bandpass signals equivalent lowpass signals i&q … personal page/ee521...bandpass signals are...

25
1 Bandpass Signals Equivalent Lowpass Signals I&Q Signals (No Text Coverage) Also called: Equiv. Baseband Signals

Upload: others

Post on 24-Aug-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

1

Bandpass SignalsEquivalent Lowpass Signals

I&Q Signals(No Text Coverage)

Also called:Equiv. Baseband Signals

Page 2: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

2

Definition: Bandpass SignalA Bandpass Signal is a signal x(t) whose Fourier transform X( f ) is nonzero only in some small band around some �central�frequency fo.

For example:X( f ) = 0 for | f - fo| > W where W< fo.

fo−W − fo+W −fo−W f

|X( f )|

fo fo+W − foB

The bandwidth B of the bandpass signal = the width of the positive-frequency interval on which the signal is nonzero.

(Note: this is consistent with the bandwidth definition for lowpass signals).

Page 3: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

3

Definition: Bandpass Signal (cont.)

|X( f )|

|X( f )|f

f

fo

fo

− fo

− fo

Note that the choice of fo is arbitrary:

Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar signals.

In the analysis and actual processing of BP signals it is convenient to work with a related, equivalent signal called the Equivalent Lowpass Signal. This is a natural generalization of the idea of phasor used in sophomore-level circuits.

Page 4: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

4

Recall: Phasor Idea Used in CircuitsIdea: Replace Acos(2π fo t+θ) by complex DC value Aejθ

First, the sinusoid x(t) = A cos(2π fo t+θ)

gets represented by a complex-valued signal called the analytic signal:

xa(t) = A exp{j(2π fo t+θ)}= A cos(2π fo t+θ) + j A sin(2π fo t+θ)

Then to get the phasor, we frequency-shift the analytic signal down by fo to get:

xl = exp{�j2π fot} xa(t)= Aejθ

fo− fo f

X( f )

fo f

Xa( f )

f

Xl( f )

Page 5: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

5

Recall: Phasor Idea Used in Circuits (cont.)phasor = equivalent lowpass signal representing the sinusoid

(that�s why we used the subscript l � for lowpass).

Note that this equivalent lowpass signal is complex valued, whereas the bandpass signal (the sinusoid) it represents is real valued.

Alternate View – Frequency Domain:1. Suppress the negative frequency part of the sinusoid:

2. Frequency-shift the positive frequency part down to DC:fo f

Xa( f )

f

Xl( f )

Page 6: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

6

Frequency-Domain View of Equiv. LP SignalNow� use this FD view to do the same thing for a general bandpass signal that consists of more than one frequency.

�.Then after that we interpret the results in the time domain.

Bandpass Signal�s Fourier Transform:

fo− fo f

X( f )

Now to get the FT of the so-called Analytic Signal we suppress the negative frequencies:

fo f

Xa( f ) Note: Since |Xa( f )| is NOT even-symmetric, the TD signal xa(t) is

complex-valued.(see Porat p. 12, #9)

Page 7: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

7

F-D View of Equiv. LP Signal (cont.)System View of Generating Analytic Signal: define a system frequency response H( f ) such that

<+=>−

=0000

)(fjffj

fH)(�)(

)()()()(

fXjfX

fXfjHfXfX a

+=

+=then

where )()()(� fXfHfX =

H( f )Σ

j

X( f )Xa( f )

Called Hilbert Transformer

Page 8: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

8

F-D View of Equiv. LP Signal (cont.)Then to get the FT of the Equivalent Lowpass Signal, frequency-shift the analytic signal down by fo to get:

Xl( f )

f

Note that because |Xl( f )| does not necessarily have even symmetry, the equivalent lowpass signal is complex valued, �.. whereas the bandpass signal it represents is real valued.

Now� how do we describe the ELP signal in the Time-Domain?

Page 9: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

9

T-D View of ELP SignalConsider the IFT of H( f )X( f ): )}()({)}(�{)(� 11 fXfHfXtx −− == FF

)(�)()( txjtxtxa += (!)

Let xl(t) be the time-domain signal that corresponds to Xl( f ). Because it is the frequency-shifted version of xa(t) �. using the frequency-shift property of FT gives:

)()( 2 txetx atfj

loπ−= (!)

(Note: this is the same as an equation above for the phasor case!)

This, can then be written as:

[ ])(�)()( 2 txjtxetx tfjl

o += − π

Page 10: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

10

I&Q Form of ELP SignalAn extremely useful viewpoint for the ELP signal is the I&Q form:

� since xl(t) is complex-valued (see comment above in frequency-domain discussion), we can write its real and imaginary parts, which we will denote as

)()()( tjxtxtx qil += (")

where subscripts i and q are for In-phase (I) and Quadrature (Q).

We�d now like to find relationships between the bandpass signal x(t) and the I-Q components of the lowpass equivalent signal.

Page 11: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

11

Relationship: I&Q Parts and BP Signal Solving (!) for the analytic signal gives

)()( 2 txetx ltfj

aoπ= (!)

(Makes sense� xa(t) is xl(t) shifted up.)

Using the I-Q form given in (") gives:

[ ][ ][ ][ ]

[ ])(�)(

)2cos()()2sin()(

)2sin()()2cos()(

)()()2sin()2cos(

)()()( 2

txjtx

tftxtftxj

tftxtftx

tjxtxtfjtf

tjxtxetx

oqoi

oqoi

qioo

qitfj

ao

+=

++

−=

++=

+=

ππ

ππ

ππ

π

By (!)

Page 12: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

12

Relationship: I&Q Parts and BP Signal (cont.) This shows how the I&Q components are related to the BP signal:

("))2sin()()2cos()()( tftxtftxtx oqoi ππ −=

Similarly � but less important � we have:

)2cos()()2sin()()(� tftxtftxtx oqoi ππ +=

Page 13: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

13

Envelope/Phase Form of ELP SignalThis is an alternate form (but equally important to IQ form) of the ELP signal. Note in (") that the I&Q form is a �rectangular form�for the complex ELP signal.

So� converting to a �polar form� gives:

("))()()( tjl etAtx θ=

0)()()( 22 ≥+= txtxtA qi

where�

=)(

)(arctan)(θ

tx

txt

i

q

Note Similarity to Phasor!!

But� Time-varyingEnvelope & Magnitude

Page 14: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

14

Relationship: Env/Phase and I&QOften we need to convert between the two forms (rect & polar).

If in (") we expand the complex exponential:

44344214434421)()(

)(

)](sin[)()](cos[)()()(

txtx

tjl

qi

ttAjttAetAtx

θθ

θ

+==

By (")

Thus�.

)](sin[)()()](cos[)()(

ttAtxttAtx

q

iθθ

==

Page 15: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

15

Envelope/Phase Form of BP SignalWe already saw Env/Phase form for the ELP signal�

Do we get something similar for the original BP signal ??

Using (!) and (") we can write

)(�)()](2sin[)()](2cos[)(

)(

])([)()](2[

)(2

txjtxttftjAttftA

etA

etAetx

oo

ttfj

tjtfja

o

o

+=

+++==

=+

θπθπ

θπ

θπ

By (!)

)](2cos[)()( ttftAtx o θπ += (♣)

Page 16: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

16

Envelope/Phase Form of BP Signal (cont.)

So what we have just shown is:

Any BP signal can be expressed as:

x(t) = A(t) cos[2π fo t + θ(t)]

where A(t) ≥ 0.Note: A(t) and θ(t) vary slowly compared to cos(2π fo t).

The LPE signal has the same envelope and phase as the BP signal � compare (♣) and (").

Page 17: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

17

Analog Generation of I&Q ComponentsAs stated earlier� processing for radar & communication is actually implemented using the ELP signal.

� Thus we need some way to get the ELP signal from a received BP signal�� The I&Q form is the most commonly used

So� given the BP signal

)](2cos[)()( ttftAtx o θπ +=

we need to be able to extract through processing the I&Q signals:

)](sin[)()()](cos[)()(

ttAtxttAtx

q

iθθ

==

Page 18: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

18

Analog Generation of I&Q Components (cont.)These give the clue as to how to extract the I-Q signals by using analog techniques. Using trigonometric identities:

[ ]4444 34444 214434421

oi ftxo

tx

ooottftAttA

tfttftAtftx

2at centeredbut ....)()(

)]()2(2cos[)()](cos[)()2cos())(2cos()(2)2cos()(2θπθ

πθππ++=

+=

fo f2fo02fo fo

Page 19: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

19

Analog Generation of I&Q Components (cont.)Similarly, we also get�.

[ ]4444 34444 214434421

oq ftxo

tx

ooottftAttA

tfttftAtftx

2at centeredbut ....)(�)(

)]()2(2sin[)()](sin[)()2sin())(2cos()(2)2sin()(2θπθ

πθππ++=

+=

Analog Circuitry to Generate I&Q

Osc.

90º

LPF

LPF

fo

xi(t)

x(t)

xq(t)

2cos(2πfot)

-2sin(2πfot)

Page 20: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

20

Uses of These Ideas� Bandpass Signal Model

� usually used to model RF signals in radar and communications� also often used to model acoustic signals in sonar� not generally used for audio/speech signals

� Lowpass Equivalent Signal� used as a conceptual tool to aid analysis/design� used as the actual representation in real processing

RF Front-End

Digital�Front-End�

DetectSignal

EstimateSignal

Parameters

ClassifyEmitter

Compress& Data Link

SamplingSub-System

→ DigitalAnalog ←

Receiver From Our Case Study

Page 21: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

21

Uses of These Ideas (cont.)� Analytic Signal

� generally used as a conceptual tool to prove results � usually applied directly to the continuous-time RF bandpass signal� There are occasions where we actually compute the analytic signal

of a real-valued digital signal, � but usually applying it some real-valued lowpass signal.

� See MATLAB Warning Below

� Hilbert Transform of a Signal� generally used as a conceptual tool to prove results� There are occasions where we actually compute the Hilbert

transform of a real-valued digital signal, � but usually applying it some real-valued lowpass signal.

� See MATLAB Warning Below

Page 22: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

22

MATLAB WarningMATLAB has a command that is called �hilbert�. The Help entry on MATLAB for this command is:

“HILBERT(X) is the Hilbert transform of the real part of vector X. The real part of the result is the original real data; the imaginary part is the actual Hilbert transform.”

Thus, executing hilbert(x) does NOT return the Hilbert transform of x;

� It gives the analytic signal � see (!).

Page 23: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

23

Summary of Relationships

tftxtxt

txtxtA

tftxtftxtx

tftxtftxtx

txtxtxtx

ttftAtxttftAtx

o

oqoi

oqoi

a

a

o

o

πθ

ππ

ππ

θπθπ

2)()(�

arctan)(

)(�)()(

*******************************

)2cos()()2sin()()(�)2sin()()2cos()()(

)}(Im{)(�)}(Re{)(

)](2sin[)()(�)](2cos[)()(

2

2

22

=

+=

+=

−=−−−−−

=

=−−−−−

+=

+=Transform Hilbert Its & Signal BP

tftxttxtA

etAtx

etxtx

txjtxtx

oa

a

ttfja

tfjla

a

o

o

πθ

θπ

π

2)]([)()()(

***********)()(

)()(

)(�)()(

)](2[

2

−∠=

=

=

=

+=

+

Signal Analytic

f

Xl( f )

B/2–B/2fo− fo f

Xa( f )

B

X( f )

fo− fo f

B

=∠=

+==

−=

+=−−−−

==−−−−

==

+==

= −

)(

)(arctan)()(

)()()()(

*****************

)2sin()()2cos()(�)()2sin()(�)2cos()()(

)](sin[)()()](cos[)()(

)}(Im{)()}(Re{)(

*****************

)()()()()(

)()(

2

2

22

)(

2

tx

txtxt

txtxtxtA

tftxtftxtxtftxtftxtx

ttAtxttAtx

txtxtxtx

tjxtxtxetAtx

etxtx

i

ql

qil

ooq

ooi

q

i

lq

li

qil

tjl

tfjal

o

θ

ππππ

θθ

θ

π

Model Lowpass Equiv.

Page 24: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

24

Sampling Rate Needed for ELP Signal

Given a complex-valued equivalent lowpass signal, what is an appropriate sampling rate to use?

To answer this question� look at the ELP signal�s Fourier transform:

f

Xl( f )

B/2–B/2

Sampling this signal is no different than sampling some real-valued lowpass signal: choose Fs > 2fmax

�. in this case gives Fs > 2(B/2) = B.

Now does this make sense?

Page 25: Bandpass Signals Equivalent Lowpass Signals I&Q … personal page/EE521...Bandpass signals are encountered when receiving radio frequency (RF) signals such as communication and radar

25

Sampling Rate Needed for ELP Signal (cont.)Now does this make sense?

Bandpass Sampling on the corresponding bandpass signal (BPS)�.would require Fs > 2B,

BUT� need only half that rate ELP signal!!!

Do we really need only half the amount of information to represent the ELPS as we need for the BPS?

Would that even make sense? Since ELPS ↔ BPS ?

It doesn�t at first!!!! BUT � the ELSP is complex it requires a real sample value andan imaginary sample value for each signal sample

[(I+Q) @ Fs = B] = [BPS @ Fs = 2B]

# of Real Values for ELPS # of Real Values for BPS