양자광학 - laser optics 레이저광학)optics.hanyang.ac.kr/~choh/degree/quantum...

27
Nonlinear Optics Lab. Hanyang Univ. 양자 광학 - Laser Optics (레이저 광학) - 담당 교수 : 오차환 : P.W. Miloni, J.H. Eberly, LASERS, John Wiley & Sons, 1991 부교재 : W. Demtroder, Laser Spectroscopy, Springer-Verlag, 1998 F. L. Pedrotti, S.J., L.S. Pedrotti, Introduction to Optics, Prentice-Hall, 1993 2008 봄학기

Upload: others

Post on 02-Feb-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

  • Nonlinear Optics Lab. Hanyang Univ.

    양자 광학- Laser Optics (레이저 광학) -

    담당 교수 : 오 차 환

    교 재 : P.W. Miloni, J.H. Eberly, LASERS, John Wiley & Sons, 1991

    부교재 : W. Demtroder, Laser Spectroscopy, Springer-Verlag, 1998

    F. L. Pedrotti, S.J., L.S. Pedrotti, Introduction to Optics, Prentice-Hall, 1993

    2008 봄학기

  • Nonlinear Optics Lab. Hanyang Univ.

    Chapter 1. Introduction to Laser Operation

    1.1 Introduction

    LASER : Light Amplification by the Stimulated Emission of Radiation

    1916, A. Einstein : predicted stimulated emission

    1954, C. H. Townes et al. : developed a MASER

    1958, A. Schawlow, C.H. Townes : adapted the principle of MASER to light

    1960, T.H. Maiman : Ruby laser @ 694.3 nm

    1961, A. Javan : He-Ne laser @ 1.15 mm, 632.8 nm

  • Nonlinear Optics Lab. Hanyang Univ.

    Einstein’s quantum theory of radiation

    [light-matter interaction] * N1, N2 : No. of atoms at E1, E2* r : photon density

    * A21=1/t21 : spontaneous emission rate

    * B12, B21 : stimulated absorption/emission coefficients

    [radiative processes]

    (stimulated)absorption

    stimulatedemission

    spontaneousemission

    B12N1r B21N2rA21N2

    E2

    E1

  • Nonlinear Optics Lab. Hanyang Univ.

    Spontaneous & Stimulated emissions

    Spontaneous emission Stimulated emission

    Phase and propagation direction of created photon is random.

    Created photon has the same phase, frequency, polarization, and propagation direction as the input photon.

  • Nonlinear Optics Lab. Hanyang Univ.

    Einstein’s A, B coefficients

    Rate equation :

    0)()( 1212122122 nrnr BNBNAN

    dt

    dN(thermal equilibrium)

    kThkTEE eeN

    N //)(

    1

    2 12 n (Boltzman distribution of atoms)

    1

    18)(

    /3

    3

    21

    /

    12

    21

    kThkTh ec

    h

    BeB

    Ann

    nnr (Planck’s blackbody radiation law)

    3

    3

    21

    212112

    8,

    c

    h

    B

    ABB

    n

    12 NNif (population inversion)

    Light amplification ! (Lasing)

  • Nonlinear Optics Lab. Hanyang Univ.

    Four key elements of a LASER

    - Gain medium (Active medium)

    - Pumping source

    - Cavity (Resonator)

    - Output couplerpumping laser

    relaxation

    relaxation

    Laser light

    pumping source

    gain medium

    cavity (resonator)

    output coupler

    total reflector

  • Nonlinear Optics Lab. Hanyang Univ.

    1) Pumping source

    - Optical : Nd-YAG, Ruby, Dye, Ti:sapphire, …

    - Electrical : He-Ne, Ar+, CO2, N2, LD, …

    - Chemical : HF, I2, …

    2) Active medium

    - Gas : He-Ne, Ar+, CO2, N2, …

    - Liquid : Dye

    - Solid : Nd-YAG, Ruby, Ti:sapphire, LD, …

    3) Cavity or Resonator

    - Resonator with total reflector : Maximizing the light amplification

    - Output coupler : Extracting a laser light

    - Resonance condition : ml/2=L (m:integer)

    Four key elements of a LASER

  • Nonlinear Optics Lab. Hanyang Univ.

    1.2 Lasers and Laser Light (Characteristics of laser light)

    Monochromaticity (단색성)- Linewidth(FWHM) : 7.5 kHz (He-Ne laser)

  • Nonlinear Optics Lab. Hanyang Univ.

    1.5 Einstein theory of light-matter interaction (Laser action)

    - Number of photons, q

    bqanqdt

    dq

    stimulated emission

    loss

    - In steady state : 0 nq

    tna

    bn : threshold number of atoms

    : Minimum(threshold) pumping condition

    - Number of atoms in level 2, n

    Pfnanqdt

    dn

    spontaneousemission

    pumping

    tt nfa

    fbP

    a

    f

    b

    Pq 0

  • Nonlinear Optics Lab. Hanyang Univ.

    Spatial distribution of laser beam (Gaussian beam)

    tt

    HE

    EH m ,

    Maxwell’s curl equations

    : Scalar wave equation02

    22

    t

    EE m

    Put, tiex,y,zEtzyxE )(),,,( 0 (monochromatic wave)

    => Helmholtz equation : 02

    0

    2

    0

    2

    t

    EE m

    =>

    Assume, ikzezyxE ),,(0

    => 022

    2

    2

    2

    zik

    yx

    Put,2/122

    2

    )(,]})(2

    )([exp{ yxrzq

    krzpi

    => q

    i

    dz

    dp

    qdz

    d

    q ,0)

    1(

    12

  • Nonlinear Optics Lab. Hanyang Univ.

    0)1

    (1

    2

    qdz

    d

    q=> 0qzq

    is must be a complex ! => q 0qAssume, is pure imaginary.

    => put, 0izzq ( : real) 0z

    At z = z0,

    )}0(exp{)2

    exp()0(0

    2

    ipz

    krz

    Beam radius at z=0, 2/10

    0 )2

    (k

    zw : Beam Waist

    l

    2

    0wizq at arbitrary z,q

    =>22

    0

    2

    0

    2

    0

    20

    111

    wi

    Rzz

    zi

    zz

    z

    izzq

    l

    : Complex beam radius

  • Nonlinear Optics Lab. Hanyang Univ.

    q

    i

    dz

    dp => )/(tan])/(1ln[)( 0

    12/12

    0 zzizzzip

    => )]/(tanexp[])/(1[

    1)](exp[ 0

    1

    2/12

    0

    zzizz

    zip

  • Nonlinear Optics Lab. Hanyang Univ.

    Wave field

    )(2exp)/(tan[exp

    )(exp

    )(

    ),,( 2

    0

    1

    2

    2

    00

    zR

    krizzkzi

    zw

    r

    zw

    w

    E

    zyxE

    A

    where,

    2

    0

    2

    0

    2

    2

    0

    2

    0

    2 11)(z

    zw

    nw

    zwzw

    l: Beam radius

    2

    0

    22

    0 11)(z

    zz

    z

    nwzzR

    l

    : Radius of curvature of the wave front

    l

    2

    00

    nwz : Confocal parameter(2z0) or Rayleigh range

  • Nonlinear Optics Lab. Hanyang Univ.

    Gaussian beam

    0z0wI

    Gaussian profile

    02w

    0/2/ nwlq

    spread angle :

    0z

    Near field

    (~ plane wave)

    Far field

    (~ spherical wave)

    z

  • Nonlinear Optics Lab. Hanyang Univ.

    Propagation of Gaussian beam - ABCD law

    Matrix method (Ray optics)

    yi

    yoai

    aooptical

    elements

    i

    i

    o

    o y

    DC

    BAy

    aa

    DC

    BA: ray-transfer matrix

  • Nonlinear Optics Lab. Hanyang Univ.

    1) Free space

    q

    r1r2

    z1 z2

    r2 = r1 + qd

    q : constant

    (paraxial ray approximation)

    d

    1

    1

    2

    2

    10

    1

    qq

    rdr

    q1

    n1/s + n2/s’ = (n2-n1)/R

    r : constant

    q2 q1 n1/n2 – (1- n1/n2) (r1/R)

    1

    1

    2

    1

    2

    12

    2

    2

    01

    qq

    r

    n

    n

    Rn

    nnr

    2) Refracting surface

    q2

    s s’

    r

    n1 n2

    R

    Ray-transfer matrices

  • Nonlinear Optics Lab. Hanyang Univ.

  • Nonlinear Optics Lab. Hanyang Univ.

  • Nonlinear Optics Lab. Hanyang Univ.

    ABCD law for Gaussian beam

    i

    i

    o

    o y

    DC

    BAy

    aa iio

    iio

    DCy

    BAyy

    aa

    a

    ii

    ii

    o

    oo

    DCy

    BAyyR

    a

    a

    a

    )()( opticsGaussianqopticsrayRo

    DCy

    BAy

    ii

    ii

    a

    a

    /

    /

    DCq

    BAqq

    1

    12

    2q1q

    optical system

    DC

    BA

    ABCD law for Gaussian beam :

    0izzq

    l

    2

    00

    nwz

  • Nonlinear Optics Lab. Hanyang Univ.

    example) Focusing a Gaussian beam

    q101w 02w

    1z 2z

    ?

    ?

    fz

    fzzzzfz

    z

    f

    z

    DC

    BA

    /10

    //1

    10

    1

    1/1

    01

    10

    1

    1

    21212

    12

    )/1(/

    )/()/1(

    11

    2121122

    fzfq

    fzzzzqfzq

  • Nonlinear Optics Lab. Hanyang Univ.

    2

    01

    2

    2

    1

    2

    01

    2

    02

    11

    11

    l

    w

    ff

    z

    ww

    )()/()(

    )(22

    01

    2

    1

    1

    2

    2 fwfz

    fzffz

    l

    0201 ww - If a strong positive lens is used ; => 101

    02 q

    lf

    w

    fw

    2

    1

    2

    01 )(/ fzw l- If => fz 2

    => dfff

    w

    fw N

    N /,2

    )2(

    2

    01

    02

    l

    l: f-number

    ; The smaller the f# fo the lens, the smaller the beam waist at the focused spot.

    Note) To satisfy this condition, the beam is expanded before being focused.

  • Nonlinear Optics Lab. Hanyang Univ.

    Chapter 2. Classical Dispersion Theory

    2.1 Introduction

    Maxwell’s equations :t

    DH,

    t

    B-E ,0B,0D

    HμB 0 (for nonmagnetic media)

    PED 0

    Wave equations :

    2

    2

    2

    0

    2

    2

    2

    2

    t

    P

    1

    t

    E

    c

    1-E

    (2.1.13)

  • Nonlinear Optics Lab. Hanyang Univ.

    2.2 The Electron Oscillator Model

    )r(F),r(Er2

    2

    enenee

    e tedt

    dm

    Equation of motion for the electron :

    Electric-dipole approximation :

    )x(F),R(Ex2

    2

    entedt

    dm

    where, xR

    : relative coordinate of the e-n pair : center-of-mass coordinate of the e-n pair

    m : reduced mass

    xpP NeN x),R(Ex2

    2

    sktedt

    dm

    Electron oscillator model (Lorentz model)

  • Nonlinear Optics Lab. Hanyang Univ.

    2.3 Refractive Index and Polarizability

    x),R(Ex2

    2

    sktedt

    dm ),R(Ex

    2

    02

    2

    tm

    e

    dt

    d

    Consider a monochromatic plane wave, )cos(Eε̂),(E 0 kzttz

    )cos(/E

    ε̂x22

    0

    0 kztme

    Dipole moment : Eexp a

    where, polarizability : 22

    0

    2 /)(

    a

    me

    Polarization :

    )cos(E/

    ˆpP 0220

    2

    kztmNe

    N

  • Nonlinear Optics Lab. Hanyang Univ.

    From (2.1.13),

    )cos(Eˆ)(

    )cos(Eˆ 00

    2

    2

    02

    22 kzt

    N

    ckzt

    c-k

    a

    )()(1 22

    2

    0

    2

    22

    an

    c

    N

    ck

    : dispersion relation in a medium

    For a medium with the z electrons in an atom :

    2/1

    0

    )(1)(

    a

    Nn : refractive index of medium

    ,)cos(/E

    ε̂x22

    0i kzt

    me

    i

    z

    i

    ie1

    xp

    2/1

    122

    2

    0

    2/1

    0

    /1

    )(1)(

    z

    i i

    meNNn

    a (2.3.22a)

  • Nonlinear Optics Lab. Hanyang Univ.

    Electric susceptibility (macroscopic parameter), :

    EP 0 0/)( a N

    2/1)](1[)( n

    z

    i im

    Ne

    122

    0

    2 1)(

  • Nonlinear Optics Lab. Hanyang Univ.

    2.4 The Cauchy Formula

    z

    i i

    i

    mc

    Nen

    122

    22

    2

    0

    2

    22

    41)(

    ll

    ll

    l

    From (2.3.22),

    If 2

    il2l