“studying gravity with quantum optics › phys › particle › relativity › past...gravity and...

31
Kyoto University, JST 17 December 2012, Kyoto 関西相対論・宇宙論合同セミナー Y. Takahashi “Studying Gravity with Quantum Optics ~ Test of Gravity at short range using Bose-Einstein Condensates ~

Upload: others

Post on 29-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Kyoto University, JST

17 December 2012, Kyoto

関西相対論・宇宙論合同セミナー

Y. Takahashi

“Studying Gravity with Quantum Optics

~ Test of Gravity at short range

using Bose-Einstein Condensates ~

Quantum Optics Group Members

M. Ando

K. Takahashi

H. Yamada

I. Takahashi

M. Borkowski

R. Ciulylo

P. Julienne

M. Abe

J. Hutson

M. Baba

Y. Kikuchi Y. Takasu

Outline

Introduction:

quantum optics researches for studying gravity

Proposed experiment:

test of gravity at short range using Bose-Einstein

condensates:

current status and prospects

Outline

Introduction:

quantum optics researches for studying gravity

Proposed experiment:

test of gravity at short range using Bose-Einstein

condensates:

current status and prospects

Gravity and Quantum Optics

Gravitational Effect

Very Weak in Laboratory Scale

Need of Precision Measurement

(sometimes, beyond quantum limit)

Quantum Optics Approach

Gravity and Quantum Optics

For gravitational wave detection:

Quantum Non-Demolition Measurement

(proposed by Braginsky)

[n, Hint]=0 ( Back-action evasion)

n, (φ) Ap

Hint probe

The Nobel Prizes in Physics 2012

S. Haroche D. Wineland

"for ground-breaking experimental methods that enable

measuring and manipulation of individual quantum systems"

“Development of Quantum Optics”

QND of photons and Quantum Feedback control

by S. Haroche

Gravity and Quantum Optics

For gravitational wave detection:

Squeezed States of Light

X1

△X1=△X2=1/2

Coherent states (laser) Squeezed states

X2

X1

X2

△X1>1/2, △X2<1/2

[X1, X2]=i/2

△X1△X2≥1/4

Gravity and Quantum Optics

For gravitational wave detection:

Squeezed States of Light Important resources for Quantum information processing

Furusawa G

(U. of Tokyo)

The Nobel Prizes in Physics 2012

S. Haroche D. Wineland

"for ground-breaking experimental methods that enable

measuring and manipulation of individual quantum systems"

“Development of Quantum Optics”

Optical clocks and relativity D. Wineland Group, [Science 329,1630 (2010)]

f(Hg+)/f(Al+) : 10-17 yr/10)3.26.1(/ 17

△f/f : ~ 10-17!

g

33cm

Precise measurement of g using atoms [PRL 106, 038501(2011)]

88Sr atoms: N~ 106, T~ 0.6µK,

almost non-interacting

“Bloch oscillation”

BL Fk 2 , F=mSrg 1st BZ:

no change up to 15 µm near surface

Outline

Introduction:

quantum optics researches for studying gravity

Proposed experiment:

test of gravity at short range using Bose-Einstein

condensates:

current status and prospects

Test of the Gravitational r-2 Law at Short Range

100 103 106 109 1012

-2

-4

-6

-8

-10

λ [m]

10-5 10-4 10-3 10-2

λ [m]

0

4

8

10-6 -4

6

2

-2

r

MGMrV 21)(

r

er

MGMrV 1)( 21

10log

Prog.Part.Nucl.Phys., 62, 102(2009)

Gravity at Short Range

20

25

15

10

5

0

10-12 10-9 10-6 10-3

λ [m]

10log

nm1@10~ 15

[Phys. Lett. B, 429, 263(1998)] “Extra-Dimension”

nm1@10~ 18

[PRD, 75, 115017 (2007)]

“New Boson”

nm1@10~ 22[PRD, 77, 034020 (2008)]

“neutron scattering data”

Our Approach : Photo-association

atom atom

“long-range molecule”

Our Approach : Photo-association

[M. Kitagawa, et al., PRA 77, 012719(2008)]

“Magneto-optical Trap”

cold atomic gas at 1 µK !

Num

ber

of A

tom

s

Eb/h [MHz]

174Yb:v=1, J=0 :~100kHz

Our Approach : Photo-association [M. Kitagawa, et al., PRA 77, 012719(2008)]

8

8

6

6

12

12)(r

C

r

C

r

CrV

Lenard-Jones-type Potential

C6=1931.7 Eh a06 , C8=1.93×106 Eha0

8 , C12=1.03041 Eha012

Our Approach : Photo-association [M. Kitagawa, et al., PRA 77, 012719(2008)]

Lenard-Jones-type Potential

C6=1931.7 Eh a06 , C8=1.93×106 Eha0

8 , C12=1.3041 Eha012

r

er

MGM

r

C

r

C

r

CrV 1)( 21

8

8

6

6

12

12

nm1@

10~ 20

△f=1kHz

Many Advantages of Ytterbium

• Heavy (N~174)

• Single Molecular Potential :No Hyperfine Structure

Contrary to Alkali Dimers

Insensitivity to magnetic field

• Many Isotopes:

168Yb, 170Yb, 171Yb, 172Yb, 173Yb, 174Yb, 176Yb

Check the mass dependence

• Ultracold Quantum Gases:

Free from thermal shift and broadening

Nice Atomic Species for this experiment !

Quantum Degenerate Gases of Yb

174Yb 160µm

TOF:

10ms

30 µm

170Yb 120 µm TOF: 8 ms

176Yb

[T. Fukuhara et al., PRA 76, 051604(R)(2007)] [Y. Takasu et al., PRL 91, 040404 (2003)]

168Yb(0.13%)

Fermion [T. Fukuhara et al., PRL. 98, 030401 (2007)] [S. Taie et al ., PRL105, 190401(2010)]

171Yb(I=1/2) T/TF =0.3 173Yb(I=5/2) T/TF =0.14

[S. Sugawa et al., PRA 84, 011610(R)(2011)]

Our Approach : Photo-association

Lenard-Jones-type Potential

C6=1931.7 Eh a06 , C8=1.93×106 Eha0

8 , C12=1.3041 Eha012

r

er

MGM

r

C

r

C

r

CrV 1)( 21

8

8

6

6

12

12

nm1@

10~ 20

△f=1kHz

174Yb:v=1, J=0 BEC :~1kHz !

Evaluation of Systematic Shifts

Atoms and Molecules

have slightly different

polarizabilities

Light Shift due to Optical Trapping Laser

Δ = 20 MHz

Δ = 30 MHz

2211

2

21

1

)()( II

I

ff

ILS

Light Shift due to Photoassociation Laser

)(2

2 atom

am

am

aa

aa2

MF rnaa

ama :scattering length between atom and molecule

Collision Shift due to Atom-Dimer Collision

1 kHz

)()(}|)(|)({ 2 rrrgrV

Experimental Results Level Binding

energy[MHz]

168Yb(v=2, J=0) -195.18141(46)

168Yb(v=1, J=2) -145.53196(48)

170Yb(v=1, J=0) -27.70024(44)

170Yb(v=2, J=0) -463.72552(80)

170Yb(v=3, J=0) -1922.01467(504)

170Yb(v=1, J=2) -3.66831(32)

170Yb(v=2, J=2) -398.05626(46)

170Yb(v=3, J=2) -1817.14074(80)

174Yb(v=1, J=0) -10.62513(53)

174Yb(v=2, J=0) -325.66378(98)

174Yb(v=3, J=0) -1527.88543(34)

174Yb(v=1, J=2) -268.63656(56)

174Yb(v=2, J=2) -1432.82493(64)

13 binding energies

with

about 500Hz accuracy

Δf/f=2.6×10-7

no good Fit with

Lenard Jones Potential

no good Fit with

Lenard Jones Potential

Experimental Results Level Binding

energy[MHz]

168Yb(v=2, J=0) -195.18141(46)

168Yb(v=1, J=2) -145.53196(48)

170Yb(v=1, J=0) -27.70024(44)

170Yb(v=2, J=0) -463.72552(80)

170Yb(v=3, J=0) -1922.01467(504)

170Yb(v=1, J=2) -3.66831(32)

170Yb(v=2, J=2) -398.05626(46)

170Yb(v=3, J=2) -1817.14074(80)

174Yb(v=1, J=0) -10.62513(53)

174Yb(v=2, J=0) -325.66378(98)

174Yb(v=3, J=0) -1527.88543(34)

174Yb(v=1, J=2) -268.63656(56)

174Yb(v=2, J=2) -1432.82493(64)

Conventional Molecular Spectroscopy

by M. Baba

Plan to do

Determination of all molecular vibrational binding energies

(N=70) with sub-kHz accuracy

Conventional Spectroscopy

using molecular beam:

Collaboration with Prof. Baba

Resonant Ionization Spectroscopy

using cold Photo-associated molecule:

New construction

Determination of molecular potential energies with quantum

chemical calculation

BO Correction, Nuclear Finite-size effect:

Collaboration with Prof. Hutson,

Dr. Abe

Potential Fitting:

Collaboration with Dr. P. Julienne

Dr. R. Ciulylo, M. Borkowski

Thank you very much for attention

16 August Mount Daimonji at Kyoto