bacterial physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634...

67
Bacterial Physiology 王王王 王王王王王王王 王王王王王王王王王 分分 : 5634 Email: [email protected]

Upload: marlene-green

Post on 26-Dec-2015

273 views

Category:

Documents


10 download

TRANSCRIPT

Page 1: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Bacterial Physiology

王淑鶯微生物免疫學所國立成功大學醫學院

分機 : 5634

Email: [email protected]

Page 2: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Microbial metabolism

Microbial growth

Reference:

Chapter 3 in Medical Microbiology

(Murray, P. R. et al; 6th edition)

Page 3: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

What is Metabolism?

The Greek metabole, meaning change

It includes all the biochemical reactions that occur in the cell.

- Catabolism

- Anabolism

Page 4: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Why do we must know the metabolism of bacteria ?

Because we want to control their metabolism

and know how to inhibit or stop bacteria growth

Page 5: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Why Study Metabolism? Classification of bacteria

Oxygen Tolerance Biochemical reactions

Fermentation Products Food Products

Yogurt, Sour Cream, Bread, Alcohol

Commercial Products Citric Acid

Environmental Cleanup e.g. common soil bacteria could clean up nuclear contamination

Page 6: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Common Soil Bacteria Could Clean Up Nuclear ContaminationCOLUMBUS, Ohio, March 17, 2009 (ENS) - An international

team of scientists has found a common soil bacterium that might one day be used to clean up radioactive toxics left from nuclear weapons production decades ago.

The bacteria's cleaning power comes from their ability to "inhale" toxic metals and "exhale" them in a non-toxic form, explains team member Brian Lower, assistant professor in the School of Environment and Natural Resources at Ohio State University.

Using a unique combination of microscopes, researchers at Ohio State University and scientists from Austria, Sweden, Switzerland and the United States were able to see how the bacterium Shewanella oneidensis breaks down metal to chemically extract oxygen.

Page 7: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

The study, published online this week in the journal "Applied and Environmental Microbiology," provides the first evidence that the Shewanella bacterium uses proteins within the bacterial cell into its outer membrane to contact metal directly.

The proteins then bond with metal oxides, which the bacteria utilize the same way we use oxygen - to breathe.

"We use the oxygen we breathe to release energy from our food. But in nature, bacteria don't always have access to oxygen," said Lower. "Whether the bacteria are buried in the soil or underwater, they can rely on metals to get the energy they need. It's an ancient form of respiration."

Page 8: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Catabolism degrade, break bonds, convert large

molecules into smaller component

often produce energy

Anabolism synthesis of cell molecules and structures

usually requires the input of energy

Metabolites compounds given off by the complex

networks of metabolism

Page 9: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Overview of cell metabolism

Page 10: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Microbes need three things to grow

Energy source Nutrients (C) Suitable environmental conditions

Page 11: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Nutrient Requirements

Energy Source Phototroph

Uses light as an energy source Chemotroph

Uses energy from the oxidation of reduced chemical compounds

Page 12: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Nutrient Requirements Carbon source

All bacteria require carbon for growth Bacteria can been classified on the basis of their

carbon source Autotroph

Can use CO2 as a sole carbon source

Heterotroph use more complex organic compounds such as carbohydrates and

amino acids as source of carbon

Page 13: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Energy/Carbon classification Where microbes get their energy?

Sunlight vs. Chemical Photo- vs. Chemo- trophs

How do they obtain carbon? Carbon Dioxide (or inorganic cmpds.) vs. Organic

Compounds (sugars, amino acids) Auto- vs. Hetero- trophs

Examples Photoautotrophs vs. Photoheterotrophs Chemoautotrophs vs. Chemoheterotrophs

Page 14: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Nutrient Requirements Nitrogen source

Organic nitrogen Primarily from the catabolism of amino acids

Oxidized forms of inorganic nitrogen Nitrate (NO

32-) and nitrite (NO

2-)

Reduced inorganic nitrogen Ammonium (NH

4+)

Dissolved nitrogen gas (N2) (Nitrogen fixation)

Page 15: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Nutrient Requirements

Inorganic nutrients (ions) contain no carbon and hydrogen atoms : phosphates,

potassium, magnesium, nitrogen, sulfur, iron and numerous trace metals

Acquisition of Fe is facilitated by production of siderophores

Organic nutrients contain carbon and hydrogen atoms. Include

carbohydrates, lipids, amino acids, Nucleic acids etc.

Page 16: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Nutrient Requirements Carbohydrates

are used as the initial carbon source for many biosynthetic pathways and as electron donors (energy source) by many bacteria

Amino acids are important source of carbon and nitrogen.

The nitrogen is converted to ammonia.

Page 17: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Nutrient Requirements Phosphorus

is present as phosphates salts They function in energy metabolism and as

constituents of nucleic acids, phospholipids, teichoic acids, ATP, etc

Minerals K, Mg, Ca, Fe are required in relatively high levels Function as cofactors in enzyme reactions and as

cations they act as buffers within the cells Vitamins

function as coenzymes

Page 18: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

General Pathways of MetabolismGeneral Pathways of Metabolism-- Catabolism --

Breakdown of macromolecules to building blocks

protein polysaccharide lipid nucleic acids

amino acids

glucose, other sugars

glycerol,fatty acids

ribose,bases,

phosphate

no useable energy yield here - only building blocks obtained

Page 19: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Breakdown of monomers to common intermediates

amino acids

glucose, other sugars

glycerol,fatty acids

pyruvate

acetyl CoANH4

+

citric acid cycle ETS ATP 

CO2

Page 20: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

--Anabolism--

amino acids

glucose, other sugars

glycerol,fatty acids

pyruvate

acetyl CoA

NH4+

proteins

polysaccharide

s lipids

citric acid cycle

Page 21: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

1. utilization of critical Common Intermediates including components of TCA cycle to make building blocks

2. making building block requires energy = ATP

3. synthesis of macromolecules requires energy = ATP

Anabolism, cont’d

Page 22: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Carbohydrate Catabolism Microorganisms oxidize carbohydrates as

their primary source of energy Glucose - most common energy source Energy obtained from Glucose by:

Respiration Fermentation

Page 23: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Pyruvate: universal intermediate

Aerobic respiration

Fermentation

Glycolysis (EMP pathway)

Substrate-level phosphorylation

Catabolism

Page 24: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Substrate-level phosphorylation

High energy phosphate group of one of the intermediates is used under the direction of the enzyme (kinase) to generate ATP from ADP

Page 25: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Glycolysis

(Embden-Meyerhof-

Parnas pathway)

1. The most common pathway for bacteria in the catabolism of glucose.

2. Reactions occur under both aerobic and anaerobic conditions

3. One Glucose => 2 ATP (2X2-2=2) 2 NADH 2 Pyruvate

Page 26: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Metabolism of Glucose

1. Here we focus on discussing the metabolism of glucose. For

the metabolism of other organic compounds (eg. Proteins or

lipids), please refer to a textbook of Biochemistry.

2. Bacteria can produce energy from glucose by fermentation

(w/o O2), anaerobic reaction (w/o O2), or aerobic

respiration.

3. Three major metabolic pathways are used by bacteria to

catabolize glucose: Glycolysis (EMP pathway), TCA cycle, &

Pentose phosphate pathway

Page 27: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Fermentation: metabolic process in which the final electron acceptor is an organic compound.

Sources of metabolic energyRespiration: chemical reduction of an electron acceptor through a specific series of electron carriers in the membrane. The electron acceptor is commonly O2, but CO2, SO4

2-, and NO3- are employed by some microorganisms.

Photosynthesis: similar to respiration except that the reductant and oxidant are created by light energy. Respiration can provide photosynthetic organisms with energy in the absence of light.

Substrate-level phosphorylation

Page 28: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Anaerobic Respiration Electrons released by oxidation are passed

down an E.T.S., but oxygen is not the final electron acceptor

Nitrate (NO3-) ----> Nitrite (NO2-)

Sulfate (SO24-) ----> Hydrogen Sulfide (H2S)

Carbonate (CO24-) ----> Methane (CH4)

Page 29: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw
Page 30: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Anaerobic Respiration Examples of anaerobic respiration

glucose + 3NO3- + 3H2O 6HCO3

- + 3NH4+

glucose + 3SO42- + 3H+ 6HCO3

- + 3SH-

glucose + 12S + 12H2O 6HCO3- + 12HS- + 18H+

All of these terminal electron acceptors have smaller reduction potentials than O2, so it is less energetically efficient than aerobic respiration

Page 31: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Fermentation Anaerobic process that does not use the

E.T.S. Usually involves the incomplete oxidation of a carbohydrate which then becomes the final electron acceptor.

Glycolysis - plus an additional step

Page 32: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Fermentation may result in numerous end products

1. Type of organism

2. Original substrate

3. Enzymes that are present and active

Page 33: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

1. Lactic Acid Fermenation Only 2 ATP End Product - Lactic Acid Food Production

Yogurt - Milk Pickles - Cucumbers Sauerkraut - Cabbage

2 Genera: Streptococcus Lactobacillus

Page 34: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

2. Alcohol Fermentation Only 2 ATP End products:

alcohol CO2

Alcoholic Beverages Bread dough to rise Saccharomyces cerevisiae (Yeast)

Page 35: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

3. Mixed - Acid Fermentation Only 2 ATP End products- “FALSE”

formic acid acetic acid lactic acid succinic acid ethanol

Escherichia coli and other enterics

Page 36: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Propionic Acid Fermentation Only 2 ATP End Products:

Propionic acid CO2

Propionibacterium spp.

Page 37: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Saccharomycetes

E. coliClostridium

Propionebacterium Enterobacter

StreptococcusLactobacillus

Page 38: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Pyruvate: universal intermediate

Aerobic respiration

Fermentation

Glycolysis (EMP pathway)

Substrate-level phosphorylation

Catabolism

Page 39: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Function of TCA cycle

1. Via the TCA cycle, Pyruvate from glycolysis or other

catabolic pathways can be completely oxidized (w/ O2)

to H2O & CO2

2. Generation of ATP

3. Supplies key intermediates for amino acids, lipids,

purines, and pyrimidines

4. The final pathway for the complete oxidation of amino

acids, fatty acids, and carbohydrates.

Page 40: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Tricarboxylic Acid (TCA) cycle

1. Pyruvate => Acetyl-CoA1x NADH => 3ATP

2. TCA cycle: 3x NADH => 3x 3 ATP 1x FADH2 => 1x 2 ATP 1x GTP => 1x ATP

3. NADH & FADH2 go to the Electron transport chain

Page 41: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Electron transport chain

1. Electrons carried by NADH (FADH2) A series of donor-acceptor pairs Oxygen: terminal electron acceptor Aerobic respiration

2. Some bacteria use other compounds (CO2, NO3

-) as terminal acceptor Anaerobic respiration Produce less ATP

Page 42: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Aerobic Glucose Metabolism

x2

Page 43: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Functions:

1.Provides various sugars

as precursors of

biosynthesis, and

NADPH for use in

biosynthesis

2.The various sugars may

be shunted back to the

glycolytic pathway.

Pentose phosphate pathway (hexose monophosphate shunt)

nucleotide synthesis

Page 44: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Microbes need three things to grow

Energy source Nutrients (C) Suitable environmental conditions

Page 45: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Environmental factors Oxygen Requirement

Obligate aerobes The growth of bacteria is inhibited by absence of

oxygen Pseudomonas aeruginosa, Mycobacterium

tuberculosis

Obligate anaerobes Growth is inhibited by the presence of oxygen Clostridium spp and Bacteriodes spp.

Page 46: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Environmental factors Oxygen Requirement

Facultative anaerobes are able to grow in the presence or absence of

molecular oxygen Staphylococci, Streptococci, E. coli, etc

Microaerophilic bacteria grow best under increased carbon dioxide tension Neisseria gonorrhoeae, Haemophilus influenzae

Page 47: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Environmental factors

Oxygen Requirement Aerotolerant bacteria

can survive (but not grow) for a short period of time in the presence of atmospheric oxygen

Tolerance to oxygen is related to the ability of the bacterium to detoxify superoxide and hydrogen peroxide produced as bye products of aerobic respiration.

Page 48: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Superoxide dismutase which converts superoxide ( a toxic metabolite) into

hydrogen peroxide is present in aerobic and aerotolerant bacteria but not in obligate anaerobes.

2O2− + 2H+ H2O2 + O2

Catalase which converts hydrogen peroxide into water and

oxygen is also present in all aerobic bacteria but is lacking in aerotolerant organisms. Strict anaerobes lack both enzymes

2 H2O2 2H2O + O2

SOD

catalase

Enzymes that detoxify the toxic byproducts of aerobic metabolism

Page 49: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Environmental factors Temperature

There are three critical temperature ranges for growth: (a) Minimum temperature (b) Maximum temperature (c) Optimum temperature

Page 50: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Environmental factors Temperature

Psychrophiles: Has optimum temperature below 15°C but

capable of growth at 0°C Mesophiles:

grow at a range of 20° – 40°C. Include most bacterial pathogens with optimum temp. at 37°C

Thermophiles: microbes that has optimum temperature

above 45°C with a general range of 45-80°C Most thermophiles form spores e.g. Bacillus

steareothermophilus

Page 51: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Environmental factors pH

Optimum pH for most bacteria is near pH 7.0 (pH 6.5- pH 7.5)

Bacteria can be classified as alkalinophiles, neutrophiles or acidophiles according to their degree of tolerance to pH changes

Page 52: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Environmental factors Ionic strength and osmotic pressure

When a microbial cell is in a hypertonic solution cellular water moves out of the cell through the cell membrane to the hypertonic solution

This osmotic loss of water causes shrinkage of the cell (PLASMOLYSIS)

In a hypotonic solution such as in distilled water, water will enter the cell and the cell may be lysed by such treatment (PLASMOPTYSIS)

Halophiles require high salt concentrations for

growth. Some bacteria can tolerate 15% salt. E.g. S. aureus

Page 53: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Bacterial growth

Replication of chromosome

Cell wall extension Septum formation Membrane attachment

of DNA pulls into a new cell.

.

Page 54: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Cell division Generation or doubling time:

The average generation time for bacteria is 30-60 minutes under optimum conditions.

Most pathogens such as Staphylococcus aureus and Escherichia coli double in 20 – 30 minutes.

The longest generation time requires days. E.g. Mycobacterium leprae that causes leprosy doubles in 20 to 30 days.

Page 55: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

The growth curve

Page 56: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

The growth curve The lag phase

Cells adjust to new environment. There is no change in the number of cells but

metabolic activity is high leading to increase in cellular components

The log or exponential phase Bacteria multiply at the fastest rate possible under

the conditions provided. Are susceptible to cell wall active antibiotics Form metabolic end products

Page 57: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

The growth curve The stationary phase

there is an equilibrium between cell division and cell death caused by : decrease in nutrient increase in cell population and accumulation of metabolic

waste /end products

Death or Decline phase The number of death cells exceeds the number of

new cells formed due to lack of nutrients and accumulation of toxic waste

Page 58: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Types of Culture media Basic media Rich media

contain additional nutrients to support the growth of fastidious organisms. E.g. blood agar and chocolate agar

Enrichment media is used to encourage the growth of a particular organism in a mixed

culture Selective media

contains salts, dyes or other chemicals that inhibit the growth unwanted microorganisms.

Differential media contain chemicals that allow the distinction between different types

of organisms e.g. Lactose in MacConkey agar

Page 59: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

MacConkey agar with lactose(left) and non-lactose(right) fermenters

Page 60: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Cultivation methods For microbiologic examination

Use as many different media and conditions of incubation as is practicable. Solid media are preferred; avoid crowding of colonies.

For isolation of a particular organism Enrichment culture Differential medium Selective medium

Isolation of microorganisms in pure culture Pour plate method Streak method

For growing bacterial cells Provide nutrients and conditions reproducing the

organism's natural environment.

Page 61: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Excluding oxygen

Reducing agents

Anaerobic jar

Anaerobic glove chamber

Anaerobic cultivation methods

Page 62: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw
Page 63: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Measurement of Microbial Growth Viable cell counts

plating diluted samples (using a pour plate or spread plate) onto suitable growth media and monitoring colony formation

Serial Dilution 1. Carry out dilution series 2. plate known volumes on plates 3. count only plates with 30-300 colonies (best statistical

accuracy); 4. extrapolate to undiluted cell conc.

Page 64: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

0.1 ml

10-1 10-2 10-3 10-4 10-5 10-6 10-7

> 1000 220 18

Bacterial concentration:

220 x 106 x 10 = 2.2 x 109/ml

Page 65: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw
Page 66: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Measurement of Microbial Growth

Turbidimetric measurements can estimate cell numbers accurately by

measuring visible turbidity Use a spectrophotometer to accurately

measure absorbance, usually at wavelengths around 400-600 nm

Light scattered is proportional to number of cells.

Page 67: Bacterial Physiology 王淑鶯 微生物免疫學所 國立成功大學醫學院 分機 : 5634 Email: sswang23@mail.ncku.edu.tw

Summary Metabolic Requirements

Energy source Nutrients

Metabolism & the Conversion of Energy

- Glucose: Glycolysis (Embden-Meyerhof-Parnas pathway)

TCA cycles

Pentose phosphate pathway Bacterial Growth

Environment factors Growth curve Measurement of growth