chap. 6 analysis of 2d heat transfer problem cae · 2016-02-27 · 7 13 chap.6 heat transfer...

14
1 1 Chap.6 Heat Transfer Analysis Chap. 6 Analysis of 2d Heat Transfer Problem 2 Chap.6 Heat Transfer Analysis [Review] 열전달의 기본 메커니즘 전도 (Conduction) 입자들의 상호 작용에 의해 보다 활동적인 입자로부터 주변의 활동적인 분자로 에너지가 전달되는 현상 고체, 액체, 기체에서 모두 발생 (고체의 경우가 가장 지배적임) 고체: 격자에서의 분자 진동 자유전자의 에너지 송에 의해 발생 액체 기체: 분자의 불규칙적인 운동에 의한 충돌 (collision) 확산(diffusion)의해 발생 ) 컵에 뜨거운 물이 담겨있을 표면의 온도 상승

Upload: others

Post on 27-Jun-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

1

1 Chap.6 Heat Transfer Analysis

CAE 기본개념 소개

Chap. 6 Analysis of 2d Heat Transfer Problem

2 Chap.6 Heat Transfer Analysis

[Review] 열전달의 기본 메커니즘

전도 (Conduction)

입자들의 상호 작용에 의해 보다 활동적인 입자로부터

주변의 덜 활동적인 분자로 에너지가 전달되는 현상

고체, 액체, 기체에서 모두 발생 (고체의 경우가 가장

지배적임)

고체: 격자에서의 분자 진동 및 자유전자의 에너지 이

송에 의해 발생

액체 및 기체: 분자의 불규칙적인 운동에 의한 충돌

(collision) 및 확산(diffusion)에 의해 발생

예) 컵에 뜨거운 물이 담겨있을 때 컵 표면의 온도 상승

Page 2: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

2

3 Chap.6 Heat Transfer Analysis

[Review] 열전달의 기본 메커니즘

대류 (Convection)

고체 표면과 주변의 움직이는 액체 혹은 기체와의 열

전달 형태

전도와 유체 유동의 복합적인 효과 포함

자연대류(free convection): 유체의 온도 차이로 의한

밀도 차이에 의해 발생되는 부력이 유체의 유동 유발

예) 욕조 내의 온도 변화

강제대류(forced convection): 외부 요인에 의해 표면

위의 유동이 강제적으로 발생될 때 발생

예) 선풍기 바람에 의한 체온 감소 현상

4 Chap.6 Heat Transfer Analysis

[Review] 열전달의 기본 메커니즘

복사 (Radiation)

원자나 분자에서의 전자 배치의 변화로 인하여 전자

기파 또는 광자의 형태로 물체로부터 방사되는 에너

지에 의한 열전달

전도, 대류와 달리 중간 매개체가 필요하지 않음

열복사(Thermal radiation): 물체의 온도에 따라 물체

로부터 에너지가 복사되는 현상. 온도가 높아질수록

복사량 증가.

예) 태양에너지가 지구에 도달하는 현상

Page 3: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

3

5 Chap.6 Heat Transfer Analysis

[Review] 열전달의 기본 메커니즘

열전달 사례: 전자레인지의 가열 원리

마그네트론(Magnetron)이라고 하는 마이크로웨이브 튜브에서 발생되는 전자기 복사

에너지를 흡수하여 음식이 요리됨.

마그네트론에서 방출되는 복사 에너지는 전기 에너지가 특정한 파장의 전자기 복사로

변환되는 형태 (열복사와 차이)

복사된 전자기파는 금속 표면에 의해 반사되고 유리, 세라믹, 플라스틱으로 된 조리

기구를 투과하여 음식물(물, 당분, 지방 등)의

분자에 흡수되어 내부에너지로 변환됨.

전자기파의 흡수는 주로 음식물 표면부에서

발생되어 표면부위의 온도가 일차적으로 상승

열전도에 의한 내부 온도 상승

6 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Heat Transfer Modes (2D)

Conduction: Fourier’s law

Convection (Newton’s law of cooling)

Radiation :

: Stefan-boltzman constant (5.67x10-8 W/m2-K4)

: emissivity (between 0 and 1)

Page 4: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

4

7 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Energy Conservation Principle (2D)

Energy conservation principle:

Energy conservation in a small volume

in out generation storedE E E E

X YX Y X Y

q q Tq q q dX q dY q dXdY cdXdY

X Y t

) :( volumeunitpergenerationheatq

8 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Energy Conservation Principle (2D)

Use of Fourier’s law:

Steady state:

1X X

T Tq kA k dY

X X

1Y Y

T Tq kA k dX

Y Y

X Y

T T Tk dY dX k dX dY q dXdY cdXdY

X X Y Y t

Page 5: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

5

9 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Boundary Conditions

Adiabatic condition (perfect insulation):

Constant heat flux condition:

Convection condition:

Constant temperature condition:

Surface insulation Constant heat flux

Convection Constant temperature

10 Chap.6 Heat Transfer Analysis

Heat Transfer Problems – FE Formulation

Formulation with Rectangular (Quadrilateral) Elements

Temperature distribution for an element

Shape functions

i

je

i j m n

m

n

T

TT S S S S

T

T

Page 6: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

6

11 Chap.6 Heat Transfer Analysis

Heat Transfer Problems – FE Formulation

Formulation with Rectangular (Quadrilateral) Elements

Galerkin approach for the heat diffusion equation

2 2

2 2

e

i i x yA

T TR S k k q dA

x y

2 2

2 2

e

j j x yA

T TR S k k q dA

x y

2 2

2 2

e

m m x yA

T TR S k k q dA

x y

2 2

2 2

e

n n x yA

T TR S k k q dA

x y

n

k

j

i

T

S

S

S

S

][S

12 Chap.6 Heat Transfer Analysis

Heat Transfer Problems – FE Formulation

Formulation with Rectangular (Quadrilateral) Elements

Let

By applying the chain rule

1 2 3, , x yC k C k C q

2

2

T

T TT T T

x x x x x

SS S

2

1 1 12

T

T T

A A A

T T TC dA C dA C dA

x x x x x

S

S S

2

2 2 22

T

T T

A A A

T T TC dA C dA C dA

x x x x x

S

S S

Page 7: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

7

13 Chap.6 Heat Transfer Analysis

Heat Transfer Problems – FE Formulation

Formulation with Rectangular (Quadrilateral) Elements

Calculation of each term

2

1 1 12

T

T T

A A A

T T TC dA C dA C dA

x x x x x

S

S S

1

i i

j j

i j m n

m m

n n

T T

T TTS S S S w y w y y y

x x wT T

T T

1

iT

j

m

n

S w y

S w y

S yx x w

S y

S

14 Chap.6 Heat Transfer Analysis

Heat Transfer Problems – FE Formulation

Formulation with Rectangular (Quadrilateral) Elements

Calculation of each term (cont’d)

1

2 2 1 1

2 2 1 1

1 1 2 26

1 1 2 2

i

j

m

n

T

TC w

T

T

3 22 2

20 0 0

1 12

3 2

w w ww y dydx w w w dx

w w

3 3

2 20

1 1 1

3 3 3

w w wdx

w w

Page 8: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

8

15 Chap.6 Heat Transfer Analysis

Heat Transfer Problems – FE Formulation

Formulation with Rectangular (Quadrilateral) Elements

Calculation of each term (cont’d)

33 3

1

1

14

1

i

T j

A Am

n

S

S C AC dA C dA

S

S

S

1

2 1 1 2

1 2 2 1

1 2 2 16

2 1 1 2

i

j

m

n

T

TC w

T

T

2

T

A

TC dA

y y

S

2 2

1 2 32 20

T T T

A A A

T TC dA C dA C dA

x x

S S S

=

16 Chap.6 Heat Transfer Analysis

Heat Transfer Problems – FE Formulation

Formulation with Rectangular (Quadrilateral) Elements

[Review] Galerkin equation

By applying Green’s theorem

2 2

1 2 32 20

T T T

A A A

T TC dA C dA C dA

x x

S S S

2

1 1 12

T

T T

A A A

T T TC dA C dA C dA

x x x x x

S

S S

2

2 2 22

T

T T

A A A

T T TC dA C dA C dA

x x x x x

S

S S

: The element boundary

: The angle to the unit normal

Page 9: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

9

17 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Rectangular (Quadrilateral) Elements

Energy conservation in x-direction

Green’s theorem in x-direction

cond. conv.q q f

Tk h T T

x

1 cos cos cosT T T

f

T TC d k d h T T d

x x

S S S

1 1 cosT T

A

T TC dA C d

x x x

S S

Convective boundary conditions

18 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Rectangular (Quadrilateral) Elements

Convective boundary conditions along different edges of

the rectangular element: related to the stiffness matrix

2 0 0 1

0 0 0 0

0 0 0 06

1 0 0 2

e nih

K

0 0 0 0

0 0 0 0

0 0 2 16

0 0 1 2

e mnh

K

0 0 0 0

0 2 1 0

0 1 2 06

0 0 0 0

e jmh

K

,ij mn jm in w

Page 10: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

10

19 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Rectangular (Quadrilateral) Elements

How to get the matrix?

i i

T j j

i j m n

m m

n n

T

S T

S Th Td h S S S S d

S T

S T

S

2

2

2

2

ii j i m i n i

ji j j m j n j

i m j m m n m m

i n j n m n n n

TS S S S S S S

TS S S S S S Sh d

S S S S S S S T

S S S S S S S T

2 1 0 0

1 2 0 0

0 0 0 06

0 0 0 0

e ijh

K cosT

h T d

S

20 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Rectangular (Quadrilateral) Elements

Along the edge ij: ,

1 1 1

2

2

1 11 1 1 1 1 1 0 0

4 16

1 11 1 1 1 1 1 0 0

2 16 4

0 0 0 0

0 0 0 0

i

T jij

m

n

T

Thh Td d

T

T

S

2

21

1

1 11 1 1 0 0

2 1 0 02 4

1 2 0 01 11 1 1 0 0

0 0 0 02 64 4

0 0 0 00 0 0 0

0 0 0 0

i i

T j jij ij

m m

n n

T T

T Th hh Td d

T T

T T

S

Page 11: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

11

21 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Rectangular (Quadrilateral) Elements

Elemental thermal load matrix

,ij mn jm in w

1

1

02

0

e f ijhT

F

1

0

02

1

e f nihT

F

0

0

12

1

e f mnhT

F

0

1

12

0

e f jmhT

F

cos cosT T

fh T d h T d

S S

22 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Rectangular (Quadrilateral) Elements

The conductance matrix for a bilinear rectangular element

Thermal load vector due to the heat generation :

Thermal load vector due to the convection (see the previous page)

[K]{T} = {F}

Page 12: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

12

23 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Triangular Elements

Shape function

Area-based coordinate

i

e

i j k j

k

T

T S S S T

T

i j k k jX Y X Y

j k i i kX Y X Y

k i j j iX Y X Y

i j kY Y

j k iY Y

k i jY Y

i k jX X

j i kX X

k j iX X i j

k

Ai Aj

Ak

24 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Triangular Elements

Residual equations for a triangular element (Galerkin approach)

Applying the chain rule (2nd derivative => 1st derivative)

1

T

A

TC dA

X X

S

Page 13: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

13

25 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Triangular Elements

Substituting for the derivatives

Same calculation for the 2nd derivative with respect to Y (Term 2)

1 1 2

1

4

T i i

j i j k jA A

k k

TT

C dA C T dAX X A

T

S

2

222 2

24

T i i j i k i

i j j j k jA

i k j k k k

TCT

C dA TY Y A

T

S

26 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Triangular Elements

Thermal load matrix due to the heat generation (Term 3)

Convective boundary conditions along the edges of triangular element

A

f

T

A

T

f

T dThdThdTTh

cos][ cos][ cos)(][ SSS

A

f

T

A

T

f

T dThdThdTTh

sin][ sin][ sin)(][ SSS

, ,ij jk ki : the length of the three sides of the triangular element

Page 14: Chap. 6 Analysis of 2d Heat Transfer Problem CAE · 2016-02-27 · 7 13 Chap.6 Heat Transfer Analysis Heat Transfer Problems – FE Formulation Formulation with Rectangular (Quadrilateral)

14

27 Chap.6 Heat Transfer Analysis

Heat Transfer Problems

Formulation with Triangular Elements

Elemental thermal load vector

Elemental conductance matrix

A

f

T

A

T

f

T dThdThdTTh

cos][ cos][ cos)(][ SSS

A

f

T

A

T

f

T dThdThdTTh

sin][ sin][ sin)(][ SSS

X-dir. conduction Y-dir. conduction

Cf) Ex. 7.1

(p. 279~286)