cee 254-2 design for shear

22
CEE 254 ‐ Spring 2015 Nagi AboShadi, PhD, SE, PEng 1 Design for Shear Direct Shear (One-way Shear) V n ≥ V u 1 2 Example of One-way Shear Cracks

Upload: niyat-patel

Post on 21-Nov-2015

13 views

Category:

Documents


4 download

DESCRIPTION

Design of shear for concrete buildings

TRANSCRIPT

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 1

    Design for ShearDirect Shear (One-way Shear)

    Vn Vu

    1

    2

    Example of One-way Shear Cracks

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 2

    Shear Strength

    Vn = (Vc +Vs)

    Where:=0.75Vc =ShearstrengthbyconcreteVs =Shearstrengthbyreinforcement

    2

    Thevaluesof(fc)shallnotexceed100psi3

    Concrete Strength for Shear

    2

    Thevaluesof(fc)shallnotexceed100psi

    4

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 3

    Steel Reinforcing Strength for Shear

    Where:Av = Total reinforcement cross sectional area of ties resisting shearfyt = Yield strength of tie reinforcements = Tie spacing through the longitudinal axis of the beam

    5

    Shear Ties

    6

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 4

    Example 1Determine the shear strength adequacy for the beamsection of example 2.1. The beam clear span is 20 ft.Dead load is1.5 klf and the live load is 0.7 klf. The concretestrength, fc = 4,000 psi and steel yield strength, fy = 60,000psi.

    7

    Solution:DL=1.5klfLL=0.7klfWu =1.4D=1.4x1.5=2.1Wu =1.2D+1.6L=1.2x1.5+1.6x0.7=2.92k/ftRu =20x2.92/2=29.2kipsVu =29.2 (16"/12x2.92)=25.3kipsSheartobetakenatthecriticalcolumnsection.Atddistancefromthefaceofthesupport. Vc =0.75x(2x10"x13.54,000)/1,000=12.8kipsVs =0.75(2x0.2x60x13.5/14)=17.36kipsVn =fVc +fVs =12.8+17.36=30.16kipsVn >Vu OK

    8

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 5

    Punching ShearTwo-way ShearPunchingshearcausessuddenfailureinconcretememberssuchasreinforcedconcretefootingsandreinforcedconcreteslabs

    9

    10

    Examples of Punching Shear Cracks

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 6

    11

    Examples of Punching Shear Cracks

    12

    Examples of Punching Shear Cracks

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 7

    bx = Cx +dby= Cy+dbo = 2(bx +by)Ac= bo xd

    vu=

    13

    vc = ShearFactor

    = Strengthreductionfactor =0.75ShearFactor =minimumofthefollowingshearfactors:SFactoro = 2 SFactorc = 2 c = o = SFactormax = 4.0

    s =40 forinteriorcolumns=30 foredgecolumns=20 forcornercolumns

    14

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 8

    Example2A gravity reinforced concrete footing of (86x86x26 deep)supports a 24x24 reinforced concrete column. The concretespecified strength at 28 days is equal to 3,000 psi. The columnultimate axial load is equal to equal to 680 kips. Which of thefollowing statements is correct?

    A)ThefootingissafeagainstpunchingshearB)Tomakethepunchingshearsafe,thespecifiedconcretestrength

    needstobeaminof3,500psiC)Tomakethepunchingshearsafe,thefootingtotalthickness

    needstobeaminof30D)Tomakethepunchingshearsafe,thefootingtotalthickness

    needstobeaminof40

    15

    Solution:SlabColumnanalysis:Slabeffectivedepth=30 3.5=26.5inbx =Cx +d=24+26.5=50.5inby =Cy +d=24+26.5=50.5inbo =2(bx +by)=202inAc =bo xd=5,353inUltimateshearstress:vu =Vu /Ac =680/5,353=0.127ksi

    16

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 9

    Shearcapacity:s =40c =Long/ShortColDim=1.00o =bo /d=10.92Factorc =2+4/c =6.00Factoro =2+s/o =5.66Factormax =4.00Factor(Controls)=4.00

    4.0 3,000 219 0.75219 164 > vu Safe

    17

    Example3A twoway 10thick slab is supported by columns at 30 feeton both directions while the column size is 16x16. Thespecified concrete strength for the slab and columns is 4,000psi. The occupancy of the floor supported by the concrete slab isoffice use. The weight of the additional miscellaneousmechanical and ceiling is 5 psf. The ultimate shear stress andshear strength are equal to:

    A) 226psiand189psiB) 189psiand226psiC) 340psiand226psiD) 226psiand340psi

    18

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 10

    Solution:Tributaryarea=30x30=900ft2ReductionFactor,R=(900 150)0.08=60Rmax =40%LLReduced =(1.0 0.4)50psf=30psfPartitionLoad=15psfLL=30psf+15psf=45psfDL=10.5/12x150pcf+5psf=136.25psfWu=1.4D=1.4x0.136=0.191ksiWu =1.2D+1.6L=(1.2x0.136ksf)+(1.6x0.045ksf)=0.235ksfPu =30x30x0.235ksf =211.50kips

    19

    Slab-Column analysisSlabeffectivedepth=10.5 1.25=9.25inbx =Cx +d=25.25inby =Cy +d=25.25inbo =2(bx +by)=101inAc =bo xd=934.25inUltimateshearstress:vu =Pu /Ac =0.226ksi

    20

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 11

    Shearcapacity:s =40c =Long/ShortColDim=1.00o =bo /d=10.92Factorc =2+4/c =6.00Factoro =2+s /o =5.66Factormax =4.00Factor(Controls)=4.00

    4.0 4,000 253 0.75253 189.75

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 12

    Testing for Torsion

    23

    Stress due to Shear and Torsion

    24

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 13

    Aoh =Beamcrosssectionalareameasuredtothecenterlineofthetie(in2)Ph =Beamperimeteratthecenterlineofthetie(in)

    25

    1)Selecttheconcretesectiondimensionsothatforsolidsections:

    . 8

    ForHollowSections:

    .

    8

    Where: =Strengthreductionfactor=0.75Vu =UltimateshearstrengthTu =UltimatetorsionAoh =BeamcrosssectionalareameasuredtothecenterlineofthetiePh =Beamperimeteratthecenterlineofthetie(in)

    26

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 14

    2)Strengthdesign Tn Tu

    Cot (ACI19.11.6.3.6)

    Where: = 45o fornonprestressed concreteAo = 0.85Aohs = Tiespacing

    2 At = CrosssectionalareaofonelegfortorsionAv = Crosssectionalareaofalllegsforshear

    27

    Example 4The concrete beam shown has a concrete strength of 5,000 psi andis used as a pedestrian bridge. The weight of the additional deadload is 20 psf. An unbalanced uniform load may be calculated byapplying step loading. Which of the following statements iscorrect?

    A) The beam dimensions are adequate for the applied torsion.B) The beam dimensions are inadequate for the applied torsion.C) The ACI318 does not cover case for beams exposed to torsion

    and shear.D) None of the above.

    28

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 15

    29

    Solution:SelfWeight=(12'x1'+4'x4)0.15kcf =4.2k/ftDL=4.2+0.02ksf x12'=4.44k/ftLLStep loading =0.1ksf x12'/2=0.6k/ftwu =1.4D=1.4x4.44=6.22k/ftwu =1.2D+1.6L=1.2x4.44+1.6x0.6=6.29k/ftVu =Shearatcriticalsection(dfromfaceofsupport)Vu =6.29(15' 5')=62.9kipsTorsionAnalysiswuTorsion =1.6x0.6k/ft =0.96k/ftMT =0.96x3'=2.88kft/ftTu =2.88(15 5)=28.8kft

    30

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 16

    Forsolidsectionbw =48'', d=57''Ph =(48 4 0.5)x2+(60 4 0.5)x2=198inAoh =(48 4 0.5)(60 4 0.5)=2,414.25in2

    31

    24psi

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 17

    33

    Example5ThemosteconomicaltiestobeusedforExample4are:A)#4@14''(2Legs)B)#4@8''(4Legs)C)#5@14''(4Legs)D)#5@14''(2Legs)Solution:Ao =0.85Aoh =2,052in2

    34

    Tu = Tn =184,680(At /S)=28.8x12At /S=0.0019

    At /S=0.02 ControlsTakeS=8inches, At =8x0.02=0.16in2 #4has0.2in2TakeS=14inches, At =14x0.02=0.28in2 #5has0.31in2

    , 0.02

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 18

    35

    Shear-friction Strength

    36

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 19

    37

    Example of Corbel Shear Cracks

    38

    11.6.4 Shear-friction design methodWhereshearfrictionreinforcementisperpendiculartotheshearplane,Vn shallbecomputedby

    Vn =Avf fy Vn =Avf fy (sin+cos )

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 20

    39

    40

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 21

    41

    Corbel Example

    42

    Beam Ledge Example

  • CEE254 Spring2015

    NagiAboShadi,PhD,SE,PEng 22

    43