applied theory of elasticity - kocwcontents.kocw.net/kocw/document/2015/hankyong/... ·...

32
탄성체역학 Applied Theory of Elasticity 토목안전환경공학과 옥승용 Week03: 인장, 압축 전단 (2)

Upload: others

Post on 18-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

탄성체역학

Applied Theory of Elasticity

토목안전환경공학과

옥승용

Week03: 인장, 압축 및 전단 (2)

Page 2: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

2

Class Schedule

Week Topics Remarks

01 Introduction to class Ch. 1

02 Tensile, Compressive and Shear Forces (1) Ch. 1

03 Tensile, Compressive and Shear Forces (2) Ch. 1

04 Tensile, Compressive and Shear Forces (3) Ch. 1

05 Axially Loaded Members (1) Ch. 2

06 Axially Loaded Members (2) Ch. 2

07 Shear Force and Bending Moment (1) Ch. 4

08 Mid-Term Exam

09 Shear Force and Bending Moment (2) Ch. 4

10 Stresses in Beams (1) Ch. 5

11 Stresses in Beams (2) Ch. 5

12 Analysis of Stress and Strain (1) Ch. 7

13 Analysis of Stress and Strain (2) Ch. 7

14 Analysis of Stress and Strain (3) Ch. 7

15 Final-Term Exam

Page 3: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

3

Chapter Preview

학습목표

(수직)응력이란? 단위면적당 힘 = 면적당 분포하중 = P/A

(수직)변형률이란? 단위길이당 변위 = 길이당 변형량 = d/L

Hooke’s Law? 선형 탄성 재료의 성질 s = Ee

Poisson Ratio? 직교하는 축간 변형율의 비 n = -e1/e2

• 수직응력과 변형률

• 재료의 기계적 거동

• 탄성, 소성 및 크리프

• 선형탄성, Hooke의 법칙 및 Poisson 비

• 전단응력과 전단변형률

• 허용응력과 허용하중

• 축하중과 직접전단의 설계

Page 4: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

4

탄성, 소성 및 크리프

• 크리프 (Creep) 장시간에 걸쳐 하중을 작용시킬 때,

추가하중이 없어도 변형률이 시간에 따라 증가하는 현상

FIG. 1-20 Creep in a bar under constant load

Page 5: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

5

Example 4 : 탄성, 소성 및 크리프

• Steel bar in tension

A bar of length 2.0 m is made of a structural steel having the stress-

strain diagram shown in the figure. The yield stress of the steel is

250 MPa and the slope of the initial linear part of the stress-strain

curve (modulus of elasticity) is 200 GPa. The bar is loaded axially

until it elongates 6.5 mm, and then the load is removed.

How does the final length of the bar compare with its original length?

Page 6: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

6

Example 4 : 탄성, 소성 및 크리프

• Steel bar in tension

L = 2.0 m (structural steel)

sY = 250 MPa

E = 200 GPa

d = 6.5 mm

s

e

AE

탄성 소성

BF

O

Loadin

g

C

잔류변형률(Residual strain)

영구변형률(Permanent strain)

Un

loa

din

g

D

Elastic recovery

How does the final length of the bar

compare with its original length?

Page 7: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

7

Example 4 : 탄성, 소성 및 크리프

• Steel bar in tension

L = 2.0 m (structural steel)

sY = 250 MPa

E = 200 GPa

d = 6.5 mm

s

e

AE

탄성 소성

BF

O

Loadin

g

C

잔류변형률(Residual strain)

영구변형률(Permanent strain)

Un

loa

din

g

D

Elastic recovery

How does the final length of the bar

compare with its original length?

Unlo

ad

ing

C

영구변형률

s

e

A

탄성 소성

B

OD

Elastic recovery

Loa

din

g

sY

eBeReE

Page 8: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

8

Example 4 : 탄성, 소성 및 크리프

• Steel bar in tension

L = 2.0 m = 2000mm (structural steel)

sY = 250 MPa

E = 200 GPa

d = 6.5 mm

Unlo

ad

ing

C

영구변형률

s

e

A

탄성 소성

B

OD

Elastic recovery

Loa

din

g

sY

eBeReE

How does the final length of the bar

compare with its original length?

Stress & strain at point B sB = sY = 250 MPa

eB = d/L = 6.5/2000 = 0.00325

Page 9: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

9

Example 4 : 탄성, 소성 및 크리프

• Steel bar in tension

L = 2.0 m = 2000mm (structural steel)

sY = 250 MPa

E = 200 GPa

d = 6.5 mm

Unlo

ad

ing

C

영구변형률

s

e

A

탄성 소성

B

OD

Elastic recovery

Loa

din

g

sY

eBeReE

Stress & strain at point B

sB = sY = 250 MPa

eB = d/L = 6.5/2000 = 0.00325

Elastic recovery eE

00125.0GPa200

MPa250

Slope B

E

se

How does the final length of the bar

compare with its original length?

Page 10: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

10

Example 4 : 탄성, 소성 및 크리프

• Steel bar in tension

L = 2.0 m = 2000mm (structural steel)

sY = 250 MPa

E = 200 GPa

d = 6.5 mm

Unlo

ad

ing

C

영구변형률

s

e

A

탄성 소성

B

OD

Elastic recovery

Loa

din

g

sY

eBeReE

Stress & strain at point B

sB = sY = 250 MPa

eB = d/L = 6.5/2000 = 0.00325

Elastic recovery eE = 0.00125

Residual strain eR

eR = eB–eE = 0.00325–0.00125 = 0.002

How does the final length of the bar

compare with its original length?

Page 11: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

11

Example 4 : 탄성, 소성 및 크리프

• Steel bar in tension

L = 2.0 m = 2000mm (structural steel)

sY = 250 MPa

E = 200 GPa

d = 6.5 mm

Unlo

ad

ing

C

영구변형률

s

e

A

탄성 소성

B

OD

Elastic recovery

Loa

din

g

sY

eBeReE

Stress & strain at point B

sB = sY = 250 MPa

eB = d/L = 6.5/2000 = 0.00325

Elastic recovery eE = 0.00125

Residual strain eR = 0.002

Permanent set = eR L = (0.002)(2000mm)

= 4.0mm

LL

L de

How does the final length of the bar

compare with its original length?

Page 12: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

12

Example 4 : 탄성, 소성 및 크리프

• Steel bar in tension

L = 2.0 m = 2000mm (structural steel)

sY = 250 MPa

E = 200 GPa

d = 6.5 mm

Unlo

ad

ing

C

영구변형률

s

e

A

탄성 소성

B

OD

Elastic recovery

Loa

din

g

sY

eBeReE

Permanent set = eR L = (0.002)(2000mm)

= 4.0mm

Final length of bar is 4.0mm longer than its

original length.

How does the final length of the bar

compare with its original length?

Page 13: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

13

선형탄성, Hooke 법칙 및 Poisson비

• 선형탄성 (Linear elasticity)

– 재료가 탄성적으로 거동하고

– 응력과 변형률이 선형관계를 갖는 경우

s

e선형 구간

비례 한도

완전소성, 항복

항복 응력

A

B C

극한 응력

D

변형경화 네킹

(파단)

E

s

e

Loadin

g

Unloadin

g

선형탄성거동 (E 일정)

Page 14: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

14

선형탄성, Hooke 법칙 및 Poisson비

• Hooke의 법칙 (Hooke’s law)

– 단순인장이나 압축을 받는 봉에 대한

응력과 변형률 사이의 선형적인 관계

es E

s : 축응력

e : 축변형률

E : 재료의 탄성계수(modulus of elasticity, Young’s modulus)

단위: psi, ksi 또는 Pa

Page 15: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

15

선형탄성, Hooke 법칙 및 Poisson비

• 포아송비 (Poisson’s ratio)

Page 16: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

16

선형탄성, Hooke 법칙 및 Poisson비

• 포아송비 (Poisson’s ratio)

봉이 인장을 받을 때 가로수축(lateral contraction) 발생

Page 17: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

17

선형탄성, Hooke 법칙 및 Poisson비

• 포아송비 (Poisson’s ratio)

Page 18: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

18

선형탄성, Hooke 법칙 및 Poisson비

• 포아송비 (Poisson’s ratio)

– 재료가 선형탄성적이면,

봉의 임의 점에서 가로변형률(lateral strain, e’)은

같은 점에서의 축변형률(e)에 비례한다.

– 제한:

선형탄성적이며,

균질(homogeneous)하고

등방성(isotropic)인 재료에만 해당

축방향변형률

가로변형률

e

en

strain axial

strain lateral

Page 19: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

19

Example 5 : 선형탄성, Hooke 법칙 및 Poisson비

• Steel pipe in compression (선형탄성)

길이 L=4.0ft, 바깥지름 d2=6.0in., 안지름

d1=4.5in.인 강철파이프가 축하중 P=140k에 의해 압축을 받고 있다.

재료의 탄성계수는 E=30,000ksi 이고, Poisson 비는 n =0.30이다.

파이프에 대해

(a) 줄어든 길이 d,

(b) 가로변형률 e’,

(c) 바깥지름의 증가량 d2와 안지름의 증가량 d1,

(d) 벽두께의 증가량 t

FIG. 1-23 in Example 1-3.

Steel pipe in compression

Page 20: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

20

Example 5 : 선형탄성, Hooke 법칙 및 Poisson비

• Steel pipe in compression

L=4.0ft, d2=6.0in., d1=4.5in., P=140k(압축)

E=30,000ksi, n =0.30

파이프에 대해 (a) 줄어든 길이 d ?

LLL

Led

de

Hooke의 법칙: E

Es

ees

응력의 정의: A

Ps

221

22 .in37.12)(

4 ddA

)(ksi32.11in.37.12

k1402

압축

A

Ps

6103.377ksi000,30

ksi32.11

E

se FIG. 1-23 in Example 1-3.

Steel pipe in compression

Page 21: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

21

Example 5 : 선형탄성, Hooke 법칙 및 Poisson비

• Steel pipe in compression

L=4.0ft, d2=6.0in., d1=4.5in., P=140k(압축)

E=30,000ksi, n =0.30

파이프에 대해 (a) 줄어든 길이 d ?

LLL

Led

de

6103.377ksi000,30

ksi32.11

E

se

in.018.0

)in./ft12)(ft0.4)(103.377( 6

Led

FIG. 1-23 in Example 1-3.

Steel pipe in compression

Page 22: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

22

Example 5 : 선형탄성, Hooke 법칙 및 Poisson비

• Steel pipe in compression

L=4.0ft, d2=6.0in., d1=4.5in., P=140k(압축)

E=30,000ksi, n =0.30

파이프에 대해 (a) 줄어든 길이 d ?

2 2

140 4 .

30,000 / . 12.37 .

0.001509 . 12 . / . 0.018

k ftPL

EA k in in

ft in ft in.

d

FIG. 1-23 in Example 1-3.

Steel pipe in compression

E

P P PLE E

A A L EA

L

s e

ds e d

de

22

122 .in37.12)(

4 ddA

Page 23: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

23

Example 5 : 선형탄성, Hooke 법칙 및 Poisson비

• Steel pipe in compression

L=4.0ft, d2=6.0in., d1=4.5in., P=140k(압축)

E=30,000ksi, n =0.30

파이프에 대해 (b) 가로변형률 e’ ?

축방향변형률

가로변형률

e

en

strain axial

strain lateral

포아송비의 정의

6

6

102.113

)103.337)(30.0(

ene

6103.377 e

FIG. 1-23 in Example 1-3.

Steel pipe in compression

Page 24: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

24

Example 5 : 선형탄성, Hooke 법칙 및 Poisson비

• Steel pipe in compression

L=4.0ft, d2=6.0in., d1=4.5in., P=140k(압축)

E=30,000ksi, n =0.30

파이프에 대해 (c) d2 와 d1 ?

바깥지름의 증가량 d2

안지름의 증가량 d1

LLL

Lee

; 축방향 신장량

ddd

dee

; 가로방향 “신장량”

in.000679.0)in.0.6)(102.113( 622 dd e

in.000509.0)in.5.4)(102.113( 611 dd e

FIG. 1-23 in Example 1-3.

Steel pipe in compression

Page 25: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

25

Example 5 : 선형탄성, Hooke 법칙 및 Poisson비

• Steel pipe in compression

L=4.0ft, d2=6.0in., d1=4.5in., P=140k(압축)

E=30,000ksi, n =0.30

파이프에 대해 (d) 벽두께의 증가량 t ?

ddd

dee

; 가로방향 “신장량”

in.1085.0)5.40.6(2

1)102.113(

)(2

1

46

12

ddtt ee

또는

in.000085.0

)(2

112

ddtFIG. 1-23 in Example 1-3.

Steel pipe in compression

Page 26: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

26

Example 6 : 선형탄성

• Nylon bar inside steel tube

A nylon bar having diameter d1 =3.50 in. is placed inside a steel tube

having inner diameter d2 = 3.51 in. The nylon bar is then compressed by an

axial force P.

At what value of the force P will the space between the nylon bar and the

steel tube be closed? (For nylon, assume E =400 ksi and n = 0.4.)

Page 27: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

27

Example 6 : 선형탄성

• Nylon bar inside steel tube

Compression (axial force P )

d1 =3.50 in.; d2 = 3.51 in.

d1 =0.01 in.

Nylon: E =400 ksi ; n = 0.4

Lateral strain e’= d1/d1 (increase in diameter)

e’= 0.01 / 3.50 = 0.002857

Axial strain e = -e’/n

e = -0.002857/0.4 = -0.007143 (shortening)

Axial stress s = E e

s = (400 ksi)(-0.007143) = -2.857 ksi (compressive stress)

Force P

(compression)

P = s A

P = (2.857 ksi) ¼ (3.50 in.)2 = 27.5 k

Page 28: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

28

Example 7 : 선형탄성

• Square bar in tension

A steel bar of length 2.5 m with a square cross section 100 mm on each

side is subjected to an axial tensile force of 1300 kN. Assume that E =200

GPa and n = 0.3.

Determine the increase in volume of the bar.

Page 29: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

29

Example 7 : 선형탄성

• Square bar in tension

Length: L = 2.5 m = 2500 mm

Cross section: b = 100 mm

Force: P = 1300 kN (axial tensile force)

E =200 GPa ; n = 0.3.

Determine the increase in volume of the bar.

Axial stress

Axial strain

Increase in length

Decrease in side

dimension

MPa130)mm100(

kN130022

b

P

A

Ps

610650GPa200

MPa130 E

se

mm625.1)mm2500()10650( 6

LL ed

mm0195.0)mm100()10195(

10195106504.0

6

66

bb e

ene

Page 30: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

30

Example 7 : 선형탄성

• Square bar in tension

Length: L = 2.5 m = 2500 mm

Cross section: b = 100 mm

Force: P = 1300 kN (axial tensile force)

E =200 GPa ; n = 0.3.

Determine the increase in volume of the bar.

Final dimensions

Final volume

Increase in volume

mm9805.99

mm625.2501

bbb

LL

final

final d

32 mm490,006,25 finalfinalfinal bLV

32 mm000,000,25 bLVinitial

3mm6490 initialfinal VVV

Initial volume: Increase in volume:

Page 31: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

31

Summary

학습목표

(수직)응력이란? 단위면적당 힘 = 면적당 분포하중 = P/A

(수직)변형률이란? 단위길이당 변위 = 길이당 변형량 = d/L

Hooke’s Law? 선형 탄성 재료의 성질 s = Ee

Poisson Ratio? 직교하는 축간 변형율의 비 n = -e1/e2

Page 32: Applied Theory of Elasticity - KOCWcontents.kocw.net/KOCW/document/2015/hankyong/... · 2016-09-09 · 01 Introduction to class Ch. 1 02 Tensile, Compressive and Shear Forces (1)

32

Preview on Next Class

• 수직응력과 변형률

• 재료의 기계적 거동

• 탄성, 소성 및 크리프

• 선형탄성, Hooke의 법칙 및 Poisson 비

• 전단응력과 전단변형률

• 허용응력과 허용하중

• 축하중과 직접전단의 설계

학습목표

전단응력이란?

전단변형률이란?

허용응력이란?

인장, 압축, 전단 부재의 설계는 어떻게?