[bdt] bĐt muirhead

8
1 BT ĐNG THC MUIRHEAD VÀ M¸T VÀI ÁP DNG LÊ H˙ QUÝ, Trưng THPT Duy Tân, Kon Tum B§t đflng thøc Muirhead là mºt d/ng tŒng quát r§t quan trng cıa b§t đflng thøc AM-GM. Nó là mºt công c r§t m/nh trong vi»c gi£i mºt sL bài toán v• b§t đflng thøc. 1. Đnh lí Muirhead 1.1. Đnh nghĩa 1 (Bº trºi) Cho hai bº sL thüc b§t kì a =(a 1 ,a 2 , ..., a n ) b =(b 1 ,b 2 , ..., b n ). Ta nói bº a trºi hơn b, kí hi»u a b n‚u chúng tha mãn các đi•u ki»n sau đây i) a 1 a 2 ... a n b 1 b 2 ... b n , ii) a 1 b 1 , a 1 + a 2 b 1 + b 2 , ..., a 1 + a 2 + ... + a n b 1 + b 2 + ... + b n iii) a 1 + a 2 + ... + a n = b 1 + b 2 + ... + b n . 1.2. Đnh nghĩa 2 (Trung bình lo/i [a]) Gi£ sß x i > 0, 1 i n. Kí hi»u X !F (x 1 ,x 2 , ...x n ) là tŒng gm n! bi”u thøc thu đưæc tl F (x 1 ,x 2 , ...x n ) b‹ng t§t c£ các hoán v cıa x i . Ta s‡ ch¿ xét trưng hæp đc bi»t F (x 1 ,x 2 , ..., x n )= x α 1 1 x α 2 2 ...x αn n , vi x i > 0,a i > 0. Khi đó trung bình lo/i [a] đưæc đnh nghĩa bi [a] = [a 1 , a 2 ,..., a n ]= 1 n! X !x α 1 1 x α 2 2 ...x αn n . Đc bi»t [1, 0, 0,..., 0] = (n-1)! n! (x 1 + x 2 + ... + x n )= 1 n n i=1 x i là trung bình cºng cıa x i . 1 n , 1 n ,..., 1 n = n! n! ( x 1 n 1 .x 1 n 1 ...x 1 n 1 ) = n x 1 x 2 ...x n là trung bình nhân cıa x i . Khi a 1 + a 2 + ... + a n =1 thì [a] là m rºng thông thưng cıa trung bình cºng và trung bình nhân. 1.3. Đnh nghĩa 3 Gi P (x, y, z ) là mºt hàm ba bi‚n x, y, z . Khi đó, ta đnh nghĩa i) TŒng hoán v: cyclic P (x, y, x)= P (x, y, z )+ P (y,z,x)+ P (z,x,y). ii) TŒng đLi xøng: sym P (x, y, x)= P (x, y, z )+ P (x,z,y)+ P (y, x, z )+ P (y,z,x)+ P (z,x,y)+ P (z,y,x). www.VNMATH.com

Upload: duc-duong

Post on 25-Nov-2015

60 views

Category:

Documents


13 download

DESCRIPTION

hgjhgjghj

TRANSCRIPT

  • 1BT NG THC MUIRHEAD V MT VI P DNG

    L H QU, Trng THPT Duy Tn, Kon Tum

    Bt ng thc Muirhead l mt dng tng qut rt quan trng ca bt ngthc AM-GM. N l mt cng c rt mnh trong vic gii mt s bi ton v bt ngthc.

    1. nh l Muirhead

    1.1. nh ngha 1 (B tri)

    Cho hai b s thc bt k a = (a1, a2, ..., an) v b = (b1, b2, ..., bn). Ta ni b a tri hnb b, k hiu a b nu chng tha mn cc iu kin sau y

    i) a1 a2 ... an v b1 b2 ... bn,ii) a1 b1, a1 + a2 b1 + b2, ..., a1 + a2 + ...+ an b1 + b2 + ...+ bn viii) a1 + a2 + ...+ an = b1 + b2 + ...+ bn.

    1.2. nh ngha 2 (Trung bnh loi [a])

    Gi s xi > 0, 1 i n. K hiu!F (x1, x2, ...xn)

    l tng gm n! biu thc thu c t F (x1, x2, ...xn) bng tt c cc hon v ca xi. Tas ch xt trng hp c bit

    F (x1, x2, ..., xn) = x11 x

    22 ...x

    nn , vi xi > 0, ai > 0.

    Khi trung bnh loi [a] c nh ngha bi

    [a] = [a1, a2,..., an] =1

    n!

    !x11 x

    22 ...x

    nn .

    c bit

    [1, 0, 0,..., 0] = (n1)!n!

    (x1 + x2 + ...+ xn) =1n

    ni=1

    xi l trung bnh cng ca xi.[1n, 1n,..., 1

    n

    ]=n!

    n!

    (x

    1n1 .x

    1n1 ...x

    1n1

    )= nx1x2...xn l trung bnh nhn ca xi.

    Khi a1 + a2 + ...+ an = 1 th [a] l m rng thng thng ca trung bnh cng v trungbnh nhn.

    1.3. nh ngha 3

    Gi P (x, y, z) l mt hm ba bin x, y, z. Khi , ta nh nghai) Tng hon v:

    cyclic

    P (x, y, x) = P (x, y, z) + P (y, z, x) + P (z, x, y).

    ii) Tng i xng:sym

    P (x, y, x) = P (x, y, z) + P (x, z, y) + P (y, x, z) + P (y, z, x)+P (z, x, y)+P (z, y, x).

    www.VNMATH.com

  • 21.4. nh l Muirhead

    nh l 1 (Bt ng thc Muirhead). Cho xi > 0, 1 i n v a, b l hai b n sthc. Nu a b th [a] [b].ng thc xy ra khi v ch khi a 6= b v x1 = x2 = ... = xn.Chng minh. C th xem phn chng minh nh l Muirhead trong cc ti liu thamkho [1], [2], [3], [4].V rng (1, 0, ..., 0) ( 1

    n, 1n, ..., 1

    n

    ), nn bt ng thc AM-GM l mt h qu ca bt

    ng thc Muirhead.

    2. Mt vi p dng

    phn tip theo, chng ti xin trnh by mt s p dng ca bt ng thcMuirhead trong vic chng minh bt ng thc.

    2.1 Chng minh cc bt ng thc i s

    V d 1. Cho ba s thc dng a, b, c. Chng minh rng

    (a+ b)(b+ c)(c+ a) 8abc.

    Li gii. Khai trin v rt gn ta c bt ng thc tng ng

    a2b+ a2c+ b2c+ b2a+ c2a+ c2b 6abc.

    V (2, 1, 0) (1, 1, 1) nn theo bt ng thc Muirhead ta c [(2, 1, 0)] [(1, 1, 1)].ng thc xy ra khi v ch khi a = b = c.

    V d 2 (Yogoslavia-1991). Chng minh rng vi mi s thc dng a, b, c, ta lun c

    1

    a3 + b3 + abc+

    1

    b3 + c3 + abc+

    1

    c3 + a3 + abc 1abc

    .

    Li gii. Quy ng v b mu, ri nhn hai v cho 2, ta c bt ng thc tng ngsym

    (a3 + b3 + abc)(b3 + c3 + abc) 2(a3 + b3 + abc)(b3 + c3 + abc)(c3 + a3 + abc)

    sym

    (a7bc+ 3a4b4c+ 4a5b2c2 + a3b3c3) sym

    (a3b3c3 + 2a6b3 + 3a4b4c+ a7bc+ 2a5b2c2)

    sym

    (2a6b3 2a5b2c) 0

    V (6, 3, 0) (5, 2, 2) nn theo bt ng thc Muirhead nn v tri ca bt ng thccui cng l mt hng t khng m. T , ta c iu phi chng minh.

    Nhn xt 1. v d tip theo, chng ta s s dng n mt k thut rt hu ch sauy

    www.VNMATH.com

  • 3Khi x1.x2...xn = 1 th [(a1, a2, ..., an)] = [(a1 r, a2 r, ..., an r)], vi r R.

    V d 3 (IMO-1995). Cho a, b, c l cc s thc dng tha mn iu kin abc = 1.Chng minh rng

    1

    a3(b+ c)+

    1

    b3(c+ a)+

    1

    c3(a+ b) 3

    2.

    Li gii 1. Quy ng v b mu, ta c bt ng thc tng ng

    2(a4b4 + b4c4 + c4a4) + 2(a4b3c+ a4c3b+ b4a3c+ c4a3b+ c4b3a) + 2(a3b3c2 + b3c3a2 + c3a3b2)

    3(a5b4c3 + a5c4b3 + b5c4a3 + b5a4c3 + c5a4b3 + c5b4a3) + 6a4b4c4.

    S dng k hiu [a], ta c bt ng thc tng ng

    [(4, 4, 0)] + 2[(4, 3, 1)] + [(3, 3, 2)] 3[(5, 4, 3)] + [(4, 4, 4)]

    rng 4 + 4 + 0 = 4 + 3 + 1 = 3 + 3 + 2 = 8, nhng 5 + 4 + 3 = 4 + 4 + 4 = 12.Bi vy, ta c th chn r = 4

    3v s dng k thut trn ta c [(5, 4, 3)] =

    [(113, 83, 53)].

    Hn na [(4, 4, 4)] =[(83, 83, 83)].

    p dng bt ng thc Muirhead cho ba b s (4, 4, 0) (113, 83, 53

    ), (4, 3, 1) (11

    3, 83, 53

    ),

    (3, 3, 2) (83, 83, 83

    )v cng cc bt ng thc va nhn c ta c bt ng thc phi

    chng minh.

    Li gii 2. Bt ng thc cho tng ng vi

    1

    a3(b+ c)+

    1

    b3(c+ a)+

    1

    c3(a+ b) 3

    2(abc)43

    t a = x3, b = y3, c = z3, vi x, y, z > 0. Khi bt ng thc tr thnhcyclic

    1

    x9(y3 + z3) 3

    2x4y4z4.

    Quy ng mu s chung v b mu, ta c bt ng thcsym

    x12y12 + 2sym

    x12y9z3 +sym

    x9y9z6 3sym

    x11y8z5 +sym

    x8y8z8

    hay(sym

    x12y12 sym

    x11y8z5)+2(sym

    x12y9z3sym

    x11y8z5)+(sym

    x9y9z6sym

    x8y8z8) 0.

    V (12, 12, 0) (11, 8, 5), (12, 9, 3) (11, 8, 5), (9, 9, 6) (8, 8, 8) nn theo bt ng thcMuirhead th mi hng t trong bt ng thc cui l khng m. T ta c iu phichng minh.

    www.VNMATH.com

  • 4V d 4 (IMO Shortlist-1998). Cho cc s thc dng x, y, z tha mn iu kinxyz = 1. Chng minh rng

    x3

    (1 + y)(1 + z)+

    y3

    (1 + z)(1 + x)+

    z3

    (1 + x)(1 + y) 3

    4.

    Li gii. Quy ng mu s chung v b mu, ta c bt ng thc tng ng

    4(x4 + y4 + z4 + x3 + y3 + z) 3(1 + x+ y + z + xy + yz + zx+ xyz).

    S dng k hiu [a], ta c bt ng thc tng ng

    4[(4, 0, 0)] + 4[(3, 0, 0)] [(0, 0, 0)] + 3[(1, 0, 0)] + 3[1, 1, 0] + [(1, 1, 1)].

    p dng bt ng thc Muirhead v k thut trn, ta c

    [(4, 0, 0)] [(43,4

    3,4

    3

    )]= [(0, 0, 0)]

    3[(4, 0, 0)] 3[(2, 1, 1)] = 3[(1, 0, 0)]3[(3, 0, 0)] [(4

    3,4

    3,1

    3

    )]= 3[(1, 1, 0)]

    v[(3, 0, 0)] [(1, 1, 1)].

    Cng cc bt ng thc va nhn c ta c bt ng thc phi chng minh. ng thcxy ra khi v ch khi x = y = z = 1.

    Nhn xt 2.i) Trong bi ton trn, ta c th "ni" bt iu kin rng buc thnh iu kin rng

    hn xyz 1. Khi , ta c bt ng thc

    [(a1, a2, a3)] [(a1 r, a2 r, a3 r)],

    trong r 0 bt k.ii) S dng bt ng thc AM-GM, ta d dng chng minh c kt qu sau:Vi hai b n s thc a v b, ta lun c

    [a] + [b]

    2 [a+ b

    2

    ].

    V d 5 (IMO-2005). Cho x, y, z l cc s thc dng sao cho xyz 1. Chng minhrng

    x5 x2x5 + y2 + z2

    +y5 y2

    y5 + z2 + x2+

    z5 z2z5 + x2 + y2

    0.

    Li gii. Sau khi quy ng mu s chung, b mu v s dng k hiu [a], ta c btng thc tng ng

    [(9, 0, 0)]+4[7, 5, 0]+[(5, 2, 2)]+[(5, 5, 5)] [(6, 0, 0)+[(5, 5, 2)]+2[(5, 4, 0)]+2[(4, 2, 0)]+[(2, 2, 2)].

    www.VNMATH.com

  • 5Ta c(1) [9, 0, 0] [(7, 1, 1)] [(6, 0, 0)] (do bt ng thc Muirhead v nhn xt 2.i))(2) [(7, 5, 0)] [(5, 5, 2)] (do bt ng thc Muirhead)(3) 2[(7, 5, 0)] 2[(6, 5, 1)] 2[(5, 4, 0)] (do bt ng thc Muirhead v nhn xt 2.i))(4) [(7, 5, 0)] + [(5, 2, 2)] 2[(6, 7

    2, 1)] 2[(11

    2, 72, 32

    )] 2[(4, 2, 0)](do bt ng thc Muirhead v nhn xt 2)(5) [(5, 5, 5)] [(2, 2, 2)] (do nhn xt 2.i))

    Cng cc bt ng thc trn v vi v, ta c bt ng thc cn chng minh.

    2.2 Chng minh cc bt ng thc hnh hc

    V d 6 (IMO-1961). Cho a, b, c l di ba cnh ca tam gic ABC, S l din tchca tam gic . Chng minh rng

    43S a2 + b2 + c2.

    Li gii 1. S dng cng thc Heron, ta c th vit li bt ng thc cho nh sau

    a2 + b2 + c2 43

    (a+ b+ c)

    2

    (a+ b c)2

    (a+ c b)2

    (b+ c a)2

    .

    Bnh phng c hai v ca bt ng thc, ta c

    (a2 + b2 + c2)2 3[(a+ b)2 c2)(c2 (b a)2)] == 3(2c2a2 + 2c2b2 + 2a2b2 (a4 + b4 + c4))

    a4 + b4 + c4 a2b2 + b2c2 + c2a2

    Dng k hiu [a], ta c bt ng thc tng ng

    [(4, 0, 0)] [(2, 2, 0)]Bt ng thc cui cng ny lun ng do bt ng thc Muirhead ng vi hai b s(4, 0, 0) (2, 2, 0).

    Li gii 2. tx = a+ b c, y = c+ a b, z = b+ c a,

    ta thu c x+ y + z = a+ b+ c, khi , dng cng thc Heron ta c

    4S =(a+ b+ c)(xyz)

    (a+ b+ c)

    (x+ y + z)3

    27=

    (a+ b+ c)2

    33

    .

    Lc ny, ta ch cn chng minh (a + b + c)2 3(a2 + b2 + c2). Bt ng thc cui cngny c suy ra t bt ng thc Muirhead, v rng [(1, 1, 0)] [(2, 0, 0)].

    V d 7. Xt tam gic ABC vi di cc cnh l a, b, c v R, r ln lt l bn knh cang trn ngoi tip, ni tip ca tam gic . Chng minh rng

    r

    R2[2a2 (b c)2][2b2 (c a)2][2c2 (a b)2]

    (a+ b)(b+ c)(c+ a).

    www.VNMATH.com

  • 6Li gii. Trc ht, ta thun nht bt ng thc phi chng minh vi cc bin x, y, zbng cch dng cc ng nht thc

    R =abc

    4S, r =

    S

    p, S2 = p(p a)(p b)(p c), p = a+ b+ c

    2

    v t

    a =y + z

    2, b =

    z + x

    2, c =

    x+ y

    2.

    Khi , ta c

    x = b+ c a > 0, y = c+ a b > 0, z = a+ b c > 0.Bnh phng hai v v rt gn ta c bt ng thc tng ng

    105[(4, 4, 4)] + 264[(5, 4, 3)] + 88[(6, 3, 3)] + 48[(7, 3, 2)] + 9[(8, 2, 2)] 136[(5, 5, 2)] + 106[(6, 4, 2)] + 176[(6, 5, 1)] + 7[(6, 6, 0)] + 72[(7, 4, 1)]++ 8[(7, 5, 0)] + 8[(8, 3, 1)] + [(8, 4, 0)].

    p dng bt ng thc Muirhead, ta ln lt c

    9[(8, 2, 2)] 8[(8, 3, 1)] + [(8, 4, 0)]48[(7, 3, 2)] 48[(7, 4, 1)]88[(6, 3, 3)] 88[(6, 5, 1)]264[(5, 4, 3)] 136[(5, 5, 2)] + 106[(6, 4, 2)] + 22[(6, 5, 1)]105[(4, 4, 4)] 66[(6, 5, 1)] + 7[(6, 6, 0)] + 24[(7, 4, 1)] + 8[(7, 5, 0)].

    Cng cc v tng ng ca cc bt ng thc trn, ta c bt ng thc cn chngminh. ng thc xy ra khi v ch khi x = y = z hay tam gic ABC u.

    Bi tp

    Bi 1. Chng minh rng mi s thc dng a, b, c, ta lun c

    a5 + b5 + c5 a3bc+ b3ca+ c3ab.Bi 2. Cho a, b, c l cc s thc dng. Chng minh rng

    a

    (a+ b)(a+ c)+

    b

    (b+ c)(b+ a)+

    c

    (c+ a)(c+ b) 9

    4(a+ b+ c).

    Bi 3 (IMO-1964). Cho a, b, c l cc s thc dng. Chng minh rng

    a3 + b3 + c3 + 3abc ab(a+ b) + bc(b+ c) + ca(c+ a).Bi 4 (Iberoamerican Shortlist-2003). Cho ba s thc dng a, b, c. Chng minhrng

    a3

    b2 bc+ c2 +b3

    c2 ca+ a2 +c3

    a2 ab+ b2 a+ b+ c.

    www.VNMATH.com

  • 7Bi 5 (IMO-1984). Cho x, y, z l cc s thc khng m tha mn iu kin x+y+z = 1.Chng minh rng

    0 xy + yz + zx 2xyz 727.

    Bi 6. Cho x, y, z l cc s thc khng m sao cho xy + yz + zx = 1. Chng minh

    1

    x+ y+

    1

    y + z+

    1

    z + x 5

    2.

    www.VNMATH.com

  • 8Ti liu tham kho

    [1] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge University Pree,1967.

    [2] Radmila Bulajich Manfrino, Jos Antonio Gosmez Ortega, Rogelio valdez Delgado,Inequalities, A Mathematical Olympial Approach, Birkhauser, 2009.

    [3] Lau Chi Hin, Muirheads Inequality, Vo.11. Mathematical Excalibur, 2006.

    [4] Ivan Mati, Classical Inequalities, Olympial Training Materials, 2007.

    [5] Zoran Kadelburg, Dusan uki, Milivoje Luki, Ivan Mati, Inequalities of Karamata,Schur and Muirhead, and some applications, The teaching of Mathematics, Vol. VIII,pp. 31-45, 2005.

    [6] Cezar Lupu, Tudorel Lupu, Problem 11245, American mathematical Monthly,Vol.113, 2006.

    [7] Andre Rzym, Muirheads Inequality, November 2005.

    [8] Stanley Rabinowitz, On The Computer Solution of Symmetric Homogeneous TriangleInequalities, Alliant Computer Systems Corporation Littleton, MA 01460.

    [9] Nguyn Vn Mu, Bt ng thc, nh l v p dng, NXB Gio Dc, 2005.

    [10] Phm Kim Hng, Sng to bt ng thc, NXB H Ni, 2007.

    [11] Ng Th Phit, Mt s phng php mi trong chng minh bt ng thc, NXB GioDc, 2007.

    www.VNMATH.com

    www.VNMATH.com