assembly line balancing simulation

11
Línea de Ensamble para una Mezcla de Productos. A) Descripción de la Tarea. El caso que se anexa describe y ejemplifica un procedimiento para balancear una línea de ensamble que produce una mezcla de tres productos de una misma familia. Para este ejercicio tomaremos el resultado del balanceo que viene desarrollado en el ejemplo, en el cual resulta un balanceo con 5 estaciones. Consideraciones. 1) Cada una de las estaciones estará a cargo de un operario, el operario será asignado como un recurso para las operaciones que le corresponden a su estación. 2) Correrás 30 réplicas de 40 horas cada una. 3) El sistema será completamente “push”. Para modelarlo generarás solamente 1 “arrival” de 1 sola entidad, pero al terminar la primera operación duplicarás la entidad que se procesó con el bloque “separate” y la opción “duplicate original”. La entidad original sigue su ruta de proceso, la entidad duplicada se introducirá de regreso a la primera operación, simulando así una nueva llegada de insumo de manera constante. 4) Antes de ingresar a la primera operación será necesario asignar de manera aleatoria el tipo de producto de que se trata, de acuerdo a la proporción de productos en la demanda. 5) Como se muestra en el texto, los tiempos reales de proceso dependen del tipo de producto que se esté ensamblando. Debes familiarizarte con algunos bloques, por ejemplo el bloque “assign” para poder modelar esta situación. Elige libremente la lógica de modelación que te funcione. Lo importante es que los tiempos de las operaciones se modifiquen de manera dinámica de acuerdo al tipo de producto de que se trate. 6) Los tiempos de operación son constantes en todas las operaciones, es decir, una vez que se sabe el tipo de producto, el tiempo de ejecución de cada una de las operaciones se considerará constante. La única variabilidad que se está introduciendo es la causada por la mezcla aleatoria de productos. 7) Analiza la capacidad productiva del sistema y otras variables que consideres relevantes. Compara con el desempeño esperado del sistema.

Upload: epuente

Post on 25-Nov-2015

22 views

Category:

Documents


0 download

DESCRIPTION

Practical exercise for simulation in Arena.

TRANSCRIPT

  • Lnea de Ensamble para una Mezcla de Productos.

    A) Descripcin de la Tarea.

    El caso que se anexa describe y ejemplifica un procedimiento para balancear una

    lnea de ensamble que produce una mezcla de tres productos de una misma

    familia.

    Para este ejercicio tomaremos el resultado del balanceo que viene desarrollado

    en el ejemplo, en el cual resulta un balanceo con 5 estaciones.

    Consideraciones.

    1) Cada una de las estaciones estar a cargo de un operario, el operario ser

    asignado como un recurso para las operaciones que le corresponden a su

    estacin.

    2) Corrers 30 rplicas de 40 horas cada una.

    3) El sistema ser completamente push. Para modelarlo generars

    solamente 1 arrival de 1 sola entidad, pero al terminar la primera

    operacin duplicars la entidad que se proces con el bloque separate y

    la opcin duplicate original. La entidad original sigue su ruta de

    proceso, la entidad duplicada se introducir de regreso a la primera

    operacin, simulando as una nueva llegada de insumo de manera

    constante.

    4) Antes de ingresar a la primera operacin ser necesario asignar de manera

    aleatoria el tipo de producto de que se trata, de acuerdo a la proporcin

    de productos en la demanda.

    5) Como se muestra en el texto, los tiempos reales de proceso dependen del

    tipo de producto que se est ensamblando. Debes familiarizarte con

    algunos bloques, por ejemplo el bloque assign para poder modelar esta

    situacin. Elige libremente la lgica de modelacin que te funcione.

    Lo importante es que los tiempos de las operaciones se modifiquen de

    manera dinmica de acuerdo al tipo de producto de que se trate.

    6) Los tiempos de operacin son constantes en todas las operaciones, es

    decir, una vez que se sabe el tipo de producto, el tiempo de ejecucin de

    cada una de las operaciones se considerar constante. La nica

    variabilidad que se est introduciendo es la causada por la mezcla

    aleatoria de productos.

    7) Analiza la capacidad productiva del sistema y otras variables que

    consideres relevantes. Compara con el desempeo esperado del sistema.

  • B) Efecto de la variabilidad en los tiempos de operacin.

    En este ejercicio utilizars el modelo del ejercicio A pero hacindolo ms

    realista al introducir variabilidad moderada en los tiempos de las operaciones.

    Todos los tiempos aleatorios se modelarn como variables aleatorias uniformes,

    continuas, con media igual a los tiempos que vienen originalmente en el caso,

    pero variando aleatoriamente en los rangos que se especifican en la siguiente

    tabla.

    Operacin Rango (seg.)

    A 3

    B 0

    C 2

    D 2

    E 2

    F 4

    G 2

    H 2

    I 1

    J 4

    Por ejemplo, para el producto Basic el tiempo para la operacin A ser

    uniforme en el rango de 9 a 15 segundos, mientras que para el producto Luxury

    dicho tiempo ser uniformemente distribuido en el rango de 12 a 18 segundos.

    Cuando una operacin no es requerida para un producto, el tiempo ser 0 fijo,

    sin considerar los rangos.

    Realiza 30 corridas de 40 horas de operacin cada una. Analiza el rendimiento

    de la lnea comparndolo con el rendimiento de la lnea en el caso A.

    Sugiere al menos 2 estrategias para mejorar el desempeo de sta lnea.

  • Assembly Line Balancing:

    Mixed- and multi-model lines

    Background

    You will have previously studied methods of balancing assembly lines where only a single model is

    produced. The strength of such a line is that the work elements can be assigned to stations in

    such a way as to maximize efficiency, which peaks at a particular rate of output.

    The weaknesses of a single-model line are that it becomes inefficient when demand falls or rises,

    and that it is only efficient when producing the model for which it was designed. If market

    demand changes so that other products are required, other products need to be produced.This

    can be done by installing separate, dedicated lines for other products, but this is only economic

    when the additional lines themselves are running efficiently in fulfillment of greater demand. Its

    not a solution for flat overall demand with varying product mix.

    Two solutions to this problem of fluctuating demand have been used in the past:multi-

    model lines and mixed-model lines.Each has its own strengths and weaknesses.

    Multi-model lines

    This approach treats the assembly line as a reconfigurable resource, which produces different

    models in batches one after the other.Before producing a batch, the lines equipment (people,

    tools, material supply) is set up to suit the model or variant required.This process takes time.The

    batch of products is then produced according to schedule.

    The benefit of a multi-model line is that once set up for a particular model it is as efficient as a

    conventional line.The drawback is that setting-up takes time, which means lost production and

    inefficiency.

    The problems for the planner of a multi-model line are:

    1. How to balance the line for each product separately?This is straightforward enough, since its a

    function of technological feasibility followed by application of a standard balancing method (see

    Helgeson & Birnie[1] or Moodie & Young[2]).

    2. How to sequence the batches to minimize changeover losses? It is often the case that changeovers

    from one to another will take less time than the reverse change.

    This second problem is not discussed further here: it is a standard sequencing problem which the

    reader will find dealt with in most texts on Operations Management.

    Mixed-model lines

  • The mixed-model approach is a more realistic one in the modern world, given the rise of

    software-configurable flexible manufacturing equipment.The basic premise is that multiple

    products are handled by each workstation without stops to change over between them.This

    permits a random launch sequence so that products can be made in the order and mix that the

    market demands.

    Although this sounds like a salesmans dream, one difficulty is that the work content at each

    workstation may differ from model to model.Another, which follows from this, is that the idle

    time at each station varies from time to time depending on the sequence of models along the

    line.

    The problems for the planner of a multi-model lines are again twofold:

    1. How to balance the line when different products have different work content?

    2. How to determine the optimum launch sequence which minimizes losses?

    The second problem is an Operations Management issue which, again, the keen student can

    research from OM texts.What well deal with here is the DESIGN (Balancing) of a mixed-model

    line.

    Balancing a Mixed-Model line

    Although the problem may appear daunting, the solution method is quite straightforward.Theres

    just one overriding caveat: it must be technologically feasible to produce the different models

    on the same line.Thus, its reasonable to try to mix production of, say, 10 different models of

    video recorder, or 15 different TVs on the same line, but its not realistic to make tractors and

    aircraft on the same line! Really, we should talk about different VARIANTS of the same product,

    rather than completely different PRODUCTS.

    There are several ways of going about this, but heres and adaptation of Helgeson and Birnies

    procedure that is conceptually simple and easy to apply.The outline procedure for solving the

    problem is this:

    1. Get together the process and technological data for the range of product, i.e. operation times

    and precedences (what must follow what if the product is to go together)

    2. Get demand data on what volume of each product is required and at what rate. This may be

    available as absolute variant volumes, or may be as aggregate volume plus product mix

    data.

    3. Use this information to produce a table of composite process times.The table should contain, for

    each operation, a process time weighted by the proportion of products using that operation.Thus,

    an operation taking 10 minutes that occurs on only 35% of the total demand becomes 3 minutes.

    4. Calculate the cycle time and minimum number of stations required.

  • 5. Construct a precedence diagram for the composite product, showing which operations depend

    on others, taking account of all the variants to be produced.

    6.Determine the positional weight (PW) of each operation, as you would for a normal

    balancing exercise.Use the weighted times for determining PWs.

    7.Assign operations to stations, having regard to PWs, precedence and remaining time at

    the workstation.Depending on the objectives and constraints, you may have to repeat

    this final step several times, seeking to minimise the number of workstations, maximise

    throughput or to maximise efficiency.

    As you can see, it all comes down to creating a fictitious composite product which doesnt

    really exist but which has the characteristics of all of the range, then applying the standard LB

    technique.

    Lets do an example. Thanks go to Vonderembse & White[3] for their inspiration.

  • Example

    Background information

    A flexible assembly line is to be set up to package a range of hospital medical kits.All the kits use

    the same basic elements, but there is variation.The standard product contains one set of

    components, the basic kit has a smaller set, while the luxury version contains the same items

    as the standard kit but in greater quantity plus a couple of additional items.

    The operational and product mix data for the three variants is given in Table 1.

    Time (seconds)

    Op Description

    Standard

    (50%

    sales)

    Basic

    (30%

    sales)

    Luxury

    (20%

    sales)

    Preceding

    Task(s)

    A Unfold & place box 15 12 15 -

    B Insert water bottle 9 9 9 A

    C Insert drinking

    glasses 7 4 10 A

    D Insert bedpan 7 0 7 A

    (not Basic)

    E Insert divider(s) 7 7 9 B, C, D

    F

    Fold dressing

    gown

    & insert in box

    18 18 24 E

    G Insert tissues 6 0 9 E

    (not Basic)

    H Insert plasters 7 7 10 E

    I Place lid 10 10 10 F, G, H

    J Shrink-wrap box 21 21 28 I

    Total times 107 88 131

    Table 1 Operational and product mix data for the three products

    An aggregate output of 6,000 units is required from an effective working week of 40 hours.

  • Solution

    First, lets determine the process times for the composite product, multiplying the actual

    process time for each element by the proportion of demand for that element.

    Table 2 on the next page shows the result.Each of the first three columns shows the basic

    operation time, and in bold the result when this is multiplied by the demand proportion.The

    final column shows the sum of these weighted times the composite operation time

    which is the effective time for this operation.

    In this model, operation times are in seconds and working sessions are in hours and weeks.You

    need to be sure you are consistent in your use of units, using multipliers as appropriate.

    Basic Time (seconds)

    Op

    Standard

    (50%

    sales)

    Basic

    (30%

    sales)

    Luxury

    (20%

    sales)

    Composite

    time

    (Sum of

    weighted

    op times)

    A 15 7.5 12 3.6 15 3.0 14.1

    B 9 4.5 9 2.7 9 1.8 9.0

    C 7 3.5 4 1.2 10 2.0 6.7

    D 7 3.5 0 7 1.4 4.9

    E 7 3.5 7 2.1 9 1.8 7.4

    F 18 9.0 18 5.4 24 4.8 19.2

    G 6 3.0 0 9 1.8 4.8

    H 7 3.5 7 2.1 10 2.0 7.6

    I 10 5.0 10 3.0 10 2.0 10.0

    J 21 10.5 21 6.3 28 5.6 22.4

    10753.5 8826.4 13126.2 106.1

  • Table 2 - Composite operation times

    Next, lets determine the minimum number of workstations needed.

    Target cycle time = (Available hours/wk x 3600) / (Wkly output)= 40 x 3600 / 6000

    = 24 seconds

    Ideal number of workstations= Composite work content / Cycle time

    = 106.1 / 24

    = 4.42

    We cant have 0.42 of a station, so the minimum number of stations is 5 (five).

    Next, lets draw a precedence diagram.

    Figure 1 - Precedence diagram for assembly of the Medical Kit

    Note that in this case there are no operations unique to a single variant.If there

    were, they would be handled just like any other op.The diagram is consistent

    with the final column of Table 1.

    Now, lets determine the positional weights of each operation.The PW of an operation is the sum

    of the process times for ALL the operations which depend on it, plus its own process

    time.In Figure 1, all operations depend on Operation A.In the case of a mixed-model line, the

    PWs are calculated from the composite times established earlier.The PW of Op A here is

    thus 106.1.Table 3 shows the PWs for all the other ops, ranked in descending order.Note how

    the PW changes when parallel operations (B, C, D and F, G, H), are involved.

  • PW rank Operation Positional Weight Comment

    1 A 106.1 First op all others depend

    on it

    2 B 80.4 B, C, D are independent

    E & later ops depend on each 3 D 76.3

    4 C 78.1

    5 E 71.4 Sum of all following op times

    6 F 51.6 F, G, H are independent

    I & Jdepend on each 7 H 40.0

    8 G 37.2

    9 I 32.4 F, G and H must all precede I

    10 J 22.4 Last op, soPW = Op time

    Table 3 - Ranked Positional Weights of Operations

    Now we can assign operations to stations in the normal manner.The heuristic procedure is:

    1.At Station I, consider all eligible operations (i.e. those for which there are no precedent

    operations).If there is more than one, select that with the highest PW.

    2.Continue attempting to assign operations to Station I until no more eligible operations exist or

    will fit into the remaining time.Record idle time, if any.

    3.Move to Station II.Repeat the attempts to assign eligible operations, in descending order of PW,

    until there is no eligible operation that will fit.Note that eligibility/precedence always comes

    before PW; PW is used to break ties.

    4.Repeat until all operations have been assigned, even if it means creating more than the

    theoretical minimum number of stations.

    5.Finally, calculate the Balance Delay Ratio (= 100-efficiency) from the available working time

    and the total idle time.

  • Table 4 shows the procedure step-by-step, while Table 5 shows the results.

    Eligible

    operation(s)

    Selected

    operation(s)

    Composite

    Operation

    Time (sec)

    Assigned

    to Station

    Cumulative

    Assigned

    Time (sec)

    Idle Time

    (sec)

    A

    B, C, D

    A

    B

    14.1

    9.0

    I

    I

    14.1

    23.1

    0.9

    C, D

    C

    E

    D

    C

    E

    4.9

    6.7

    7.4

    II

    II

    II

    4.9

    11.6

    19.0

    5.0

    F, G, H

    G, H

    F (largest

    PW)

    G

    (H wont fit)

    19.2

    4.8

    III

    III

    19.2

    24.0

    0

    H

    I

    H

    I

    7.6

    10.0

    IV

    IV

    7.6

    17.6

    6.4

    J J 22.4 V 22.4 1.6

    Table 4 Step-by-step application of the heuristic to determine work

    assignments

  • Station Assigned

    Operations

    Idle Time

    I A, B 0.9

    II D, C, E 5.0

    III F, G 0

    IV H, I 6.4

    V J 1.6

    Total

    Idle Time

    13.9

    Table 5 Summary of Station Assignments

    To calculate the Balance Delay Ratio, recall that the cycle time was 24 seconds.Thus:

    Total available working time on line= Cycle time x Number of stations

    = 24 x 5

    = 120 seconds

    Balance Delay Ratio=Total Idle Time x 100

    Available time on line

    =1390

    120

    =11.6%

    Conclusion

    We have determined a balance for the desired product mix at the target level of output. The

    remaining problem is one of sales - only if the product mix is close to 50:30:20 will efficiency be

    maintained. Should sales of luxury kits rise, the line will not cope, while if sales of basic kits

    rise, idle time will increase.

    [1] W B Helgeson & D P Birnie, Assembly Line Balancing using the Ranked Positional Weight Technique, Journal of

    Industrial Engineering, Vol 12, No 6, Nov-Dec 1961

    [2] Moodie and Young, cited in W Bolton, Production Planning and Control, Longman, 1994.

    [3] M A Vonderembse & G P White, Operations Management Concepts, Methods and Strategies, West 1996