準結晶とバルク金属ガラスの 軟x線発光分光 - kekpfagenda...

12
準結晶とバルク金属ガラスの X線発光分光 名古屋大学大学院 工学研究科 量子工学専攻 曽田 一雄 PF090113 To understand the microscopic origin of their structural stabilities and unique properties

Upload: others

Post on 24-Jan-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • 準結晶とバルク金属ガラスの 軟X線発光分光

    名古屋大学大学院

    工学研究科 量子工学専攻

    曽田 一雄

    PF090113

    To understand the microscopic origin of their structural stabilities

    and unique properties

  • Collaborators

    • 犬飼 学、宮崎 秀俊、太田 俊二、鈴木 孝治、

    加藤 政彦、八木 伸也、長谷川 正(名大院工)

    • 竹内 恒博(名大エコ研)

    • 佐藤 洋一(愛教大)

    • 水谷 宇一朗(豊田理化学研)

    • 和田 武、横山 嘉彦(東北大金研)

    • 西山 信行( RIMCOF )

    • 手塚 泰久(弘前大)

    • 岩住 俊明(阪府大)

  • Agenda

    複雑合金系の電子構造と原子配列

    • 2次元準結晶 2-D QuasiCrystal

    • バルク金属ガラス Bulk Metallic Glass

    軟X線発光分光 XES+光電子分光 PES

    +第一原理クラスター計算 DV-Xα To understand the microscopic origin of

    their structural stabilities

    and unique properties

    まとめ(XESへの期待)

  • 2-D QC Al-Co-Ni

    X-ray Laue diffraction pattern taken from the 10-fold axis.

    1

    2

    3

    4 5 6

    7

    8

    9 10

    Microscopic origin for unique atomic arrangement ?

    an ingot of Al72Co16Ni12

    [1] M.Krajci et al., Materials Sci. & Eng. 294-296, 548 (2000).

    0

    1 TOTAL

    Al

    Ni

    -5 0 5 10

    Co

    BINDING ENERGY / eV

    Approximant Al68.60Co14.88Ni16.52 [1]

    Pseudogap in Al pDOS ? >>> Hume-Rothery-type

    stabilizing mechanism Strong Co-Al interaction ?

    >>> Ni central ring

  • Pd-M-P (M = Ni, Cu) BMG

    1

    2

    3

    4

    5 6

    7

    10 106 K/s 10 K/s

    Bulk Metallic Glass

    Critical cooling rate

    Amorphous Metal High resistance to crystallization of thermodynamically metastable BMG

    Microscopic origin for large stability ?

    • Structure-induced Minimum in Free Electron DOS [1]

    Pseudo-Gap Formation ? • Role of TM d States ?

    EF

    ENERGY

    DO

    S

  • XES measurement

    EB=EC (2p) - hv

    hnex (SR)

    e-

    hnemi

    Sample

    Detector

    Grating

    IPES

    EK hnex

    XPS EF

    hnex

    elastic

    hnemi

    IXES

    hnex XES

    E hnemi

    Co2p

    EF

    EB

    hnemi Ni3d Co3d

    0 IXES

    0

    IXES

    Ni2p

    hnex

    Ni2p EB

    IXES

    Co2p

    0

  • Cluster Calculation • Discrete Variational Xa (DV-Xa) method [1] • the available code SCAT [2] tuned up

    for faster calculation with lager cluster

    [1] H. Adachi et al., J. Phys. Soc. Jpn. 45 (1978) 875-883. [2] http://www.dvxa.org/ [3] E. Abe et al., Phys.Rev. Lett 84 (2000) 4609. [4] M. Inukai et al., Z. Kristallogr. in press.

    TEM image of Al-Co-Ni [3]

    Triple-layer Unit Cluster [4]

    B-A-B cluster > A-layer DOS +

    A-B-A cluster > B-layer DOS

    http://www.dvxa.org/

  • TM Arrangement

    (a) Ni inner ring model (b) Co inner ring model

    Al-Co-Ni

    (a)

    (b)

    -50510

    TotalAlCoNi

    Ni XESCo XESXPS

    DE

    NS

    ITY

    OF

    ST

    AT

    ES

    / e

    V-1

    clu

    ste

    r-1

    INT

    EN

    SIT

    Y / a

    rb.u

    nits

    BINDIGN ENERGY / eV

    Al72

    Co16

    Ni12

    Al81

    Co15

    Ni15

    H50

    1

    0

    (a)

    (b)

    0

    0

    50

    75

    25

    2525

    05

    NiCoSUM

    Ni XES

    Co XES

    XPS

    DE

    NS

    ITY

    OF

    ST

    AT

    ES

    / e

    V-1

    clu

    ster

    -1

    INT

    EN

    SIT

    Y /

    arb

    . unit

    s

    BINDING EMERGY / eV

    Ni inner ring

    Co inner ring

    0

    10

    0

    1

    0

    10

    20

    Ni-Co mixed

    0

    10

    Possible Co-Ni Mixing

  • Raman Spectrum

    0

    150

    300

    -10 -8 -6 -4 -2 0 2 4 6 8

    RXESELASTICUPDOS

    RXESELASTICUPDOS

    RAMAN SHIFT / eV

    Co

    Cu

    Al65Co20Cu15

    2p

    hnemi

    EF

    3d

    hnex

    中間状態

  • Valence-band Structure

    -505101520

    P3spP3sp x 50Ni3dPd3d

    INT

    EN

    SIT

    Y /

    arb

    . u

    nit

    s

    DO

    S /

    arb

    . u

    nit

    s

    BINDING ENERGY / eV

    P Ka XES

    0

    0

    0

    0

    1

    0

    1

    XPS

    hn / eV85

    40

    7940

    Pd L2,15

    XES

    Pd40

    Ni40

    P20

    XESvsXPS_Pd40Ni40P20

    Pd

    Ni

    P

    P P

    Pd3Ni6P cluster

    Energy shift of P XES ?

  • Microscopic Origin of High Structural Stability of BMG

    [1] C. Park et. al., Mater. Trans. JIM, 40, (1999) 491. [2] M. Vennstörm, J. Höwing et al., J. Solid. State. Chem., 177 (2004) 1449.

    Pd3Ni6P cluster (PdNi2P [2])

    Preferential Clusters [1]

    • Chemical bond formation

    Reducing U

    • Network Formation of Local Clusters

    Increasing S

    DOS of P ? Pseudogap ? 金属性の強いZr-TM-Al系BMGの安定化機構は?

  • Summary & Needs Summary for QC

    • TM 3d DOS > Co-Ni mixed arrangement • Composition dependence ?

    decagonal ring in Co-rich phase and broken symmetry in Ni-rich one

    • Psuedogap in Al DOS ? > Al K or L XES • Unoccupied DOS in Resonant Raman ?

    Summary for BMG

    • Rigid local units + their flexible network formation

    • Energy of P DOS ?

    • Role of pseudogap (in more metallic Zr-BMG) ?

    Needs

    • K, L XES of light elements (Al, P etc.) • Careful energy-calibration with XPS et al.

    • High stability