anode - engineering.purdue.edu

41
+ V D βˆ’ i D Cathode Anode anode (+) cathode (-) + V D βˆ’

Upload: others

Post on 23-Jul-2022

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Anode - engineering.purdue.edu

+

VD

βˆ’

iD

Cathode

Anode

anode (+)

cathode (-)

+ VD βˆ’

Page 2: Anode - engineering.purdue.edu
Page 3: Anode - engineering.purdue.edu
Page 4: Anode - engineering.purdue.edu

n+-type Material

p-type Material

n-type Material

Page 5: Anode - engineering.purdue.edu
Page 6: Anode - engineering.purdue.edu

iC

iB

iB

iC

Current controlled Voltage controlled

Page 7: Anode - engineering.purdue.edu

𝛼dc =𝑖𝐢

𝑖𝐸𝛽dc =

𝑖𝐢

𝑖𝐡

iE

iC

iE

iC

iB

Page 8: Anode - engineering.purdue.edu

𝑖𝐸 = 𝑖𝐢 + 𝑖𝐡

𝑖𝐸

𝑖𝐢= 1 +

𝑖𝐡

𝑖𝐢

1

𝛼dc= 1 +

1

𝛽dc

𝛽dc =𝛼dc

1βˆ’π›Όdc ↔ 𝛼dc =

𝛽dc

𝛽dc+1

iC

+ VCE

βˆ’ VBE βˆ’

iB

iE

Page 9: Anode - engineering.purdue.edu

βˆ’

𝑖𝐢 β‰ˆ 0, 𝑅𝐢𝐸 β‰ˆ ∞

βˆ’

𝑖𝐢 = 𝑖𝐡 𝛽

βˆ’ 𝑉𝐢𝐸 β†’ 0

𝑖𝐢 β‰ˆ 𝑖𝐢(limit), 𝑅𝐢𝐸 β‰ˆ 0

iC

+ VCE

βˆ’ VBE βˆ’

iB

iE

VCE

π’Šπ‘ͺ

π’Šπ‘© 𝜷

Page 10: Anode - engineering.purdue.edu

βˆ’

𝑖𝐢 𝑖𝐡

Ξ²

𝑖𝐢 = 𝑖𝐡 𝛽; 𝑉𝐡𝐸 = 𝑉𝐹; 𝑉𝐢𝐸 > 𝑉𝐹

𝑃 = 𝑖𝐢 β‹… 𝑉𝐢𝐸

iC

+ VCE

βˆ’ VBE βˆ’

iB

iE

VCE

π’Šπ‘ͺ

π’Šπ‘© 𝜷

Page 11: Anode - engineering.purdue.edu

βˆ’

VCE

βˆ’

𝑖𝐢

VCE

𝑖𝐡 = 0; 𝑖𝐢 β‰ˆ 0; 𝑉𝐡𝐸 < 𝑉𝐹; 𝑉𝐢𝐸 β‰₯ 0

iC

+ VCE

βˆ’ VBE βˆ’

iB

iE

VCE

π’Šπ‘ͺ

π’Šπ‘© 𝜷

𝑖𝐡 >𝑖𝐢

𝛽; 𝑉𝐡𝐸 = 𝑉𝐹;

𝑉𝐢𝐸 = 𝑉𝑆𝐴𝑇 β‰ˆ 0.2 𝑉

Page 12: Anode - engineering.purdue.edu

𝑖𝐡 β‰ˆ 0 𝑉𝐼𝑁

βˆ’

βˆ’ 𝑖𝐢 β‰ˆ 𝑖𝐸 β‰ˆ 0 β‡’ VOUT β‰ˆ VCC

βˆ’

𝑖𝐡 > 𝑖𝐡(π‘ π‘Žπ‘‘)

𝑉𝐼𝑁

βˆ’

βˆ’ π‘‰π‘‚π‘ˆπ‘‡ = 𝑉𝐢𝐸(π‘ π‘Žπ‘‘)β‰ˆ 0.2 𝑉

βˆ’

𝑖𝐡 =𝑉𝐼𝑁 βˆ’ 𝑉𝐡𝐸(𝑆𝐴𝑇)

𝑅𝐡; 𝑖𝐢 β‰ˆ

𝑉𝐢𝐢 βˆ’ 𝑉𝐢𝐸(𝑆𝐴𝑇)

𝑅𝐿

π’Šπ‘ͺ

VCE

iB (sat)

iB β‰ˆ 0 1

LR

𝑖𝑐

π‘‰π‘œπ‘’π‘‘π‘‰π‘–π‘›

0

0 𝑅𝐢𝐸 = ∞

𝑅𝐢𝐸 = 0

Increasing 𝑅2

+

𝑉𝐼𝑁

βˆ’

+

π‘‰π‘‚π‘ˆπ‘‡ βˆ’

π’Šπ‘ͺ

π’Šπ‘¬

π’Šπ‘©

π’Šπ‘ͺ

Page 13: Anode - engineering.purdue.edu

𝑉𝑖𝑛

𝛽dc > 20

𝑖𝐡 >𝑖𝐢(limit)

10

π’Šπ‘ͺ

VCE

iB (sat)

iB β‰ˆ 0 1

LR

𝑖𝑐

π‘‰π‘œπ‘’π‘‘π‘‰π‘–π‘›

0

0 𝑅𝐢𝐸 = ∞

𝑅𝐢𝐸 = 0

Increasing 𝑅2

π’Šπ‘ͺ

+

𝑉𝐼𝑁

βˆ’

+

π‘‰π‘‚π‘ˆπ‘‡ βˆ’

π’Šπ‘ͺ

π’Šπ‘¬

π’Šπ‘©

Page 14: Anode - engineering.purdue.edu

𝑑𝐷

𝑑𝑅

𝑖𝐢

𝑑𝑆

𝑖𝐢

𝑑𝐹

𝑖𝐢

t

VIN

t

iC

tD

tR

tS tF

+

𝑉𝐼𝑁

βˆ’

+

π‘‰π‘‚π‘ˆπ‘‡ βˆ’

π’Šπ‘ͺ

π’Šπ‘¬

π’Šπ‘©

Page 15: Anode - engineering.purdue.edu

𝑑𝑂𝑁 = 𝑑𝐷 + 𝑑𝑅

𝑑𝑂𝐹𝐹 = 𝑑𝑆 + 𝑑𝐹

β€’ 𝑑𝑑

β€’ π‘‘π‘Ÿ

β€’ 𝑑𝑠

β€’ 𝑑𝑓

t

VIN

t

iC

tD

tR

tS tF

+

𝑉𝐼𝑁

βˆ’

+

π‘‰π‘‚π‘ˆπ‘‡ βˆ’

π’Šπ‘ͺ

π’Šπ‘¬

π’Šπ‘©

Page 16: Anode - engineering.purdue.edu

VCC RC

RB

+

VIN

βˆ’

𝑅𝐡

𝑉𝐼𝑁

β€’

β€’

𝑉𝐼𝑁

ATmega32

Page 17: Anode - engineering.purdue.edu

VCC RC

RB

+

VIN

βˆ’

𝑅𝐡 >𝑉𝐼𝑁 βˆ’ 𝑉𝐹

𝐼𝐷𝑂,π‘šπ‘Žπ‘₯=

4.3 V

40 mA= 107.5 Ξ© β‰ˆ 110 Ξ©

To avoid overloading digital output, might actually double or quadruple RB

ATmega32

Page 18: Anode - engineering.purdue.edu

VCC RC

RB

+

VIN

βˆ’

𝑅𝐢

𝑉𝐢𝐢 = 5𝑉

ATmega32

Page 19: Anode - engineering.purdue.edu

VCC RC

RB

+

VIN

βˆ’

𝑖𝐢(max) =𝑃max

𝑉𝐿𝐸𝐷=

80 mW

2 V= 40 mA

𝑅𝐢 >𝑉𝐢𝐢 βˆ’ 𝑉𝐿𝐸𝐷 βˆ’ 𝑉𝐢𝐸(π‘ π‘Žπ‘‘)

𝑖𝐢(max)=

5 βˆ’ 2 βˆ’ 0.2 V

40 mA= 70 Ξ©

To maintain hard saturation, 𝑖𝐡 > 4 mA ⟹ 𝑅𝐡 < 1075 Ξ©

ATmega32

Page 20: Anode - engineering.purdue.edu

VCC RC

RB

+

VIN

βˆ’

𝑉𝐢𝐢

𝛽

ATmega32

Page 21: Anode - engineering.purdue.edu

VCC RC

RE

π’Šπ‘ͺ

π’Šπ‘¬

π’Šπ‘©

+

VIN

βˆ’

ATmega32

Page 22: Anode - engineering.purdue.edu

𝛽

Page 23: Anode - engineering.purdue.edu

Image: http://hades.mech.northwestern.edu/images/d/d6/Phototransistor.jpg

Page 24: Anode - engineering.purdue.edu

+

VOUT

βˆ’

Image: https://www.sparkfun.com/products/9299

Page 25: Anode - engineering.purdue.edu

VOUT

VCC RC

VIN

RIN

Image: www.sparkfun.com/products/314

Page 26: Anode - engineering.purdue.edu
Page 27: Anode - engineering.purdue.edu

𝑅1

𝑅2

Page 28: Anode - engineering.purdue.edu

β€’

β€’

β€’

β€’

β€’

β€’

β€’

β€’

β€’

Page 29: Anode - engineering.purdue.edu
Page 30: Anode - engineering.purdue.edu
Page 31: Anode - engineering.purdue.edu
Page 32: Anode - engineering.purdue.edu

iD

Page 33: Anode - engineering.purdue.edu
Page 34: Anode - engineering.purdue.edu

iD

D

G

S

Page 35: Anode - engineering.purdue.edu

𝑉𝑇

𝑉𝐺𝑆(on)

iD

+ VDS

βˆ’ VGS

+

βˆ’

D

G

S

VDD

RD

Page 36: Anode - engineering.purdue.edu

β€’ 𝑖𝐷

β€’

βˆ’

β€’ 𝑖𝐷

β€’

βˆ’

𝑉𝐺𝑆 < 𝑉𝑇 ⟹ 𝑖𝐷 β‰ˆ 0; 𝑉𝐷𝑆 β‰ˆ 𝑉𝐷𝐷iD

+ VDS

βˆ’ VGS

+

βˆ’

RD

VDS

iD (mA)

VGS – VT

Cutoff (VGS < VT)

BVDS

𝑉𝐺𝑆 > 𝑉𝑇 & 𝑉𝐷𝑆 < 𝑉𝐺𝑆 βˆ’ 𝑉𝑇 β‰ͺ 𝑉𝐷𝐷 ⟹ 𝑖𝐷 β‰ˆ 𝑉𝐷𝐷/𝑅𝐷 ;

𝑉𝐺𝑆 > 𝑉𝑇 & 𝑉𝐷𝑆 > 𝑉𝐺𝑆 βˆ’ 𝑉𝑇 ⟹ 𝑖𝐷 ∝ 𝑉𝐺𝑆 βˆ’ 𝑉𝑇2

𝑃 = 𝑖𝐷 β‹… 𝑉𝐷𝑆

Page 37: Anode - engineering.purdue.edu

𝑉𝐼𝑁 < 𝑉𝑇

β€’

β€’ 𝑖𝐷 β‰ˆ π‘–π‘†β‰ˆ 0 ⟹ π‘‰π‘‚π‘ˆπ‘‡ β‰ˆ 𝑉𝐷𝐷

β€’

𝑉𝐼𝑁 > 𝑉𝑇

β€’

β€’ π‘‰π‘‚π‘ˆπ‘‡ = 𝑉𝐷𝐷 βˆ’ 𝑉𝐷𝑆 = 𝑉𝐷𝐷 βˆ’ 𝑖𝐷 𝑉𝐺1 β‹… 𝑅𝐷

β€’

VG = VT

iD

VDS

VG1

iD +

VOUT

βˆ’

+ VIN

βˆ’

+ VDS(sat)

βˆ’

+ VIN

βˆ’

+

VOUT

βˆ’

βˆ’1

𝑅𝐷

Page 38: Anode - engineering.purdue.edu

VOUT VIN

QP

QN

VDD

VGS +

βˆ’

βˆ’

VGS

+

CMOS Inverter

VDD

QP

QN

VOUT

VDD

QP

QN

VOUT

VIN low VIN high

Page 39: Anode - engineering.purdue.edu

𝑖𝐢𝑖𝐡

𝑖𝐷𝑉𝐺

Page 40: Anode - engineering.purdue.edu
Page 41: Anode - engineering.purdue.edu