the Persistence of the Zonal Index in an Idealized Atmospheric Model, J. Atmos. Sci., 66, 3707-3720

Gritsun, A. and Branstator, G., 2007: Climate Response Using a Three-Dimensional Operator Based on the Fluctuation--Dissipation Theorem, J. Atmos. Sci., 64, 2558-2575.

Kushner, P. J., Held, I. M., Delworth, T. L., 2001: Southern Hemisphere Atmospheric Circulation Response to Global Warming, J. Climate,14, 2238-2249

Kushner, P. J., and L. M. Polvani, 2004: Stratosphere-troposphere coupling in a relatively simple AGCM: the role of eddies, J. Climate, 17, 629-639.

Page 54: Annular Modes and the Role of the Stratosphere

References Lorenz, David J., Dennis L. Hartmann, 2001: Eddy-Zonal Flow Feedback in

the Southern Hemisphere, J. Atmos. Sci., 58, 3312-3327 Lorenz, David J., Dennis L. Hartmann, 2003: Eddy-Zonal Flow Feedback in

the Northern Hemisphere Winter, J. Climate, 16 1212-1227 Ring, M. J. and Plumb, R. A., 2007: Forced Annular Mode Patterns in a

Simple Atmospheric General Circulation Model, J. Atmos. Sci., 64, 3611-3626

Ring, M. J. and Plumb, R. A., 2008: The Response of a Simplified GCM to Axisymmetric Forcings: Applicability of the Fluctuation--Dissipation Theorem, J. Atmos. Sci., 65:12, 3880-3898

Thompson, D. W. J. and S. Solomon. 2002: Interpretation of recent Southern Hemisphere climate change, Science, 296, 895-899

Thompson, D. W. J. and Furtado, J. C., Shepherd, T. G., 2006: On the Tropospheric Response to Anomalous Stratospheric Wave Drag and Radiative Heating, J. Atmos. Sci., 63, 2616-2629.

Thompson, D. W. J., John M. Wallace, Gabriele C. Hegerl, 2000: Annular Modes in the Extratropical Circulation. Part I: Month-to-Month Variability, J. Climate, 13, 1000-1016