bn lammps parameters

6
46 10 Vol.46 No.10 2010 10 1244—1249 ACTA METALLURGICA SINICA Oct. 2010 pp.1244–1249 ( , 150001) , 3 Tersoff , C, BN SiC . 3 , 3 . : k L , k L α , ; ; , , 3 ; 3 : C, BN SiC. , , O482.22 A 0412-1961(2010)10-1244-06 MOLECULAR DYNAMICS SIMULATION ON THERMAL CONDUCTIVITY OF ONE DIMENISON NANOMATERIALS GAO Yufei, MENG Qingyuan School of Astronautics, Harbin Institute of Technology, Harbin 150001 Correspondent: MENG Qingyuan, professor, Tel: (0451)86414143, E-mail: [email protected] Supported by National Natural Science Foundation of China (No.10772062) Manuscript received 2010–04–07, in revised form 2010–06–30 ABSTRACT The Non–equilibrium molecular dynamics (NEMD) simulation method which is based on the linear response theory is applied to simulate the thermal conduction process of C, BN and SiC nanotubes. The three–body Tersoff potential is used to simulate the interactions among atoms. The effects of axial length, temperature and tensile strain on the axial thermal conductivity of the three kinds of nanotubes are investigated, and their thermal conductivities are compared and analyzed. The simulation results show that the axial thermal conductivity increases as the axial length increases, and exhibits a relationship k L α that is in agreement with the solution of Boltzmann-Peierls phonon transport equation (B–P equation). It is found that the thermal conductivity of nanotube decreases with the increase of temperature. As the tensile strain increases, the thermal conductivity of nanotubes show an slight increase first, and then decreases. But, the corresponding tensile strains at which the tendency of thermal conductivity of the three nanotubes changes are different. Under the same conditions, the sequence of thermal conductivity from the biggest to the smallest is in the order of carbon nanotubes, boron nitride nanotubes and carbon silicon nanotubes. KEY WORDS non–equilibrium molecular dynamics simulation, nanotube, thermal conductivity , , , . , , * 10772062 : 2010–04–07, : 2010–06–30 : , , 1984 , DOI: 10.3724/SP.J.1037.2010.00164 . [1,2] , , . Mingo Broido [3] Boltzmann , [4] , .

Upload: deoliveiraalan

Post on 21-Apr-2015

118 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Bn Lammps Parameters

h 46 � h 10 q Vol.46 No.10

2010 f 10 m h 1244—1249 ; ACTA METALLURGICA SINICA Oct. 2010 pp.1244–1249

i_SO2K6WfU8?q:JgRV ∗

svr tuw(6|�$<O.;℄.k, 6|� 150001)m h *SUZ�%�O*BanCÆ"m./Td��, b4 3 [ Tersoff 49ENBh"fa�J+S, Td3 C, BN? SiC [J-a�EY4:. 3�3��5p�vp?ld%�O�dLJw 3 �[J-a���Y�aQ�, �w 3 �[J-aY�%a�"3�w. |2�P: [J-a�Y� k Q���5p L asdzsd, 0wP�8 k ∝ L

α *�, ^}~#"E>�:^[a*B~>�; [J-a�Y�Qvp'�zrf; Q���%�O�asP, [J-a�Y�W�sdHrfa���4, T 3 �[J-a�Y�~%��+wOa%�O�"d; �d_m� 3 �[J-a�Y�JP[��Hq: C, BN ? SiC.�E5 nCÆ"m./, [J-, �Y�o℄=>IC O482.22 ab0ZN A an.C 0412−1961(2010)10−1244−06

MOLECULAR DYNAMICS SIMULATION ON THERMAL

CONDUCTIVITY OF ONE DIMENISON

NANOMATERIALS

GAO Yufei, MENG QingyuanSchool of Astronautics, Harbin Institute of Technology, Harbin 150001

Correspondent: MENG Qingyuan, professor, Tel: (0451)86414143, E-mail: [email protected] by National Natural Science Foundation of China (No.10772062)Manuscript received 2010–04–07, in revised form 2010–06–30

ABSTRACT The Non–equilibrium molecular dynamics (NEMD) simulation method which is basedon the linear response theory is applied to simulate the thermal conduction process of C, BN and SiCnanotubes. The three–body Tersoff potential is used to simulate the interactions among atoms. Theeffects of axial length, temperature and tensile strain on the axial thermal conductivity of the threekinds of nanotubes are investigated, and their thermal conductivities are compared and analyzed. Thesimulation results show that the axial thermal conductivity increases as the axial length increases, andexhibits a relationship k ∝ Lα that is in agreement with the solution of Boltzmann-Peierls phonontransport equation (B–P equation). It is found that the thermal conductivity of nanotube decreaseswith the increase of temperature. As the tensile strain increases, the thermal conductivity of nanotubesshow an slight increase first, and then decreases. But, the corresponding tensile strains at whichthe tendency of thermal conductivity of the three nanotubes changes are different. Under the sameconditions, the sequence of thermal conductivity from the biggest to the smallest is in the order ofcarbon nanotubes, boron nitride nanotubes and carbon silicon nanotubes.KEY WORDS non–equilibrium molecular dynamics simulation, nanotube, thermal conductivity

R�nj#℄Ab2L�u, j#gvnbW|>LDS��\K2[, e,�fb2Lq#vtQ, MGvnb�.+|Z�_�W�9. r��j#vn{k&,, )qvn&,5; 3&b�22LjC, MG)9* 1 $��/U� ��X 10772062:[���r : 2010–04–07, :['���r : 2010–06–30+wh� : �a�, ℄, 1984 g%, !3%DOI: 10.3724/SP.J.1037.2010.00164

1v�X�Z�b/�7AT[n\K>Lj#gvn� b)7. \K.,r?��?t)7�XZ�&b� [1,2]��ZA� eUi, y_Ffb 5,r#e)7xvnbF�&b�# �b�0��X4�R&bgp, MG =+�.

Mingo � Broido[3] 5~� Boltzmann ?n�;�V℄?n:F_\\K.b�ZA_t��6q�Æ�>Le}(-Fb+�, F�ye [4] xG�?%�#4m�,y��Y\K.>L�Pbk&+CDÆ/�y=.

Page 2: Bn Lammps Parameters

h 10 q �`� : =sZI'5X$`` !l-.S 1245�Pop e [5] � Yu e [6] 5-64�4S� C \K.bZ�&b, /2_\q4w� C \K.b�ZA�N\x Wm−1K−1. UV[-6�Y\yD�)FY>q�Pe�Mb#^, Yy-6S_b C \K.b�ZA}3�$�pBQ (10—2×106 Wm−1K−1)[5−9], ����fb�Æ/�Æ�b-6}3. +T`O�Ueb��, Zhang � Li[10] 4�4�Gx C \K.�ZAbR�, YC4nV�G� V�Gb,i; Nanda e [11] 4�4� α– �a (PAO) �E�e9^,r\K)7byDF�x C \K.Z�&bbR�, }3�Q#ebyDF�x C \K.b�ZAX�Y(Tsgb#e,T;

Maruyama e [12] 4�4 C \K.�ZA_��6qb+�, ��R�6qbte, �ZAXtQb�5; Bi e[13] ToDV�#n/0��4�4K&i#x C \K.�ZAbR�, ��K&i#x C \K.�ZAXsg,T.w�r�, zx\K.Z�&bb4��9X q C\K.�, {x BN \K.� SiC \K.X�Y. P Hx\K.�0�/0&�b4�X4?kb73,Ux1xt1b�/-A;bb4�B�, {�/-A�Px� 5��\K.}(-F' �vnZ�&b [14]X�#Qb&;IJ, TFX�9x\K.b�/-A�P�#�fb4�.�y+T��qx�boDV�#n/04���4�4 C, BN � SiC \K.b�/-A�P, Z& P�x\K.Z�&bbR�; e,4�4��6q�wqx BN � SiC \K.Z�&bbR�, � 5~�Boltzmann–Peierls �;xUe}3�#46�.

1 D[Qe�yToD�#n/0�� [15] Ue4 10 10 �;C C, BN � SiC \K.b�FZ5;. Ue5; TV[2#/0l[,h�uu'b Tersoff y\5 [16]'OC i#gb�K,T. Terrsoff 5:Fb�\!0

��2rE =

1

2

i

j 6=i

Vij (1)

Vij = fC(rij)[fR(rij + bijfA(rij))] (2)

fC(r) =

1 : r < R − D

12 −

12 sin (π

2r−R

D ) : R − D < r < R + D

0 : r > R + D

(3)

fR(r) = Aexp(−λ1r) (4)

fA(r) = −Bexp(−λ2r) (5)

bij = (1 + βnζnij)

− 1

2n (6)

ζij =∑

k 6=i,j

fC(rik)g(θijk)exp[λm3 (rij − rik)m] (7)

g(θ) = rijk

(

1 +c2

d2−

c2

[d2 + (cos θ − cos θ0)2]

)

(8)0 , i, j � k ri#*=; E r�f'b2; Vij r�:i#gblb; rij r�:i#gbl6; fC r{v:F; fR ri#gj?b; fA ri#g�Nb; bij rl*-F; ζij rX�kuF; θijk rlu; R � D r{v5r-2; A � B ri�b; λ1 � λ2 r�-F; θ0 roDVlu; β \V�F; λ3 rOC{v!0b-F; n xPiS,��b?�F�; m � r r5:Fb(~�F;

g(θ) rlu�$:F; c �2uzqbR�; d OC�fxuqbA(;q.+T#eb-F�, Tersoff 5:F�-�x#egKg�K,TbOC. OC C \K.� SiC rlu\K.b Tersoff 5-F�-k`O�n Lammps b5:Fyn. V[ Lammps #�8OC N–B i#g�K,Tb 3 \ Tersoff 5-F, MG�y"� N–B b 2 \Tersoff 5-F [17] A7C 3 \ Tersoff 5-F, �� 1T2. TA7b5-FS_4 BN \K.b{k( , /1 1 N–B 3 [ Tersoff 4,E

Table 1 The parameters of three body Tersoff potential function of N–B

c d h n β λ2 B R D λ1 A

nm−1 eV nm nm nm−1 eV

BBB 0.526 1.587×10−3 0.5 3.99 1.6×10−6 2.18×10−5 43.13 0.2 0.01 2.348×10−5 40.05

BBN 0.526 1.587×10−3 0.5 3.99 1.6×10−6 2.18×10−5 43.13 0.2 0.01 2.348×10−5 40.05

BNB 0.526 1.587×10−3 0.5 3.99 1.6×10−6 1.51×10−4 89.07 0.2 0.01 1.634×10−4 82.71

BNN 0.526 1.587×10−3 0.5 3.99 1.6×10−6 1.51×10−4 89.07 0.2 0.01 1.634×10−4 82.71

NBB 17.8 5.9484 0 0.62 0.0193 1.51×10−4 89.07 0.2 0.01 1.634×10−4 82.71

NBN 17.8 5.9484 0 0.62 0.0193 1.51×10−4 89.07 0.2 0.01 1.634×10−4 82.71

NNB 17.8 5.9484 0 0.62 0.0193 0.2624 142.9 0.2 0.01 0.28252 133.0

NNN 17.8 5.9484 0 0.62 0.0193 0.2624 142.9 0.2 0.01 0.28252 133.0

Note: λ1 and λ2—lattice constant, A and B—cohesive energy, R and D—cutoff parameters, h—cosine of the energetically

optimal angle, β—bulk modulus, n—corrspond to simple cubic phase, d—determine the dependence on angle,

c—determine the strength of angular effect

Page 3: Bn Lammps Parameters

�1246 ����-� h 46 �_ BN \K.bl6r 0.146 nm, _ BN \K.b-al6�zA, HQT�yA7b 3 \ Tersoff 5-F4�BN \K.6�#b.<"� C, BN � SiC \K.b}(Wi(ptA/( b�gj8, I 5=eS_U b{k( . =e5;r, <q\K.bA/( q 0 K �=e4×104 %, I�o(w, GI(w 100 K, GIo=e�eb%F, �\wq(\ 1600 K, *I�#kR5;'_\\K.b{k}(. *Æ_\ C \K.bl6r0.142 nm, BN \K.bl6r 0.146 nm, SiC \K.bl6r 0.18 nm, _ Tersoff–Brenner 5 [18] `O}3BzA, HQ.T Tersoff 5:F4�G 3 �\K.6�#b. C, BN � SiC \K.b}(U �i 1 T2.qUe5; , V[U b6q6XÆb, MG#,r�s&��`n, ~�i#bnn�;+Td/ – �~O� [19], W�%6,r 0.5 fs.�ZA`O+ToDV�#n/0��, q\K.56q��e�r N ��b, t � N=0 �r�)��, N=N/2 �r����, t\r~4btO� (�i2). G�?k%FY�)� nb*Qbi#��� n

^ 1 C, BN ? SiC [J-|'1HhFig.1 Scketchs of C (a), BN (b) and SiC (c) nanotubes

^ 2 nCUÆ"m./Td1HhFig.2 Schematic of non–equilibrium molecular dynamics

(NEMD) simulation

b*�bi#, �tO1xLq (?�|!��)�� nb*Qbi#bb2Q[���� nb*�bi#bb2), MGy8�3&4?�K)�\��b�=, {�fV[L�4)��3&4?�_�=����bw2, [6�Ff`_C�� 0bwq, �{�V 0bwq`O_wqXq, p}Af`_b�=V Fourier Z�k?J = −λ∇T , �`O_\\K.b�ZA [15,19].

2 D[FBl\M}�Ue5;�r 3 %: <, q NVT �& (Ue5; �< N– i#F2�V – \W�T– wq#�b�&) �Ue 1×105 step, TLq�k�.�fbwqN\d��; I, q NVE �& (Ue5; �< N– i#F2�V – \W�E– �fb2#�b�&) �b+n#1×106 step, .�f=eN\oD�V; *Iq NVE �&�n# 2×106 step, 5tO)�i#.�f_&!7?kbw2, �f`�f3&b�=��Pbw2, *I 5�=_wqXqb��~_\K.b�ZA.qUe5; ��b2tOAy�-F�yR��Ue}3b��q, {{��?%4���6Su,g_bb2tOIF{#6G%tOb2bQ��k�Ue}3b��q. Ue}3�Qb2tOIFlm�, _\b}3�2�pl�, U5[m�bb2tOqZwqb�&�P, qo� Fourier Z�k? [20]. �Q2Ue6�, Z.q 1200 K b�w�, 10 step tO?Ib23&bwq�PAr�&�P, { 5 step ?Iq3&Q�b�&�P. MGq�ybUe b2tOmA,rr 10 step tO?I.

2.1 pd4;<TPAX7L9k ��6qx\K.���ZAX��bR� [3], MG�y��`O4 20, 30, 40, 50, 60, 80 � 100 nm b10 10 �;C C, BN � SiC \K.q 300 K ,b�ZA, `O}3�i 3 T2.Vi 3 �k, 3 �\K.b���ZA�Rt��6qbte{te, {teb�5�ojN. y����TXÆ>L�P [20] ℄F�8. XÆ�fbX�%V;��f6qQX��+�:

1

leff∝

1

l∞+

4

LZ(9)0 , leff rXÆ�fbX�%V;, l∞ r}Æ�fb%V;, LZ rU b6q.q2#/0 )7b�ZA κ ��2r

κ =1

3cvl (10)

c =3

2kBn (11)

Page 4: Bn Lammps Parameters

h 10 q �`� : =sZI'5X$`` !l-.S 1247�

20 40 60 80 1000

50

100

150

200

250

300

350

400

450

Th

erm

al c

ondu

ctiv

ity, W

(/mK

)

L, nm

SiC BN C C from ref.[13] C from ref.[4]

^ 3 [J-�Y�^��5pa*�Fig.3 The relationship between nanotube’s thermal con-

ductivity and axial length0 , l r$#o�%V;, v r$#Lq, c rSu\Wb��, n r$#F, kB r Boltzmann 4F.MG, &A0 (9—11) �_1

κ∝

2

kBnv

( 1

l∞+

4

LZ

)

(12)V0 (12) ��R�U 6q LZ btQ, U b�ZA κ :�otQ, {{tQbLA�oj�, _�yUeT_}3��. 5~� Boltzmann–Peierls $#F?�; (B–P�;)[3] �FS_#��b+C�. B–P $#F?�;��,−vp

dnp

dx= ∂cnp (13)0 , vp r$#Lq, np r$#�$:F, n r$#F, np � n ����2r

np = n + n(n + 1)g(x) (14)

n ≡ (eh̄ω/kBT− 1)−1 (15)q�wqXq�, B–P �; YMb?��,�&�I

∂cnp/(n(n + 1)) =∑

dir(p)

(n′− n′′)ϑp′′

p,p′(g′′− g′ − g)+

1

2

rev(p)

(1 + n′ + n′′)ϑp′,p′′

p (g′′ + g′ − g) (16)

t dir(p) � rev(p) R�$#b��5;, �$:

p+p′↔ p′′ � p↔ p′+p′′ 1�5;. p, p′ � p′′ r��5; �&,Tb$#; ϑp′′

p,p′ � ϑp′,p′′

p ��rOC�C1���5;,gb�+2; g, g′ � g′′ ��r p, p′ �p′′ xPbOC$#�$bRF�.?t)7b�ZA� 5�$:F�2r

κ =1

S

α

vph̄ωpgpnp(np + 1)dq (17)0 , h̄ r Planck 4F, ωp r$#mA, q r F,

S r\K.{MMW. OCW�k$#�$bRF� gprgp ≈

h̄ω

kBT 2vpτp

∆T

L(18)0 , ∆T r\K.1sbwq2, L r\K.��6q.�fb=e,g��2r

τ−1p =

dir(p)

(n′−n′′)ϑp′′

p,p′+∑

rev(p)

(1+n′+n′′)ϑp′,p′′

p +2vp

L

(19)0 , n′, n′′ ��r$# p′ � p′′ bF2.qgmu, ��>$#?I��, ��I_\τ−1p ≈

dir∑

pp′p′′

(n′−n′′)ωω′ω′′+

1

2

rev∑

pp′p′′

(1+n′+n′′)ωω′ω′′+a

L

(20)t a r42; ω, ω′ � ω′′ xP p, p′ � p′′ bmA. Wω →0 ,

n′− n′′

∝ 1/ω′− 1/ω′′

≈ ω/(ω′ω′′) (21)

1+n′+n′′∝ 1+1/ω′+1/ω′′

≈ 1+ω/(ω′ω′′) ≈ ω/(ω′ω′′)

(22)_\κ ≈

(q2 + a/L)−1dq ∝ L1/2 (23)�>?&�$#�&}I��, ��IÆrκ ≈

(q3/2 + a/L)−1dq ∝ L1/3 (24)&��, 5�I~� B–P �;, _\�ZA_ Lα7~�+�, { α �r�[ 0.5 b�. �yUe_\b}3�eAr Lα ��!0, �`��b��[ 0.25—0.45�g, _+C}3��. y [4] � [13] `O_\, 20,

80 � 100 nm b (10 10)C \K.q 300 K wq�b�ZA��r 247, 405 � 456 W/mK(�OOr�G�*V0gg� 0.34 nm ,xPb}3), _�y}3zAbx<, �i 3 T2.

2.2 `;<TPAX7L9k r4�wqx\K.Z�&bbR�, �yUe4 3� 10 10 �;C \K.q#ewq� (100—1200 K)b�FZ5;, �f`��_\ 3 �\K.�ZA_wqb+��i 4. Vi 4 ��, \K.b�ZA_wq7��, tR�wqb(�{sg, 3 �\K.b�ZA�XG0?. y����T$#��+C℄F�8.

Page 5: Bn Lammps Parameters

�1248 ����-� h 46 �

0 200 400 600 800 1000 12000

50

100

150

200

250

300

350

400

450

T, K

Ther

mal

con

duct

ivity

, W/(m

K)

SiC BN C C from ref.[13]

^ 4 [J-�Y�^vpa*�Fig.4 The relationship between nanotube’s thermal con-

ductivity and temperatureqgwu, Uewqj�[ Debye wq θD, "�Einstein b+C [21] �_\

κ ∝ eθD

αT (25)q�wu, UebwqQ[ Debye wq, h̄ω <<

kBT , MG$#F n D(n =

1

eh̄ω

kBT − 1≈

kBT

h̄ω(26)

V0 (26) ��, R�wqb(�, $#F n :tQ, �{te4$#l�b�A, j�4$#bo�%V;. V0(9) ��, $#bo�%V;_)7b�ZA7~�, MG_\

κ ∝1

T(27)}A0 (25—27) Ue}3�i 4 T2. y [13]!C, qwq��r 300, 600 � 800 K ,, C \K.b�ZA��r 247, 148 � 120 W/(m·K)(�OOr�G�*V0gg�,xPb}3), _�y}3�zA.

2.3 pdHYj/<TPAX7L9k x\K.)e��& q��\K.����bi#j$, i#b{nQMG=\R�, �{R�\$#��, K{��\K.bZ�&b. r44���& P�x\K.Z�&bbR�,�y,r 20 nmb 10 10�;C \K.r4�x�, qwqr 300 K ,, ��x\K.1s*�?0�*�?0i#)e���b& uB,G)em?IuB<�f=e?k%F, G���uBo>eoLArG 5000 steps )e 0.0025 nm buB. �5Ue�f`��_\ 3 �\K.���ZA_��& P�b+��i 5. Vi 5 �F��R���& P�btQ, 3 �\K.b�ZA�XtQIj�b�5,U 3 x�M;q#e, R�P�bte, C \K.b�ZA*�/j�, BN \K.I�, SiC \K.pI�.

0.00 0.02 0.04 0.06 0.08 0.100

20406080

100120140160180200220240

Ther

mal

con

duct

ivity

, W/(m

K)

Axial strain

SiC BN C

^ 5 [J-���Y�^��%�O�a*�Fig.5 The relationship between nanotube’s thermal con-

ductivity and axial strainq�/zu, )ebP�x�, R�P�bte, \K.����b lÆ& , Z7li#gb,T/te, �i#=\����bD�tQ, MGi#b{nj�, ��b$#j�, $#bo�%V;te, "�0(10) ��Gzu\K.b�ZAte; R�P�bb+te, ����b&�lM&/5Q{v9, 3&4vl��u"�uMen,>qbM&�!, y�oj�4i#q����=\bD�, MGqGzui#{ne�, ��$#te, $#o�%V;j�, "�0 (10) ��Gzu\K.b�ZAj�.

3 �\K. lbl6bj*r: C–C l <B–Nl <C–Si l. R�& P�bte, ltbll�GÆ&v, MG 3 �\K.3&vl��u"�uMen,>qbM&�!bG*AIr: C \K., BN \K., SiC\K.. TFV�yb$#��i+�Fjv_\, R�P�bte, C \K.b�ZA*j�, BN \K.I�, SiC \K.b�ZA*IC�j�.&A 3 �\K.bUe}3��, �e`n�, 3 �\K.bZ�&br: C \K. >BN \K. >SiC \K.. y6Mr��bZ�&b�k[i#gb�K,T�i#�2eMK. ?�|!�, i#g�K,Tlz, i#b�2lQ, ��bZ�&b�l2 [22]. �yUeb 3�\K.bM0lz�j*r: C–Cl >B–Nl >Si–Cl, lzbM0lxi#bD�lQ, yqZ$#��j�, $#o�%V;tQ, *ÆZ�ZAtQ.

3 FM�yPToDV�#n/0��Ue4 C, BN �SiC 3 �\K.b�FZ5;. Ue}3�Q:

(1) \K.b���ZAR���6qbte{te, 1xQ9 κ ∝ Lα +�.

(2) \K.b���ZARwqbte{j�, Uj��5�o�E.

Page 6: Bn Lammps Parameters

h 10 q �`� : =sZI'5X$`` !l-.S 1249�(3)\K.b���ZAR���& P�bte9teIj�b�5, U 3 �\K.b�M�q#e.

(4) e8`n� 3 �\K.b�ZAKQ\�AIr: C \K., BN \K., SiC \K..3Gab[1] Mensah S Y, Allotey F K A, Nkrumah G, Mensah N G.

Physica, 2004; 23E: 152

[2] Chang C W, Han W Q, Zettl A. Appl Phys Lett, 2005, 23:

1883

[3] Mingo N, Broido D A. Nano Lett, 2005; 5: 1221

[4] Hou Q W, Cao B Y, Guo Z Y. J Eng Thermophys, 2009;

30: 1207

(E�x, .�7, 4sf. %:�~*/, 2009; 30: 1207)

[5] Pop E, Mann D, Wang Q, Goodson K, Dai H J. Nano Lett,

2006; 6: 96

[6] Yu C, Shi L, Yao Z, Li D Y, Majumdar A. Nano Lett,

2005; 5: 1842

[7] Fujii M, Zhang X, Xie H Q, Ago H, Takahashi K, Ikuta

T, Abe H, Shimizu T. Phys Rev Lett, 2005; 95: 65502

[8] Kim P, Shi L, Majumdar A, Mceuen P L. Phys Rev Lett,

2001; 87: 215502

[9] Wang Z L, Tang D W, Li X B, Zheng X H, Zhang W G,

Zheng L X, Zhu Y T, Jin A Z, Yang H F, Gu C Z. Appl

Phys Lett, 2007; 91: 123119

[10] Zhang G, Li B W. J Phys Chem, 2005; 109B:

[11] Nanda J, Maranville C, Bollin S C, Sawall D, Ohtani H,

Remillard J T, Ginder J M. J Phys Chem, 2008; 112C:

654

[12] Maruyama S. Physica, 2002; 323B: 193

[13] Bi K D, Chen Y F, Yang J K, Wang Y J, Chen M H. Phys

Lett, 2006; 350A: 150

[14] Mohammad A, Elena A, Michael C B, Florian M P. Nan-

otechnology, 2009; 20: 115704

[15] Florian M P. J Chem Phys, 1997; 106: 6082

[16] Tersoff J. Phys Rev, 1988; 37B: 6991

[17] Karsten A, Wolfhard M. Comput Mater Sci, 1998; 10: 111

[18] Hernandez E, Goze C, Bernier P, Rubio A. Phys Rev Lett,

1998; 80: 4502

[19] Cao B Y. Chin J Comput Phys, 2007; 24: 463

(.�7. _N~*, 2007; 24: 463)

[20] Schelling P K, Phillpot S R, Keblinski P. Phys Rev, 2002;

65B: 144306

[21] Huang K. Solid Physics. Beijing: Higher Education Press,

1988: 145

(P ". )[~*/. �: �dv B��, 1988: 145)

[22] Tian S G, Shen H J. J Mater Sci Eng, 2009; 27: 213

(^��, !7�. (6�/^%:/, 2009; 27: 213)