c漁舳 亘㈱b⑪臨醜¢⑪即且exes,b欄盟

8
Bulletin of the Geological Survey of Japam,vo1.41(11),p.619-626,1990 549.74 550.42 546.26/.21 552.3(81) c鑓恥⑪齢翻⑪xyge晒s⑪瞼聖蓋艇⑪聯⑪s灘⑪囎 o置韻亘e e劉讃》⑪館裂苞es:蔭貿⑪㎜愈he J麗e町》董r麗醜9麗窺醜d c漁舳◎亘㈱b⑪臨醜¢⑪即且exes,B欄盟 Toshiro MoRIKIYo*,Hideo HIRANo**and Yukihiro MoRIKIYo,T.,HIRANo,H.and MATsuHlsA,Y.(1990)Carbon and oxyg tion ofthe carbonatesfromtheJacupiranga and Catalao I carbon B%」及G60Z.S%7∂.ノ4鎗α%,vo1.41(11),P.619-626. Abs意聡e重:Carbon and oxygen isotope compositions were measured f Jacupiranga and Catalao I carbonatite complexes in Brazi1.Theδ13 carbonates are uniform,ranging from-6.4to-5.6%with the average one sample,theδ180values ofthe carbonates are between7.1and8. is7.6%5.The isotopic compositions of the Jacupiranga carbonates primaryigneous carbonatite.Theδ13C values of dolomites are abou calcites. Theδ13C values of carbonates from the Catalao I complex range with the average of-5,83%.Those values are similar to the values of bonates。However,oxygenisopotic compositions ofthe CatalaoI of8.4to22.3%.Carbonateswiththelowestδ180values inthe complex sent the igneous stage.Carbonates with extremely highδ180valu sidered to have precipitated from low-temperature hydrothermal termediateδ180valuesindicates avariable degree ofcontamina mal carbonates.The contribution of secondary stage hydrotherm significant in the Catalao I complex as compared with the Jacupira ment ofa network structure in the Catalao I complex mayhave enhanc later stage hydrothermal fluids. 且.亙薦ro面et量樋 Carbonatite is intimately associated.with anζaline rocks such as nephelinite and ijolite.In- itia187Sr/86Sr values of carbonatite are low and they are similar to those of alkali basalt.It is in- ferre(1that carbonatite magma is(ierived from the upper mantle.Carbon isotopic ratios of car- bonatites togetherwith those ofkimberlites and diamonds canbeutilizedto estimatetheisotopic composition of deep-seate(1carbon. Carbon an(i oxygen isotopic ratios of car- bonatites have been reported by many resear一 *Department of Geology,Faculty of Science, Shinshu University,Matsumoto390,Japan. **Mineral Resources Dept.,Geological Survey of Japan. chers (TAYLoR αα1.,1967;CoNw TAYLoR,1969;SuwA6彪Z.,1969;DE DEINEs and GoLD,1973;SuwA6渉α風 TAYLoRααZ.(1967)postulatedtha neous carbonatite has relative andδ180ranges.且owever,there i isotopic difference between ca different localities(DEINEs an(i Stableisotopiccompositions oft bononatites have scarcely been .studyaimsatelucidatingthe car isotopic features of the Jacupiran I carbonatite complexes in Brazi1。 2. Geo且ogy⑪窟韻亘e J窺¢盟亙》置r我醜9ぎL我醜姐c我ta且a 亙ea晦o盤戯eむ⑪聯且exes 鋤噸か㈱騨 Jacupiranga alkaline carbonatit 一619一

Upload: others

Post on 10-Apr-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: c漁舳 亘㈱b⑪臨醜¢⑪即且exes,B欄盟

Bulletin of the Geological Survey of Japam,vo1.41(11),p.619-626,1990 549.74  550.42  546.26/.21  552.3(81)

c鑓恥⑪齢翻⑪xyge晒s⑪瞼聖蓋艇⑪聯⑪s灘⑪囎

o置韻亘e e劉讃》⑪館裂苞es:蔭貿⑪㎜愈he J麗e町》董r麗醜9麗窺醜d

   c漁舳◎亘㈱b⑪臨醜¢⑪即且exes,B欄盟

Toshiro MoRIKIYo*,Hideo HIRANo**and Yukihiro MATsuHIsA**

MoRIKIYo,T.,HIRANo,H.and MATsuHlsA,Y.(1990)Carbon and oxygen isotopic composi-

     tion ofthe carbonatesfromtheJacupiranga and Catalao I carbonatite complexes,Brazi1.

     B%」及G60Z.S%7∂.ノ4鎗α%,vo1.41(11),P.619-626.

Abs意聡e重:Carbon and oxygen isotope compositions were measured for carbonates from the

Jacupiranga and Catalao I carbonatite complexes in Brazi1.Theδ13Cvalues of the Jacupiranga

carbonates are uniform,ranging from-6.4to-5.6%with the average of-6.07%.Except for

one sample,theδ180values ofthe carbonates are between7.1and8.1%,and the averagevalue

is7.6%5.The isotopic compositions of the Jacupiranga carbonates represent the value of

primaryigneous carbonatite.Theδ13C values of dolomites are about O.5%higher thanthose of

calcites.

     Theδ13C values of carbonates from the Catalao I complex range from-6.8to-5.2%

with the average of-5,83%.Those values are similar to the values of the Jacupiranga car-

bonates。However,oxygenisopotic compositions ofthe CatalaoI carbonatesshowawide range

of8.4to22.3%.Carbonateswiththelowestδ180values inthe complex are considered torepre-

sent the igneous stage.Carbonates with extremely highδ180values of about22%are con-

sidered to have precipitated from low-temperature hydrothermal fluids.The group of in-

termediateδ180valuesindicates avariable degree ofcontaminationbytheδ180-richhydrother-

mal carbonates.The contribution of secondary stage hydrothermal carbonates seems to be

significant in the Catalao I complex as compared with the Jacupiranga complex.The develop-

ment ofa network structure in the Catalao I complex mayhave enhanced the circulation ofthe

later stage hydrothermal fluids.

且.亙薦ro面et量樋

  Carbonatite is intimately associated.with

anζaline rocks such as nephelinite and ijolite.In-

itia187Sr/86Sr values of carbonatite are low and

they are similar to those of alkali basalt.It is in-

ferre(1that carbonatite magma is(ierived from

the upper mantle.Carbon isotopic ratios of car-

bonatites togetherwith those ofkimberlites and

diamonds canbeutilizedto estimatetheisotopic

composition of deep-seate(1carbon.

  Carbon an(i oxygen isotopic ratios of car-

bonatites have been reported by many resear一

*Department of Geology,Faculty of Science,

  Shinshu University,Matsumoto390,Japan.**Mineral Resources Dept.,Geological Survey of

  Japan.

chers (TAYLoR αα1.,1967;CoNwAY and

TAYLoR,1969;SuwA6彪Z.,1969;DEINEs,19701

DEINEs and GoLD,1973;SuwA6渉α風,1975).

TAYLoRααZ.(1967)postulatedthatprimaryig-

neous carbonatite has relatively limitedδ13C

andδ180ranges.且owever,there is a slight

isotopic difference between carbonatites from

different localities(DEINEs an(i GoLD,1973).

Stableisotopiccompositions oftheBrazilian car-

bononatites have scarcely been reported.This

.studyaimsatelucidatingthe carbon an(10xygen

isotopic features of the Jacupiranga and Catalao

I carbonatite complexes in Brazi1。

2. Geo且ogy⑪窟韻亘e J窺¢盟亙》置r我醜9ぎL我醜姐c我ta且ao

   亙ea晦o盤戯eむ⑪聯且exes

鋤噸か㈱騨  Jacupiranga alkaline carbonatite complex is

一619一

Page 2: c漁舳 亘㈱b⑪臨醜¢⑪即且exes,B欄盟

8%1擁塑働606・卿・冴JS%プ卿ヴノ4卿,%よ4ヱ,踊.Zヱ

10cated230km southwest of Sao Paulo and is

composed of peridotite, clinopyroxenite,

jacupirangite,ijolite,fenite,nepheline syenite

and carbonatite.It is oval shaped,.and65km2in

area.It intruded into the Precambrian mica

schist an(i quartz diorite in the Early Cretaceous

piriod(130±5Ma,AMARAL,1978).The car-

bonatites occur near the center of the complex

as two plugs,the northem and southem bodies。

The total exposure of the carbonatites is about

O.4km2.

  According to Melcher(1966),the peridotitic

body was first emplace(1in the northem half of

the complex an(1then suπoun(ied by a ring intru-

sion of clinopyroxenite.After that,the circular

clinopyroxenite intnユde(1into the southern half

of the complex and differentiated into the cres-

cent-shaped ijolite body.Finally,carbonatite in-

tru(1ed as small Plugs into the central part of the

southern clinopyroxenite body  (MELCHER,

19661GAsPER and WYLHE,1983al HIRANoαα1.,1990a).

  HIRANo6!σ1.(1990a)have classified the car-

bonatites into four rock facies as follows:

  Calcite carbonatite (CC),magnetite-rich

calcite carbonatite (CCmt),apatite-rich calcite

carbonatite(CCap)and dolomite carbonatite(DC).

  Calcite carbonatite is the major facies of both

the northern an(1southern plugs.It consists

mainly of calcite,magnetite,apatite and

dolomite.Minor constituents are olivine,phlogopite,  pyn’hotite,  chalcopyTite  an(i

valleriite.The amount of mafic minerals are

usually less than10%.JC-11and-46are from

this facies.Calcite carbonatite containing more

than 20% of modal magnetite is calledmagnetite-rich calcite carbonatite in this paper。

  Apatite-rich calcite carbonatite consists of

medium-graine(i apatite and olivine with

calcite,phlogopite and magnetite.A small

amount ofdolomite is also contained.JC-18and

-26are from this facies.

  Dolomite carbonatite occurs as small dykes in

both carbonatite plugs.It consists essentially of

dolomite with small amounts of apatite,

phlogopite,magnetite and sulfide mineralsJC-

27and-44are from this facies.The detailed

petrographic (iescriptions of each rock facies

are given in HIRANO ασ1.(1990a).The

Jacupiranga samples analyzed in this study are

listed in Table l and their localities are shown in

・Fig.1.

σ⑫戯伽01

  CatalaoI carbonatite complexislocatedinthe

southeastem part of the Goias state,an(i it in-

truded into the Proterozoic metamorphic rocks.

The age of the intrusion is82.9±4.2Ma

(HAsuIand CoRDANI,1968).The complexhas a

circular shape an(1is about6km in(iiameter。

The rocks of the complex are as follows

(HIRANO6オα1.,1990b);

  (1) Ultramafics and their metasomatized

rocks (ultramafics,phlogopite rock,meta-

phoscolite)1

  (2) Phoscolite;

  (3)  Carbonatite  and  carbonate  rocks

(dolomite carbonatite, magnesite-bearing

dolomite carbonatite,dolomitic sinter andothers).

  Since the complex has been deeplyweathered,the relationship between these rock

types can onlybe observed in drill core samples.

  The sequence of events leading to the forma-

tion of the various rock types is as follows

(HIRANoαα1.,1990b):

  (1) Ultramaficrockswere crystallized from

a silicate magma.Some parts of the ultramafics

were serpentinized during the cooling of the in-

trusion.

  (2) Carbonatitic magmas intruded into the

ultramaficrocks,formingthenetworkveinsanddykes of phoscolite and dolomite carbonatite.

Metaphoscolite was also formed locally along

the conduits.

  (3) Crystallization of carbonate minerals

(dolomite and magnesite)from hydrothermal

fluids.Carbonate veinlets of the hydrothermaL

stage sporadically cut the early stage igneous

members(includingphoscoliteanddolomitecar-bonatite).

  The Catalao I samples analyzed in this study

are listed in Table1.Alltheしsamples were taken

from a drill core,the site of which is shown in

Fig.2.CT-36,一38,一39A,一351and-352are the

rocks from stage(2)mentioned abo寸e.CT-40

and-41are representatives of stage (3),

一620一

Page 3: c漁舳 亘㈱b⑪臨醜¢⑪即且exes,B欄盟

Cα760%ごη¢40匿γ図召%乞εoホoφづo oo吻osづあo%げオhβαz7カo%σ孟召s (T.!レぞひグづ彦砂08!ごzZ。)

ぐ畏、砿、

\儲1く7

        ヤ       くてー~

   旨》    %

o

Dolomiヒe carbona七ite

Calcite carbonatiヒe

Calcite carbonaヒitermagひeヒiヒ,e-rich

こ『acupirangiヒe(Clinopyroxenite)

Fauエヒ

Flow strUC七ure

Sample lodality

職o 200

勧D’

300m

Fig.1 Geological maか(H:IRANp象α砿,1990a)of㌻he Jacupiranga carbonatitεcomplex showing the

sample localities.

3.遍聯er置職蝋s

 Carbon(iioxide was辱1iberated from carbonate

by the reaction with100%phosphoric acid at

25℃in..a vaCuum(McCREA,1950).二Calcite一、

dolomit“mi鴎uresw農re apalyzed uSing・中e dQu-

ble ext写actiQn technique dev“10pe(i by,EPsTEIN

4σ乙 (1964).,Carbon dio琴ide、obtaine4was

an琴1yzed Wit耳.a Varian,Mat25Q,mass spec-

tro卑eteratShipshuUniversi醇。For、oxygen,cor’

rectio坤.were享na(1gforisotopefr哉ctionationbet-

ween liberated carbon(1ioxide and original car・

b・nate。、Fraction琶tioロfact・rsdeterlninedby

Sharma and Clayto皐 (1965), (CO2-cc)

=1.01025and(CO2-do1)=1.01109,were used.

Theisotopic(lataarepresented intermsoftheδ

notationrelativetoPDBforcarbon,andSMOWfor q琴ygen。.丁与e、..堅perime墓tal grrors are

±0.1%f。rもoththe・3Cand・80・values.

 A照1ytical results of the reference sar県ple

(Caρ03-1,.GSJ work:ing,standard)、弓re

presented in Tab1→2・.The measure舜va1双e5

agree well with the results by MoRlsHITA司nd

MATSuHISA(1984).

一621一

Page 4: c漁舳 亘㈱b⑪臨醜¢⑪即且exes,B欄盟

B%JJ4!勿z(ゾ’云h6G60旋)9づαzl S%γz7のア(ゾ’ノ4!)‘z%,Vbよ41』.〈砂.11

Table l Petrographic descriptions of the samples studied from the Jacupiranga and Catalao I carbonatite complexes,

            Rock type              Description

Jacup irangaJC-11

JC-18

JC-26

JC-27

Olivine-bearingcalcite carbonatlteOlivine-apatite-CalCite CarbOnatiteApatite-rich calc itecarbonatiteDolomite carbonatite,

JC-44  Dolomite carbonatite

JC-46  Calcite carbonatite

Catalao I   CT-36

CT-38

CT-39A

CT-40

CT-41

Nb-bearing phoscolite(277m)

Dolomite(115m)

Dolomite(402。5m)

carbonatite

carbonatite

MagneSite-bearingdolomite carbonatite(415m)

Dolomitic(Cocarde)

sinter(246.4m)

CT-351 Metaphos co l ite       (292m)

CT-352 Phoscol工te(292m)

76cc,14ap,8mt,101,1dol l mediumgrained, eaakly banded。3701+c l inohumite,32ap,21cc,4mt,4po,2dol l coarse grained・82cc,13dol,4ap,1mt l coarsegrained。69dol,27ap,2cc,2phl多 mediumgrained, weakly bande(L63dol.35ap,2mt: a very smallamOUnt Of interStit ialcalcite occurs.81cc,14dol,3mt,2sulfide l magnetlteand sulf ide concentration formsan irregular banding。

40phl,30mt,20ap,5dol,5pyc lmedium grained, do lomite occup iesthe interspaces of phl-mt-apaggregates.80dol,10norsethite,5py(finegrained),3ap,1phl,1pyc l coarsegrained.90do手,3mt,1phl l medium gralned,

banded.Magnetlteconcentrationformsabanding.Magnesite,dol l fine-grained,pos s ibly hydrothermal or工gin・

Abbreviations: cc-calcite, dol-dolomite,olivine, ap-apatite, po-pyrrhotite,pyc-pyrochlore.  Numbers in (iescript ion are volume percentagesestimated petrographically。 The nomenclature of carbona’しitesafter Streckei sen (1980).  Numbers in parenthes i s indicate thedepth of the dri l l core samp les (name of dri l lhole= 47E29N)・

Dol,other mineals (not deter-mined); aphanitic colloformtexture develops。80phl,clay mineral,ol(ser-pentinized)),10mt,10dol lmedium grained,80ap,6phi,5dol,4mt,3pyc lmedium grained。

         mt-magnetite, Ol-

    py-pyrite, phl-phlogopite,

■S

4。 A恥a亘y睦総且騰s戯ts躍雌姻is磯ss童o醜

 Six carbonate samples from the Jacupiranga

complex and seven from the Catalao I complex

were isotopically analyzed.The results are

shown in Table2and Fig.3.

」㏄塑ε翼霧醐騨葛¢o聯亙εκ

 The δ13C values of the Jacupiranga car-

bonates are in the range of-6.4to-5.6%with

the average of-6.07%(σn=0.29,n=9).The

carbon isotopic compositions are very uniform.

Except for one sample(JC-44calcite),theδ180

values of the carbonates are betweel17.1and

8.1%,and the average value is7.6%(σn=0.35,

n=8).JC-44calcite seems to be exceptional

an(1itsδ180value is2%6higher than the average

δ180value.

 TAYLoR6渉α乙 (1967)postulated that theδ13C

一622一

Page 5: c漁舳 亘㈱b⑪臨醜¢⑪即且exes,B欄盟

Cごz7ゐo%ごz箆40髪yg6犯商o云¢珍o oo%z望)osづガo%(ゾ云hθoα760伊zごzセs (T.ノレ費)7づゑ砂06渉召Jl)

Fig.2

BRAZIL

く驚

               一一

          醗纒 Lateritederlvedfr。mthec。mplex

          暫蹴繍laf:縢ed/鷲m認

           ☆ L・cality。fd湘h。1e(47E29N)

                     Reproduced fγ’om 凹ETAIS de Goi as

                             (Berbert,1984)

Surfacegeologicalmap ofthe Catalao I carbonatitecomplexshowingthesamplelqcality.In-

ner solid and dashed lines correspond to the outline of the complex.

  一2

令ざ

㌔一4 2

0鐙 一6

一8

一10

   ‘‘Oka box7’

(Conway and Taylor,1969)

國・

Primary igneouscarbonatite

(Taylor et aL,1967)

議)JC

畠DOL CT

Fig.3

6 8 10 12  14  16δ180SMow(・ん。)

18  20 22

Plot ofδ180versusδ13Cfor carbonates from the Jacupiranga and Catalao I carbonatite com-

Plexes.

一623一

Page 6: c漁舳 亘㈱b⑪臨醜¢⑪即且exes,B欄盟

B距〃6ガ%(~ブ試h6θ召oJ{馨客αzJ・S%グz翌ヅ(~プノ4ρ召%,Vbよ41,・ノ〉1?.11

Table2 1sotopic composition of the carbonates from the

      Jacupiranga(JC一)and Catalao I(CT一)car-

      bonatite complexes.

          Calcite    Dolomite Calcite:dolomite

Sample         一       δ13C  δ180   づ13C δき80  volume ratio

JC-11

JC-18

JC-26

JC-27

JC-44

JC-46

CT-36

CT-38

CT-39A

CT-40

CT-41

CT-351

CT-352

CaCO3-1

CaCO3-1*

一6.4

-6.4

-6,2

一5.8

-6.4

2。53

2.63

2.59

7.5

8.1

7.3   -5、8

      -5.9

9.6   -6.1

7.7   -5.6

      -5.3

      -5.9

      -5.2

      -6.0

      -6.8

      -5.8

      -5.6

一15.00**

一14.97**

一15.00**

       CC>(iol

       cc>do1

7・1 cc>4017.7   dof

7.3  do1》c6

8ユ cq>dφ1、.

13.2   do1

8.4   、do1

10.4㌧ .do1

22.3  、  dQl

21.7   doI

12.6   do1

10.4   do1

*MoRIsHITA and MATsuHlsA(1984)

**δ180values are given in the PDB scale.

values ofprimary igneous carbonatite are in.the

range of-8.O to-5.0%an(1theδ1曼0.Values.6.0冒

to8。5%。Theδ13C andδ180v41μes,〇五,t募e

Jacupirang4carb・nates章reremarkab1X旦nif・mandtheδi80valhes『afetheloΨesta血・n宮thercarbonatites from all over th6魚orld (e.ぎ.

DEINEs and GoLD,1973).It is noteworthy tha.t

the isotopic data from the Jacuplranga complex

are plotted ina smallar鈎withlntheprimaryig-

neous carbonatite field of TAYLO亘6如ゐ(1967).

They are also plotted near th6base of the“Oka

box” which was defined by CoNwAY and

TAYLoR(1969).The Jacupiranga carbonatites

occur as discordant igneous plugs in the

clinopyroxenite as described before.The car-

bonatites are of the deep-seate(1Plutonic type

and the total anlount of erosion to reach the pre-

sentlevelhasbeenestimatedtobeover1500m(M肌cHER,1966).It seems safe to say that

there has been no effect or alteration from sur-

faceweathering.Therefore,itis consideredthat

theisotopiccompositions oftheJa¢upirangacar-

bonates represent thevalue for primary igneous

carbonat藁“s in Sq4thgm B聡zi斗。,

  Theδ180value of∫C-44calci亡e is ab6亡t2%6㌧

higher than that of the coexisting dolomite,

whereas theδ13C values are the same.The

amount of calcite in the rock:is very・small and

the calcites fill the grain boun(1aries of coarse-

grained dolomites.Judgingfromthe血ode ofoc-

currencq,the enrichmentofδ180inthecalcite is

interpreted as due to precipitaゼion from the

magmatic fluids of a later stagO probably at

lower temperature.

  Theδ手3Cvalues ofdolomite,onthewhole,are

higher than those of calcite.The averageδ13C

value、o主dolomite is-5.9%,whereas that of

calcite(except fQr JC-44calcite)is-6.4%.The

tendencゾis commonly recognized in car-bonatite6(DEINEs,1970),but the(1ifferencebet-

weencalciteand dolomite observedinthis study

(0.員%on an average)is much smaller than the

rva

lue described’by DEINEs(1970).As for a

single rock:sample which・contains both calcite

and dolomite,一the do16雌te has higherδ13C

value than the coexisting calcite,except for JC-

44隻If we assume,that coexisting calcite and

do10mite are isotopically in equilibrium,we can

calculateisotopic.eOuilibr奪tiontemperaturesus-

ingSHEppARDand ScHwARcz’srequation(1970).

The results are as follows:

  JC-26:」13Cd。1rcc=0.4  Tニ610℃.

  JC-46:・」13Cdol-cc=畠0も8『・T=260℃.

  The formervalue is consistent approximately

with equilibrium temperatures of595-570℃

estimated by GAsPAR and WYLLE(1983b)for

coexistingilmeniteandmagnetitefromthereac-

tion rock between jacupirangite and intruding

carbonatite of the complex.

磁伽伽1eo即伽  Theδ13C values of carbonates from the

Catalao I cdmplex range from二6.8to-5。2%

with the average of-5.80%(σ姦’=0.49,n=7).

Those values are almost th“Same as theδ13C

values ofthe Jac⑪iranga ca士bonatite.Theδ180

values。fthe}Catalab・lcarb・nates,h・wever,

show a condi(1αaぢ16range6f8.4to22.3%.

  The oxygen isotope variation of the Catalao I

carbonates seems to correspond to their(1iverse

mode of occ亡rrencel Theδ13C andδ180values

ofthe CT-38dolomite,which exibits anigneous

textuてe塾are“1・$e㌻・.thec・mpgsiti・na1τange・f

the Jacupiranga carbonates.Therefore,it is

一624.一

Page 7: c漁舳 亘㈱b⑪臨醜¢⑪即且exes,B欄盟

C励o%卿鰐脚おo嬢・βo卿・3露加のhθo励・ηαホ63(T.砿07吻o伽及)

presumed that theCT-38domomite・representsaprimaryisotOpicSighature ofthe Catalao I car-

bo且atites.      ”  一

 The samples CT-40吐(magnesfteτbeaτing

dolomite caτbonatite)and CT-41(dblomitie

sint6r)occurasveipletsfilling’fissuresofthe

ultralnafics and are mai阜1y composed of cryp-

tocrys仁母11ine carbonate minerals.CTT41shows

a colloform texture.The、mode of occurrence

an(1textural characteristics suggest that they

have precipitated fr⑦m ・鮎10w-temperature

hydrothermal fluids‘(HIRANo.1αα1.,1990b).

The・δ士80 values of♂CT-40・and -41 are

remarkably high,while theδ13C values are not

di宜er¢ntfτ6m∴the・・ther$aゆ1es,fr6mthe

Catalao.rcρ出plex.From『the a資ove observa-

ti・n帥e卑aydeduc?th“f・11・winggeneticpr・一

cess fQr.these c母rbgnatltes。M6teoric water or

hydrothermal flui口which was enriched in180

permeated into the dolomite carbon&tite bodies,

and consequently,a part of the dolomite was

dissolved into the fluid.Afterthat,thecarbon in

carbon-bearing趾uid re-precipitated the secon-

dary ‘dolomite along conduits at lowtemperatures.The carbon i$otopic ratio of the

system was buffere(1in the predominatingprimafycarわ・nざtes』Thマs,veinsbf180-enrich-

ed cryptocrystalline dolorqit6,、wh6se δ13C’

values are almost identical to the primary

dolomite carbonatite,were formed.

 The carbonates of CT-36,一39A,一351and-

352,whichhave intermediatevalues ofδ180,0c-F

cur interstitially and as“amygdu16s,,・in the』

phoscolite,and their amounts in the rocks are

sma11.They lie on a tie lie between the,prir叩ry

igneous carbonates and the hydrothermal car-

bonates in theδ13C vs.δ180diagram.The in-

crease in180is ascribe(i to a variable(1egree of

contaminationbythe180-richhydrothermalcar-

bonates.The contribution of secondary stage

hydrothermal carbonates seems・tO be signifi-

cant in the Catalao I complex as compared with

the Jacupiranga complex.The development of

network structure in the Catalao I complex may

have enhance(1the circulation of the later stage

hydrothermal fluids.

Ack齢w置e姻gem蝋s We wish to expressour gratitude to Prof.Y.KuRoDA of Shinshu

University for his critical reading of the

manuscriptl

’Re£ere玉【亙ees・

AMARAし,G。(1978) Pottasium-argon age st面ie忌

    ・血theJacupirangaalkaliゴedistrict,State

    ・fSa・Pa亘1・,’Brazi1.Pr・ceedings・fthe

    first intβmational symposiu卑 on car-

    bohatit6,p.297-302』DNPM,Brasilia.

BERBERT, C. 0. (1984) Cafbonati℃es an(i

    associated mineral deposits in Brazi1。Gθo孟

    S%7肌血卿,左砂ムn・.263,P.269二290.

CoNwAY,C.M.andTAYLoRIIH』P.Jr.(1969)018/

    016 an(1 C13/C12 ratios of coe詫isting

    minerals in the Oka and Magnet Cove car一

   一bonatite bodies,ノb%名G診oZ.,vo1.77,P.618-

    626.

DEINEs,P. (1970) The carbon and oxygen.    isotopic composition of carbonates fro血▼

    the Oka carbonatite complex,一Quebec,

    Canada.σ800h吻』Co謝ooh吻.∠4吻,vo1.

    34,p,1199-1225.

DEINEs,P.and GoLD,D.P.(1973)』The isotopic

    composition’of carbonatite ahd-kimberlite

    carboゴates and their b6aring  on  the

    is・tΦicc・血噂ti・n’・fde?P』seatedcar-

    b・血.06∂・h加.Cos〃zo・h枷.Aぬ,vo1.37,P.

    1709-1733.

EpsTEINl S二l G良AF,D.L,and DEGENs,E.T.(1964)

    0咳ygenl isotope stu(iies on the-o士igin of

    dolomites。In CRへIG,H.,WAssERBuRG,G.

    J。and MILLER,S。:L.eds,乃o孟o卿α嘱

    oos%づo o勉吻づs吻。North-Holland,Amster一

   ・4a卑,P・169-180・

GAspER,」.C.and WYLLIE,P.」.(1983a)    Magnetite in the carbonatites from the

   ・」αcupiranga complex, BraziL ∠4耀名

    掘わz6名α」.,vo1.68,P.195-213.

    and      (1983b) 11menite(high

    Mg,Mn,Nb)in the carbonatites from the

    Jacupiranga complex, BraziL z4耀名    Mわz67α・Z.vo1.68,P.960-971.

HAsul,Y.and.CoRDANI,U.Gし(1968) Idades

    Potassio-argonio (ie rochas enユptivas

    Mesozoicas do oeste mineiro e sul de

    Goias。In congress Brazileiro de Geologia,

    22,Belo Horizonte,p.139-143.

HIRANo,H:.and KへMITANI,M.and DAITx,E.C.

    (1990a) Jacupiranga carbonatites in the

    Sao Paulo state,BraziL-Their mode of

    OCCUrrenCerB泓G80」。S%7∂.如伽,VOl.

    41(11)p.605-617.

一625一

Page 8: c漁舳 亘㈱b⑪臨醜¢⑪即且exes,B欄盟

β磁枷げ≠h8G60Jo9づα;JS%猶卿ρ〃伽π,倣41,葡.ヱ1’

HIRANo,H.,KへMITAM,M』,SATo,T.and SuDo,S.

    (1990b) Niobium  mineralization of

    Catalao I carbonatite complex,Goias,

    Brazi1・β%泥G69孟S%7肌ノ4ψαη,voL41(11)

    p.577-594.

McCREA,J。M。、(1950)On the isotopic chemistry

    6fcarめ・natesandapale・temperature

    scal6・加Ch%砺s・,v・L18,P。849-

    857。、

MELcHER,G..C.(1966)The carbonatites of    Jacupiranga,S註・Pau1・,BraziHnT叫

    TLE,0.F,and,GITTINs,J.eds,Cα猶

    ゐo鰯伽,p.169-181.John Wiley and

    Sons,New York.

MoRlsHITA少Y.and MATsu田sA,Y.(1984)    ,Measurement.of carbon and oxygen

    isotQpe ratios・of carbonate reference

    samples.B%」よ0θo乙S%鰍血卿%,voL35,p.

    69-79.

SHARMA・T・andCLAYToN,R N・(1965)Measure-    ment Qf O18/016ratios of total oxygen of

    carbonates. Gθoohづ鉱  Cos吻06hづ〃乳 ノ10如,

    vo1.29,P.1347-1353,

SHEppARD,S.M and SρHwARcz,H.P.(1970)

    Fractionation  of carbon  an(i oxygen

    isotopes and magnesium between coex-

    isting卑etamorphic calcite an(1dolomite.

    、Coηかづ猷ノ砿渉難6名α4P召伽o乙,vo1,26,P.161-

    198。

STREq耳EIsENン A。 (1980) Classification and

    nomenclature ofvolcanic rocks,1am一

    prophyres, carbonatites and melilitic

    rocks. IUGS subcommission。on the    systematics of igneous rocks.G60乙1~吻4-

    soh.,vo1.69,P.194-207.

SuwA,K.,OsAKI,S.,OANA,S.,SHIIDA,L and

    MIYAKAwA,K.(1969)Isotope geo-

    chemistryandpetrologyofthe Mbeyacar-

    bonatite,south-westem Tanzania,East

    Africa.力蹴Eα席h So云,ハ危8ρッαひ勿吻.,vo1.

    17,p.125-168.

SuwA,K.,OANA,S.,WめA,H.and OsAKI,S。

    (1975) Isotope  geochemistry  and

    petrology of African carbonatites.P勿s.

    Chθ肱Eαπh,vo1.9,P.735-746.Pergamon

    Press.

TAYLoR,H.P.Jr・,FREcHEN,J.and DEGENs,E,T.

    (1967) Oxygen  and  carbon  isotope

    studies of carbo胆tites from the Laacher

    See district,West Germany and the Alno

    district,Sweden.Goooh加.Co3挽ooh吻.犀

    ノ10孟とz,voL31,P.407-430.

WENNER,D.B.and TA乳oR,H.P.Jr.(1971)

    Temperature of serpentinization of    ultramafic rocks base(1 0n O18/016 frac-

    tionation between coexisting serpentine

    ・and magnetite.CO卿7甑!憾伽醐砿P8伽0乙ン

    vo1.32,P.165-185..

    and      (1974) DIH and O18/016

    studies of serpentinization o至ultramafic

    rocks.σ600hゼ甑Cos%zoohづ撚z46如,vo1.38,

    p.1255-1286.

ブラジル国ジャクピランガとカタロン1カーボナタイト岩体の

       炭酸塩鉱物の炭素・酸素同位体組成

森清寿郎・平野英雄・松久幸敬

                     要  旨

 ブラジル南部の2つのカーボナタイト岩体,ジャクピランガとカタ・ン1のカルサイトとド・マ

イトの炭素・酸素同位体比を測定し,次の結果を得た.ジャクピランガの炭素と酸素の同位体比は

ともに一様で,平均値はδ13C=一6.07編,δ180=7.6%.これらは初生火成岩カーボナタイトの値

をしめす。カタ・ン1の炭素同位体比はほぼ一様で,平均値はδ13C=一5.83編である.酸素同位体

比は,試粁の産状のちがいにタり,大きな変動幅をしめすが,それは火成活動後の熱水作用に起因・

するとして説明できる.

(受付=1990年3月27日0受理:1990年9月1日)

一626一