Þ æ ?e ĵ 3 - yamakin-gold.co.jp€¦ · ! 7 ! ! 8 ! - h9¯[ŬÄË * di 3 a didi 4 +!dch ÷ ....

13
高分子技術レポート 高分子技術レポート 歯科材料開発部 歯科材料モノマーの重合ーラジカル重合の基礎(2) 歯科材料モノマーの重合ーラジカル重合の基礎(2) Vol.2 Vol.2 匠から科学へ、そして医学への融合

Upload: vanhanh

Post on 05-Jun-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

  • 22

    Vol.2Vol.2

  • 1.

    2.

    3.

    4.

    5.

    6.

    7.

    2

    2

    3

    7

    11

    13

    18

  • 2 3

    1.

    2.

    1880 1928 1912 1930

    1839 19301835 19311933 1939

    1934 1938 PET1941 1953

    1930

    1930

    H. Staudinger1953

    19201

    Staudinger

    X

    Staudinger a

    1930 1935 Carothers

    2000 K. Ziegler G. Natta 1963P. J. Flory

    1974B. Merrifield19842002

    3.

    St

    20

    ESR PLP

    (Rp) (1) Rp kp[M]Ri/kt0.5 1kp kt [M] Ri kp/kt0.5 kp kt Polymer Handbook2 60 kt0.5 kp 1 2

    1kt0.5kp-() (CH2C(CH2X)CO2R) (CH2C(CH2CO2R)CO2R)

    (CH2C(CH3)CO2R)- (CH2CHX)

    ((OCCHCHC(O)NR) (trans-RO2CCHCHCO2R) (CH3CHCHCO2R)

    a

    CH2 CH2 CH2 CH2 CH2 CH2CH CH CH CH CH CH

    H

    H

    HH

    H

    H

    H

    HH

    H

    H

    H

    HH

    H

    HH

    H H

    HH H

    HHH

    H

    HH

    H H

    HH H

    HHH

    H

    HH

    H H

    HH H

    HHH

    H-2.00

    1.0

    2.0

    3.0

    4.0

    5.0

    -1.0 1.0 2.0 3.0 4.00

    log[kpL/mols]

    log

    [kt0

    .5 (L0

    .5/m

    ol0.5s

    0.5)]

  • 4 5

    kp 2800 L/mols VAc1 0.028 L/mols2RCH2CCH33 105 kt 2x107 L/mols- 3 44 L/mols2RCH2C-

    (CH3)3

    2N- 456kp kt StMMA VAc - CH2C-

    CH2XCO2R kp kt -3MMA7- kp 831 L/mols kt 2.1x107 L/mols kp kp 8.6 L/mols kt 2.1x107 L/mols- - -

    -8-

    CH2CHCO2CH32 kp kt 1kp/kt0.5 kp 4.0 L/mols kt 4x104 L/mols

    -

    CH2CCO2C2H53 -9-

    CH2CHCO2CH32 8

    Tc

    Tc 1 2-52 [M]c 1 mol/L Tc H/S Tc H/S + Rln [M]c 2H S H -80 -100 kJ/molS -100 -120 J/molKMMA H -56 kJ/molS -117 J/molK 110 [M]c 0.0298 mol/L 2

    -10Tc 0- 3 kp

    CC

    1- 11 3,5-

    -1- 12 kp kt 6

    1 CH2CHCH2X

    b

    CH2CHCHX c

    2(1) - (12)

    C

    CHHC

    CN

    OO

    R

    N- 4

    CH2 C

    CH2CO2R

    CO2R

    5 6

    CH CH

    CO2R

    CH3

    CH2 C

    CH3

    CO2CH3

    7

    - 8

    CH2 C

    CH2CH

    CO2CH3

    CO2CH3

    CO2CH3

    - 9

    CH2 C

    CH2C

    CO2CH3

    CO2C2H5CO2C2H5CO2C2H5

    CH2 CH

    OCOCH3

    1

    RO2C

    CH CH

    CO2R

    2 - 3

    CH2 C

    CO2R

    CH2CH3

    - 10

    CH2 C

    CH3

    1- 11

    CH2 C

    CH3

    CO2

    3,5- -1- 12

    CH2 C

    CH3

    CO2

    CH3

    CH3

    1Tc

    [M] (mol/L) Tc 0.82

    8.35

    1.99

    9.1 x 10-4

    1.8

    155.5

    220

    82

    90

    120

    150

    310

    53

    61

    2

    2

    3

    4

    5

    2

    2

    2

    2

    MMA7

    MMA7

    - 3

    5

    - 10

    - 10

    - [2,2- ]-

    8

    b

    c

    P + CH2 CH2CHCH2X P CHCHXH +

    CH2 CH2CHCHX + CHCH2X CH2 CH2 CHCHCH

    X CH2X

  • 6 7

    CH2CHCH3 -

    CH2CCO2CH3CH3 MMA7

    CH2CCO2CH3CH2

    1

    6

    - --- 13

    7-10

    -14 8 3

    9-11

    -

    -

    1963-1964 12,13

    -

    MMA

    14-

    - 20

    - CH2CCH2OHCO2R

    1980 15

    1990

    16

    - -

    - 17

    d

    e18,19 2

    4.

    4 2,2- MAIB

    St

    20

    3

    C

    CO

    CH2

    CH2 CH2

    O

    CH2 CH2CH2 C

    CC

    - -- 13 - 14

    d

    e

    CO2R

    O

    CO2RCO2R CO2R CO2R CO2R

    OO

    +

    NC CNRO2C CO2R

    CO2R CO2R CO2R CO2R

    NC CNNC CN

    +

    5

    10

    15

    0

    min

    0 100 200 300 400 500

    %

    Rp x

    10

    4 (m

    ol/L

    s)

    20

    40

    60

    80

    100

    0

    :

    : FT-NIR

    4St70FT-NIR

    Rp [MAIB]0.01 mol/L

  • 8 9

    MMA 60 20%

    FT-NIR

    1H-NMR HCC

    ESR

    ESR

    ESR FT-NIR Rp 21,22

    5 St 20,23

    MAIB Ri RtRp

    Rp 100%

    6

    kp kt 7 8 90%

    5St70

    7St70DVBkp

    [St

    ] x1

    07

    mol/L

    0

    30

    20

    10

    0

    200 400 600

    min

    [MAIB]0.2 mol/L

    0.1 mol/L

    0.05 mol/L

    0.02 mol/L

    A B

    3

    2

    1

    0

    -10 20 40 60 80 100

    %

    log

    [kp

    L/m

    ols

    ]

    [DVB]00.20, 0mol/L,

    6

    (A)

    (B)

  • 10 11

    Ri

    0% 9

    St 20

    9

    7 8 5 Rp 4Mn Mw/Mn 9 St RpMn Mw/Mn

    5.

    M1 M2M1 M2

    102

    2

    M1 M2

    34

    d[M1]/dt k11[M1][M1] + k21[M2][M1] 3 d[M2]/dt k12[M1][M2] + k22[M2][M2] 4 [M1] [M2] M1 M2 k11 M1 M1 M1 k21 M2 M2 M1 k12 k22 f g hi

    M1M1 M2M1 M1M2 M2M2

    [M1] [M2] 24

    M1 M25 M2M1

    M1M2

    k12[M1][M2] k21[M2][M1] 5345 [M1] [M2] 6

    d[M1]/d[M2] ([M1]0/[M2]0){(k11/k12)[M1]0 + [M2]0}/{[M1]0 + (k22/k21) [M2]0} ([M1]0/[M2]0){r1[M1]0 + [M2]0}/{[M1]0 + r2[M2]0} 6

    8St70DVBkt 10M1M2

    9St (a) 03.3% (010 min); (b) 3.36.8% (1020 min); (c) 9.8~19.5% (3060 min); (d) 34.4~48.4% (120180 min); (e) 60.3~89.9% (240300 min)

    %

    log

    [kt

    L/m

    ols

    ]

    [DVB]00.20, 0.10, 0 mol/L

    0 20 40 60 80 100

    6

    4

    2

    8

    log Mn

    a

    c d

    e

    b

    4 5 63 7

    M2 M2

    M2M2

    M2M2 M2

    M2 M2 M2

    M1M1

    M1

    M1 M1

    M1M1

    M1M1

    M1

    M1M2

    +

    M2M1

    M1 M1M1+k11

    f

    M2 M1M1+k21

    h

    M1 M2M2+k12

    g

    M2 M2M2+k22

    i

  • 12 13

    6.

    1 2

    3

    13

    k11/k12 k22/k21 r1 r2 2

    r1 x r21 r1 x r21 6[M1]0/[M2]0d[M1]/d[M2]M1 M2 (3) (4)r1 r2 1 r1 r2 0 [M1]/[M2] r1 r2 (6)

    MMAM1 StM2

    6 11 rMMA 0.46rSt 0.52MMA St r1 r2 1

    St VAc

    11VAc St

    St St VAc rVAc 0rSt 42 St VAc St

    12VAc-St

    St-MMA

    100

    80

    60

    40

    20

    00 20 40 60 80 100

    [St

    ]

    mol%

    [St]mol%

    St-VAc

    St-MMA

    r1r21

    r1 r20

    11St-VAc () St-MMA () r1r21r1r20

    12St-VAc () St-MMA ()

    13

    0 20 40 60 80 100

    20

    16

    12

    8

    4

    00

    10

    20

    30

    40

    50

    60

    VAc-

    St

    x10

    5 m

    ol/L

    s

    MM

    A-S

    t

    x10

    5 m

    ol/L

    s

    [VAc] [MMA]mol%

    Z

    ZZ

    Z

    Z

    X

    CH2

    CH2

    C

    X

    Z

    C

  • 14 15

    14 CH2CH-C6H4-CHCH2, DVB

    St [DVB]0 0.10 0.20 mol/L 20 10%

    FT-NIR St

    [DVB] 0 DVB

    25

    15 DVB

    DVB Rt DVB

    DVB

    7 DVB St kp kp 80% kp DVB 90%DVB

    kt DVB 8 90% kt 1/100,000 7 8 kp kt kp/kt0.5 kp 150 L/mols[DVB] 0.20 mol/L 90% kp 1 L/mols kt 3x106 5x107 L/mols 90% kt 2900 L/mols kp/kt0.5 0.02 0.08 L0.5/mol0.5s0.5 90% 0.02 L0.5/mol0.5s0.5

    90% 1/10 kp/kt0.5 1/10kp/kt0.5 Mn [DVB] 0 Mn Mw/Mn 2 16Mn DVB Mn Mw/Mn 2 DVB Mw/Mn 16Mn

    14DVBSt70[MAIB] 0.10 mol/L

    15DVBSt70

    [MAIB] 0.10 mol/L

    16DVBSt70MnMw/Mn[DVB]0 0.20 (), 0.10 (), 0.05 (), 0 () mol/L, [MAIB] 0.10 mol/L

    [DVB]00.20 mol/L

    [DVB]00.10 mol/L

    [DVB]00 mol/L

    0 100 200 300 400

    100

    80

    60

    40

    20

    0

    min

    %

    min

    [St

    ] x1

    07

    mol/L

    20

    0

    60

    40

    0 400 800 1200

    [DVB]0.2 mol/L

    [DVB]0 mol/L

    Mn x

    10

    -4M

    w/M

    n

    [DVB]

    [DVB]

    6

    5

    4

    3

    2

    10 10 20 30 40 50

    %

    4

    3

    2

    1

  • 16 17

    7Flory-Stockmayer

    261

    2

    c1/(Pw -17c Pw

    1 Pw 11 c 0.1 Pw 101 c 0.01 10% 1%

    26,27

    17

    7

    18

    MMAEGDMA

    EGDMA

    1H-NMR

    1/2 28

    2 MMA EGDMA 291%

    EGDMA 5.7%EGDMA

    7

    EGDMA EGDMA

    EGDMA

    17

    18

    2MMA-EGDMA(7)

    [EGDMA]mol%

    Pw x10-3%

    2.94

    3.80

    4.85

    56.6

    13.2

    1.05

    72.5

    35.8

    5.7

    0.03

    0.1

    1

  • 18

    MMA

    EGDMA

    1/85 1/16 0%

    6.5 30EGDMA MMA

    Flory-Stockmayer 7

    Flory-Stockmayer

    7.

    ) , , , , 1966.

    )Brandrup J, Immergut EH, Grulke EA eds., Polymer Handbook, 4th Ed., Wiley, New York, 1999.

    )Penelle J, Collot J, Rufflard G: Kinetic and thermodynamic analysis of methyl ethacrylate radical polymerization. J. Polym. Sci., Part A: Polym. Chem., 31: 2407-2412, 1993.

    )Kobatake S, Yamada B: Severely hindered propagation and termination allowing radical polymerization of -substituted acrylate bearing a biscarbomethoxyethyl group. Macromolecules, 28: 4047-4054, 1995.

    )Sato T, Inui S, Tanaka H, Ota T, Kamachi M, Tanaka K: Kinetic and ESR studies on the radical polymerization of di-n-butyl itaconate in benzene. J. Polym. Sci.; Part A: Polym. Chem., 25: 637-652, 1987.

    )Matsumoto A, Tanaka S, Otsu T: Synthesis and characterization of poly1-adamantyl methacrylate: effects of the adamantyl group on radical polymerization kinetics and thermal properties of the polymer. Macromolecules, 24: 4017-4024, 1991.

    )Ueda M, Takahashi M, Imai Y, Pittman, Jr CU: Radical-initiated homo- and copolymerization of -methylene--butyrolactone. J. Polym. Sci., Part A: Polym. Chem., 20: 2819-2828, 1982.

    )Ueda M, Mano M, Mori H, Ito H: Polymerization of -methyleneindane: A cyclic analog of -methylstyrene. J. Polym. Sci., Part A: Polym. Chem., 29: 1779 -1787, 1991.

    )Ueda M, Takahashi M, Suzuki T, Imai Y, Pittman, Jr CU: Polymerization of -methylene-N-methylpyrrolidone. J. Polym. Sci., Polym. Chem. Ed., 21: 1139-1149, 1982.

    10)Ueda M, Takahashi M, Imai Y, Pittman Jr. CU: Synthesis and homopolymerization kinetics of -methylene--valerolactone, an exo-methylene cyclic monomer with a nonplanar ring system spanning the radical center. Macromolecules, 16: 1300-1305, 1983.

    11)Ito H, Ueda M: Syntheses of acetophenone enol ester polymers and their conversion to poly phenylacetylenes. Macromolecules, 23: 2885-2894, 1990.

    12)Baldwin MG, Reed SF: Polymerization studies on allylic compounds. I. J. Polym. Sci. Part A, 1: 1919-1926, 1963.

    13)Reed SF, Baldwin MG: Polymerization studies on allylic compounds. Part II. J. Polym. Sci. Part A, 2: 1355-1363, 1964.

    14)Chikanishi K, Tsuruta T: Reactivity of -alkylacrylic esters. I. Homopolymerization behaviours of methyl -alkylacrylates. Makromol Chem, 81: 198-210, 1965.

    15)Villieras J, Rambaud M: Wittig-Horner reaction in heterogeneous media; 1. An easy synthesis of ethyl -hydroxymethylacrylate and ethyl -halomethylacrylates using formaldehyde in water. Synthesis, 924-925, 1982.

    16)Yamada B, Kobatake S: Radical polymerization, copolymerization, and chain transfer of -substituted acrylic esters. Prog. Polym. Sci., 19: 1089-1152, 1994.

    17)Kodaira T: Structural control during the cyclopolymerization of unconjugated dienes. Prog. Polym. Sci., 25: 627-676, 2000.

    18)Tsuda T, Mathias LJ: New dicyano-containing cyclopolymers having high stereoregurarity derived from dimethacrylmalononitrile. Macromolecules, 26: 6359-6363, 1993.

    19)Tsuda T, Mathias LJ: Cyclopolymerization of ether dimers of - (hydroxymethyl)acrylic acid and its alkyl esters-substituent effect on cyclopolymerization efficiency and microstructures. Polymer, 35: 3317-3328, 1994.

  • 20)Yamazoe H, Zetterlund PB, Yamada B, Hill DJT, Pomery PJ: Free-radical bulk polymerization of styrene: ESR and near-infrared spectroscopic study of the entire conversion range. Macromol. Chem. Phys., 202: 824-829, 2001.

    21)Anseth KS, Anderson KJ, Bowman CN: Radical concentrations, environments, and reactivities during cosslinking polymerization. Macromol. Chem. Phys., 197: 833-848, 1996.

    22)Berchtold KA, Randolph TW, Bowman CN: Propagation and termination kinetics of cross-linking photopolymerizations studied using electron paramagnetic resonance spectroscopy in conjunction with near IR spectroscopy. Macromolecules, 38: 6954-6964, 2005.

    23)Zetterlund PB, Yamazoe H, Yamada B, Hill DJT, Pomery PJ: High-conversion free radical bulk polymerization of styrene: Termination kinetics studied by electron spin resonance, Fourier transform near-infrared spectroscopy, and gel permeation chromatography. Macromolecules, 22: 7686-7691, 2001.

    24)Zetterlund PB, S. Tagashira, Izumi K, Nagano Y, Azukizawa M, H. Yamazoe, Kumagai M, Yamada B: Penultimate unit effects in free radical copolymerization studied using the individual propagating radical concentrations from electron spin resonance spectroscopy. Macromolecules, 35: 8209-8215 2002.

    25)Zetterlund PB, Yamazoe H, Yamada B: Propagation and termination kinetics in high conversion free radical copolymerization of styrene/divinylbenzene investigated by electron spin resonance and Fourier-transform near-infrared spectroscopy. Polymer, 43: 7027-703, 2002.

    26) : , 1, , , pp. 94-169, 1992

    27)Matsumoto A: Free-radical crosslinking polymerization and copolymerization of multivinyl compounds. Adv. Polym. Sci., 123: 41-80, 1995.

    28)Landin DT, Macosko CW: Cyclization and reduce reactivity of pendant vinyls during the copolymerization of methyl methacrylate and ehtylenglycol dimethacrylate. Macromolecules, 21: 848-851, 1988.

    29)Matsumoto A, Okuno S, Aota H: Actual evaluation of Flory-Stockmayer velation theory in free-radical monovinyl-divinyl copolymerization. Macromol. Symp., 93: 1-10, 1995.

    30)Matsumoto A, Matuo H, Ando H, Oiwa M: Solvent effect in the copolymerization of methyl methacrylate with oligoglycol dimethacrylate. Eur. Polym. J., 25: 237-239, 1989.

    .Yamada B, Zetterlund PB, "General chemistry of radical polymerization". In: Handbook of radical polymerization, Matyjaszewski K, Davis TP, eds, Wiley-Interscience, New York, pp. 117-186, 2003.

    .Zetterlund PB, Yamazoe H, Yamada B, Hill DJT, Pomery PJ, Macromolecules, 34: 7686-7691, 2001.

    .Yamada B, Kageoka M, Otsu T, Macromolecules, 25: 4828-4831, 1992.

    .Yamada B, Kageoka M, Otsu T, Macromolecules, 24: 5234-5236, 1991.

    .Yamada B, Yoshikawa E, Shiraishi K, Miura H, Otsu T, Polymer, 32: 1892-1896, 1991.

    .Yamada B, Azukizawa M, Yamazoe H, Hill DJT, Pomery PJ, Polymer, 41: 5611-5618, 2000.

    404

    4

    134

    144

    163

    167176 ()

    193

    221

    ESR

    Vol.1 200910

    Vol.2 220102

    2010225