istilah dalam heat transfer

50
Istilah - istilah terkait PERPINDAHAN KALOR: 1. Condensation : pengembunan 2. Boiling : fenomena didih 3. Film condensation : kondensasi film (jika permukaan itu basah karena zat cair, akan terbentuklah suatu film yang halus dan proses. 4. Random : acak 5. Dropwise condensation : kondensasi tetes 6. Nucleation site density : densitas tempat nukleasi 7. Temperatur gradient : landaian suhu 8. Thermal resistance : tahanan thermal 9. Saturation temperature : suhu jenuh 10. Viscous shear : geser viskos 11. Film boiling : didih film, daerah ini menunjukkan terjadinya transisi dari didih nukleat ke didih film dan tidak stabil. Didih yang stabil akan mencapai ke daerah V. 12. Viscous shear force : gaya geser viskos 13. Peak boiling heat fluks = fluk kalor didih puncak 14. Peak heat fluks : fluks kalor puncak 15. Forced convection vaporization = penguapan konveksi paksa 16. Force bouyancy : gaya apung 17. Super heated : panas lanjut 18. Bila suatu permukaan bersentuhan dengan zat cair dan dipelihara pada suhu yang lebih tinggi dari suhu jenuh zat cair, akan terjadilah pendidihan dan fluks kalor yang berlangsung bergantung pada perbedaan antara suhu permukaan dan suhu jenuh. Bila permukaan yang dipanaskan itu terbenam dibawah permukaan bebas zat cair, proses ini disebut didih 1

Upload: raedyanwar

Post on 25-Jan-2016

42 views

Category:

Documents


7 download

DESCRIPTION

Perpindahan Panas

TRANSCRIPT

Page 1: Istilah Dalam Heat Transfer

Istilah - istilah terkait PERPINDAHAN KALOR:

1. Condensation : pengembunan

2. Boiling : fenomena didih

3. Film condensation : kondensasi film (jika permukaan itu basah karena zat

cair, akan terbentuklah suatu film yang halus dan proses.

4. Random : acak

5. Dropwise condensation : kondensasi tetes

6. Nucleation site density : densitas tempat nukleasi

7. Temperatur gradient : landaian suhu

8. Thermal resistance : tahanan thermal

9. Saturation temperature : suhu jenuh

10.Viscous shear : geser viskos

11.Film boiling : didih film, daerah ini menunjukkan terjadinya transisi dari didih

nukleat ke didih film dan tidak stabil. Didih yang stabil akan mencapai ke daerah

V.

12.Viscous shear force : gaya geser viskos

13.Peak boiling heat fluks = fluk kalor didih puncak

14.Peak heat fluks : fluks kalor puncak

15.Forced convection vaporization = penguapan konveksi paksa

16.Force bouyancy: gaya apung

17.Super heated : panas lanjut

18.Bila suatu permukaan bersentuhan dengan zat cair dan dipelihara pada suhu

yang lebih tinggi dari suhu jenuh zat cair, akan terjadilah pendidihan dan fluks

kalor yang berlangsung bergantung pada perbedaan antara suhu permukaan

dan suhu jenuh. Bila permukaan yang dipanaskan itu terbenam dibawah

permukaan bebas zat cair, proses ini disebut didih kolam (pool boiling). Jika

suhu zat cair berada dibawah suhu jenuh proses itu disebut didih dingin lanjut

(subcooled boiling) atau didih lokal (local boiling). Jika zat cair itu dipelihara pada

suhu jenuh, proses ini disebut didih jenuh (saturated boiling) atau didih limbak

(bulk).

19.Penukar kalor adalah suatu alat yang memungkinkan perpindahan panas dan

bida berfungsi sebagai pemanas maupun sebagai pendingin.

1

Page 2: Istilah Dalam Heat Transfer

20.Alat penukar panas merupakan suatu alat yang menghasilkan perpindahan

panas dari suatu fluida yang temperaturnya lebih tinggi ke fluida yang

temperaturnya lebih rendah.

21.Koefisien perpindahan kalor dapat ditentukan dengan menggunakan analogi

perpindahan kalor dan massa.

22.Bentuk alur permukaan yang berbeda menghasilkan pola aliran dan distribusi

kecepatan fluida yang berbeda sehingga berbeda pulanilai koefisien

perpindahan kalornya.

23.Geometri permukaan sirip : luasan pada bidang tertentu yang berbentuk sirip.

24.Usaha-usaha untuk meningkatkan koefisien perpindahan kalor dengan jalan

merubah bentuk geometris, posisi, dan arah aliran udara.

25.Metode perpindahan kalor dengan perpindahan massa didasarkan pada analogi

Reynolds yang menghubungkan parameter-parameter kunci dari lapis batas

kecepatan, termal, dan konsentrasi untuk angka Prandtl dan Schmidt.

26.Koefisien perpindahan kalor mengalami peningkatan seiring dengan

meningkatnya kecepatan aliran fluida. Hal ini menunjukkan bahwa jumlah

massa yang terbawa aliran fluida akibat gaya gesek (shearing) di permukaan

sirip semakin besar karena kecepatan aliran fluida yang tinggi menghasilkan

energi mekanik yang besar.

27.Teori lapis batas bahwa aliran fluida pada daerah pengecilan luas

penampang akan mengalami peningkatan kecepatan dengan menurunnya

tekanan, dan kecepatan akan menurun dengan meningkatnya tekanan aliran

fluida pada daerah pembesaran luas penampang. Peningkatan tekanan tersebut

memungkinkan terbentuknya daerah aliran terpisah (separated flow-region)

sehingga terjadi resirkulasi aliran fluida, yang selanjutnya pola aliran fluida

menjadi tidak teratur dan acak yang dapat memperbesar koefisien

perpindahan kalor.

28.Hubungan bilangan Nusselt (Nu) dan bilangan Reynolds (Re)

menggambarkan koefisien perpindahan kalor konveksi tak berdimensi

sebagai fungsi bilangan Reynolds.

29.Meningkatnya gangguan aliran fluida pada permukaan sirip menyebabkan

pola aliran menjadi tidak teratur yang bermuara pada meningkatnya bilangan

Nusselt sehingga pola aliran menjadi tidak teratur dan acak yang

mengakibatkan besarnya jumlah massa yang hilang.

2

Page 3: Istilah Dalam Heat Transfer

30. Sasaran utama rancangan termal penukar kalor adalah untuk menentukan berapa luas

permukaan yang diperlukan untuk memindahkan kalor pada laju tertentu dengan suhu

zat cair dan laju aliran tertentu. Hal ini akan lebih mudah dengan menggunakan

koefisien perpindahan kalor menyeluruh (U), dimana persamaan perpindahan kalor

adalah

q=U A∆T

Untuk koefisien perpindahan kalor untuk persamaan pada bidang datar adalah :

Bidang datar : U= 11/h0+L /k+1/hi

31.Akibat interaksi antar partikel zat-cair, maka permukaan zat-cair memiliki

kekuatan untuk menahan sesuatu yang ada di atasnya disebut tegangan

permukaan (surface tension).

32.Ketakstabilan aliran adalah perubahan laju alir secara tiba-tiba didalam kanal yang dipanaskan yang disebabkan oleh adanya perubahan karakteristik pressure drop dari aliran satu fase kealiran dua fase atau sebaliknya. Fenomena perubahan karakteristik pressure drop dapat dihubungkan dengan peristiwa lepasnya gelembung-gelembung dari dinding kanal.

33.Aliran dua fase  dua fase merupakan bagian dari aliran multi-fase. Studi tentang aliran dua fase dapat kita perhatikan atas beberapa bagian, yaitu wujud fase, arah aliran dan kedudukan saluran yang diperhatikan.

34.Aliran dua fase merupakan bagian dari aliran multi-fase. Studi tentang aliran dua fase dapat kita perhatikan atas beberapa bagian, yaitu wujud fase, arah aliran dan kedudukan saluran yang diperhatikan. Aliran dua fase ini banyak dijumpai baik dalam kehidupan sehari-hari maupun dalam proses-proses industri, seperti pada ketel uap, kondensor, alat penukar panas, reaktor nuklir, pencairan gas alam, pipa saluran dan lain-lain.

35.Pola aliran dua fase dalam saluran mendatar akan berbeda dengan yang vertikal. Dalam saluran mendatar gas akan cenderung berada diatas karena lebih ringan. Pola aliran vertikal dapat terdiri dari :

3

: tegangan permukaan

F : gaya yang bekerja sepanjang kawat L dan dasar kawat U

S : ketebalan lapisan fluida

L : kawat yang bebas bergerak

γ= F2 L

= F2 L

SS= W

2 A

Page 4: Istilah Dalam Heat Transfer

1. Aliran gelembung (bubble), dimana fase gas atau uap disebarkan sebagai gelembung yang mempunyai ciri tersendiri dalam fase cairan secara kontiniu dan kadang-kadang gelembung mempunyai ukuran yang sama (uniform).

2. Aliran kantung udara (slug), gas yang mengalir membentuk gelembung besar (kadang-kadang gelembung kecil terdistribusi di cairan).

3. Aliran acak (churn), disini terjadi gerakan osilasi sehingga cairan menjadi tidak stabil.

4. Aliran cincin (annular), dimana sebagian fase likuid berlaku sebagai film didinding pipa dan sebagian lagi berupa tetesan yang terdistribusi dalam gas yang mengalir pada bagian tengan pipa.

5. Aliran cincin kabut tetes cairan (wisphy annular), konsentrasi tetesan dalam gas bertambah dan akhirnya bergabung membentuk gumpalan.

Dalam penelitian ini telah dilakukan pengamatan tentang konfigurasi aliran (pola

aliran, pengukuran kecepatan kantung udara, penurunan tekanan dan fraksi

hampa (void fraction)). Pola aliran diperoleh dengan melakukan perubahan

kecepatan aliran gas (Jg) dan kecepatan aliran cairan (Jl).

Karakterisasi aliran dua fase sangat penting untuk proses perpindahan panas

dan mekanisme aliran. Tujuan mempelajari aliran dua fase, suatu prediksi untuk

menggambarkan peformance peralatan seperti penurunan tekanan, fraksi

hampa, koefisien perpindahan panas dan massa serta fenomena fisik dari

peralatan (Collier, 1980). Contoh lainnya adalah lapisan film pada peristiwa

evaporasi. Dimana lapisan film yang tipis akan menyebabkan melepuhnya pipa.

Bila kantung gas yang dihasilkan lebih panjang maka lapisan film yang terbentuk

akan semakin tipis.

Hasil yang didapat adalah penurunan tekanan dipengaruhi oleh fluks kalor,

fluks massa dan temperatur saturasi serta R-290 mempunyai penurunan

tekanan lebih rendah dibanding R-22. Sedangkan untuk perpindahan kalor,

variasi fluks massa menunjukkan tidak ada perubahan baik untuk R-22 dan R-

290. Persamaan prediksi Lokhart-Martinelli (1949) hasil yang paling baik untuk

penurunan tekanan eksperimen. Kandlikar (1990) mempunyai prediksi paling

baik untuk R-22. Untuk pola aliran dibandingkan antara observasi langsung

dengan prediksi pola aliran dari Wojtan et al (2005) dan Wang et al (1997).

Pengenalan Flow Boiling

4

Page 5: Istilah Dalam Heat Transfer

Perpindahan kalor pada fluida dapat dibedakan menjadi dua jenis yaitu

normal heat transfer yang tidak mengubah fase fluida dan boiling heat transfer

yang memainkan perubahan fase fluida yang bersangkutan. Perpindahan kalor

identik dengan energi diparameterkan salah satunya dengan delta T atau perubahan

temperatur. Hal ini terjadi pada normal heat transfer, ketika kita ingin menaikkan

energi atau kalor maka perubahan temperatur harus diperbesar atau Q sebanding

dengan ∆T.

Namun hal lain ditunjukkan pada boiling heat transfer, energi yang dapat

diberikan atau diterima lebih besar meskipun tidak terjadi perubahan temperatur,

artinya kalor akan berpindah dengan perubahan fase fluida sehingga

mendapatkan enthalpy yang besar tanpa adanya perubahan temperatur.

Besarnya manfaat boiling heat transfer membuat engineering terdahulu

menemukan berbagai alat meskipun belum terlalu mengerti proses boiling heat

transfer secara mendetail  dan hanya memberikan batasan aman seperti safety

factor serta trial error dalam mendapatkan nilai aman tersebut. Misalnya boiler untuk

menguapkan air, steam turbin untuk memanfaatkan air menjadi pembangkit dengan

mengubah fase menjadi uap air melalui penambahan heat, organic rankine cycle 

adalah alat yang memanfaatkan siklus rankine  menggunakan refrigerant sebagai

fluida yang dapat menghasilkan energi gerak melalui turbin, sistem pendingin yang

memanfaatkan kondensor untuk membuang kalor sehingga refrigerant berpindah

fase dari gas ke liquid dan evaporator dengan menerima kalor sehingga berubah

fase refrigerant dari fase liquid ke gas. Beberapa alat yang dijelaskan tersebut

memanfaatkan boiling heat transfer dengan mengubah fase fluida sehingga

mendapatkan energi berupa kalor yang besar pada temperatur konstan.

Temperatur ini menjadi parameter penting yang disebut temperatur saturasi

atau didih dimana nilainya dipengaruhi oleh tekanan. Jika dilihat di diagram

thermodinamika misalkan P-h diagram, semakin besar tekanan maka semakin

besar temperatur saturasi fluida. Sampai sekarang peristiwa boiling heat transfer

tetap menjadi topik penelitian yang populer untuk mengetahui karakteristik dan

menciptakan suatu alat yang lebih efisien dengan memanfaatkan proses tersebut.

Boiling heat transfer dibedakan menjadi dua bagian, yaitu pool boiling dan

flow boiling. Perbedaan antara dua jenis boiling tersebut adalah pada pool boiling

mempunyai fluida diam atau tidak mengalir misalnya memasak air pada panci

sampai air yang dimasak semakin sedikit karena telah menguap, sedangkat flow

5

Page 6: Istilah Dalam Heat Transfer

boiling mempunyai fluida yang bergerak ketika berubah fase. Flow boiling banyak

manfaatnya dalam kehidupan sehari-hari contohnya pada evaporator, vaporator,

reboiler, steam generator, dll.

Untuk mengetahui kejadian boiling kita dapat membayangkan suatu pipa

diletakkan secara horizontal dengan panjang 20 m yang dialiri suatu fluida misalnya

air dengan mass flux yang konstan dan diberi heat flux konstan pada dinding

pipa. Kemudian fluida masuk pada temperatur beberapa derajat lebih rendah dari

temperatur saturasi fluida tersebut dengan tekanan kerja meskipun telah diheater

sebelumnya. Ketika memasuki test section fluida mulai naik temperaturnya karena

pengaruh heat flux di dinding sampai temperatur saturasi fluida, pada bagian ini

perpindahan kalor masih konveksi sampai timbul gelembung-gelembung uap air,

timbulnya gelembung-gelembung uap air yang terjadi sebelum temperatur saturasi

disebut didih pra jenuh dan temperatur fluida masih mengalami kenaikan.

Gelembung uap air yang muncul pada kondisi pra jenuh karena ketidak merataan

dari heater yang menghasilkan heat flux untuk meningkatkan temperatur dinding,

artinya daerah yang timbul gelembung mempunyai temperatur yang lebih tinggi

dibanding daerah lain sehingga temperatur fluida di daerah yang dekat dinding telah

memasuki saturasi.

Ketika fluida masih satu fase, fluida di center cross section pipa mempunyai

temperatur yang lebih rendah dibanding dinding pipa, hal itu karena kalor mengalir

dari dinding ke fluida yang dekat dinding, jika diasumsi tidak ada slip maka

perpindahan kalor terjadi secara konduksi ketika kecepatan fluida di dinding nol,

kemudian fluida di bagian tengah pada cross section mempunyai kecepatan yang

lebih besar sehingga kalor menjalar secara konveksi, namun kalor dari posisi

tersebut diterima ketika fluida berjalan, dengan kata lain fluida di posisi center dari

pipa dipengaruhi oleh penjalaran kalor secara konveksi dari posisi sebelumnya.

Sehingga posis fluida posisi center cross section pipa mempunyai temperatur yang

lebih rendah dibanding fluida di dinding. Daerah fluida ketika masih satu fase

berupa air saat memasuki test section sampai timbul gelembung-gelembung

karena ketidakmerataan heat flux pada titik tertentu dan kemudian sampai

temperatur fluida yang diukur dari centre cross section pipa telah memasuki

temperatur saturasi disebut daerah subcooled. Daerah ini menjadi penting untuk

ditentukan sebelumnya dalam percobaan karena dapat mempengaruhi hasil

6

Page 7: Istilah Dalam Heat Transfer

pengukuran. Titik awal yang berbatasan dengan akhir daerah subcooled akan

mempunyai kwalitas uap (x) nol.

Pada percobaan imaginer ini kita bisa mengasumsikan bahwa selama proses

di test section pressure drop kecil bahkan bisa diabaikan. Kemudian kita bisa

bayangkan lagi bahwa ketika aliran melewati daerah subcooled telah timbul

gelembung-gelembung uap, karena pengaruh ketidak merataan heat flux. Kemudian

semakin melewati test section intensitas gelembung menjadi semakin banyak. Masa

jenis uap yang sangat lebih kecil dibanding air yang bisa mencapai 1/1000 membuat

kecepatan uap air menjadi lebih cepat. Dengan jumlah uap air yang terus bertambah

membuat gabungan dari gelembung-gelembung gas yang kecil menjadi gelembung

menyerupai kantong yang panjang .Posisi liquid masih berada dibawah karena

pengaruh gravitasi dan masa jenis yang lebih besar. Kemudian peluang yang terjadi

setelah itu adalah liquid dan gas terjadi separasi dimana liquid dibawah dan gas

diatas dengan  permukaan bidang sentuh yang sangat halus. Makin bertambahnya

kecepatan gas dalam hal ini uap air membuat interaksi dengan liquid yang

menimbulkan gelombang. Gelombang terus terjadi seiring bertambanya uap air

sampai akhirnya amplitudo gelombang meningkat yang membuat liquid menyentuh

dinding atas dari pipa karena amplitudo gelombang yang sangat besar. Setelah itu

semakin berjalannya fluida pada test section bentuk aliran seperti cincin dimana

pada tengan dari pipa cross section berisi uap dan diselimuti oleh liquid, karena

pengaruh gravitasi lapisan liquid bagian bawah lebih tebal dibanding atas pipa yang

berupa liquid film, kemudian liquid film bagian atas menguap, diikuti lapisan

bawah menjadi liquid film, sampai akhirnya menjadi aliran satu fase yaitu uap

air. Konfigurasi dari uap air tidak selalu simetris, bahkan peluang untuk tidak

simetris lebih besar. Apabila mass flux, jenis fluida, diameter dan bentuk test

section, saturasi fluida dan heat flux berbeda akan mempunyai pola aliran

yang tidak selalu sama dan letak setiap aliran akan berbeda jika kita

membayangkan test sectionnya sangat panjang.

7

Page 8: Istilah Dalam Heat Transfer

Gambar 1. Pola Aliran Flow Boiling

Jika kita belah per luasan pipa akan menggambarkan posisi atau konfigurasi

serta komposisi yang berbeda-beda antara uap air dan air. Dan setiap percobaan

jika kita membayangkan terdapat kamera setiap titik di pipa sehingga kita dapat

mengamati setiap kejadian proses. Hasilnya adalah kita akan mendapatkan titik

timbulnya gelembung yang tidak sama dalam setiap percobaan, hal ini lah yang

disebut unsteady terhadap time dan space. Kata time artinya jika kita menjaga

parameter fluida, temperatur, tekanan, heat flux dan mass flux tetap sama

namun timbulnya gelembung dan penentuan terbentuknya pola aliran belum

tentu sama setiap percobaan, Kemudian kata space artinya pada cross section

mempunyai parameter temperatur yang berbeda-beda pada setiap titiknya

dalam cross section hal ini ditambah dengan apabila jarak yang berbeda akan

nilai temperatur setiap titik di cross section akan berbeda pula ditambah lagi

dengan timbulnya fase lain dalam hal ini vapor yang membuat nilai temperatur

berbeda. Sehingga persamaan awal yang tidak bisa diasumsi adalah 4 differential

dengan 3 space (x,y,z) dan 1 time (t). Maksudnya adalah ketika kita dapat

mengkalkulasi heat transfer secara konduksi pada kawat yang sangat panjang

dengan mengasumsi pergerakan 1 arah (one directional) yang tentunya 1

penurunan arah dan steady state, serta misanya konduksi pada plat yang tipis kita

bisa mengasumsi pergerakan kalor 2 arah (two directional) sehingga turunan 2 arah

dan steady state (tetap/ sama), namun pada flow boiling di aliran dalam pipa,

penurunan numerik yang harus dilakukan adalah 4 arah sekaligus.

Bulk temperatur setiap posisi akan berbeda beda, hal ini menjadi penting

karena parameter thermofluid sangat dipengaruhi dengan temperatur dari fluida.

Sebagai contoh pada tekanan konstan masa jenis, viskositas adalah fungsi dari

temperatur. Kita bisa membayangkan ketika terjadi flow boiling kita menghentikan

sesaat proses tersebut kemudian membelah secara cross section posisi tertentu.

8

Page 9: Istilah Dalam Heat Transfer

Seperti dijelaskan sebelumnya bahwa fluida mempunyai temperatur yang

berbeda-beda setiap posisi pada cross section dimana dibagian tengah lebih

rendah dibanding fluida di dinding untuk satu fase, ditambah lagi terdapat fase lain

berupa uap air pada bagian cross section posisi tersebut. Kemudian nilai temperatur

pada setiap posisi yang berbeda-beda dan mempunyai hasil yang berbeda pula

ketika dilakukan percobaan kembali pada parameter yang sama dan posisi

pengambilan data yang sama pula. Dengan kata lain distribusi temperatur dan 

konfigurasi uap air berpeluang berbeda. Sehingga karena begitu pentingnya

temperatur bulk maka cara yang paling ideal adalah dengan merata-ratakan secara

statistik temperatur setiap titik dan setiap pengambilan data pada posisi dan

parameter yang sama.

Gambar 2. Cross Section Posisi Tertentu Flow Boiling

Dengan didapatkan temperatur bulk setiap posisi terhadap space dan time,

maka penurunan parameter thermofluida dapat dicari, misalkan masa jenis,

viskositas, dll. Kemudian dengan mengasumsi pressure drop pada test section

sangat kecil dan bisa diabaikan, kita dapat menentukan kwalitas uap pada setiap

posisi test section dengan menggunakan temperatur bulk dan tekanan pada diagram

thermodynamic, P-h atau T-s. Kwalitas uap menggambarkan perbandingan massa

vapor dengan massa vapor dan liquid, artinya kwalitas uap berbicara dengan

volume. Kemudian kita bisa membayangkan menggunakan wire pada setiap posisi

yang dapat membaca posisi liquid dan vapor dengan menggambarkan gelombang

yang berbeda setiap fasenya, dan posisi wire dibuat serapat mungkin untuk setiap

posisi namun diasumsi tidak merusak pola aliran dan menambah pressure drop

serta tidak menimbulkan cavitasi. Sehingga kita dapat menggambarkan konfigurasi

uap air dan air pada setiap posisi test section. Luasan dari setiap pipa sama yang

terdapat komposisi uap air dan air yang berbeda-beda didalamnya, sehingga timbul

parameter baru yang disebut void fraction yaitu perbandingan luasan vapor

9

Page 10: Istilah Dalam Heat Transfer

dengan luasan vapor dan liquid atau luasan cross section pipa. Artinya adalah

void fraction berbicara tentang luasan. Setiap test section mempunyai nilai yang

berbeda-beda, namun logikanya jika mass flux dan heat flux tidak dirubah-rubah

selama percobaan maka void fraction dan kwalitas uap dari fluida makin

panjang melewati test section semakin membesar nilainya. Contohnya pada

awal temperatur fluida di center dari pipa belum memasuki temperatur saturasi dan

masih pada konsisi satu fase artinya gelembung belum muncul maka void fraction

bernilai nol dan kwalitas uap bernilai nol juga, sedangkan pada posisi vapor semua

(1 fase) maka kwalitas uap bernilai 1 dan void fraction bernilai 1 juga. Sehingga

terdapat persamaan secara ekperimen untuk menentukan void fraction salah

satunya fungsi dari kwalitas uap. Parameter ini menjadi penting dalam

menggambarkan dan menentukan pola aliran flow boiling. Teknis pada

percobaan akan sangat sulit menentukan pola void fraction secara aktual, karena

dapat merusak pola aliran dan pressure drop makin besar jika terdapat suatu sensor

yang dapat menggambarkan void fraction yang dimasukkan di dalam test section.

Mekanisme didih dibedakan menjadi satu diantaranya hanya ada di flow

boiling. Didih nukleat terjadi dimana gelembung-gelembung uap terbentung

pada permukaan padat, proses ini identik dengan terdapatnya cavity (celah

sempit) pada permukaan padat. Didih konveksi, proses ini hanya ada di flow

boiling dimana panas dikonduksi oleh film liquid, kemudian liquid menguap

pada batas fase liquid-uap tanpa ditandai oleh timbulnya gelembung. Didih film

dimana permukaan pemanasan diselimuti oleh film uap, dan panas dikonduksi

melalui uap dan liquid menguap pada batas fase liquid-uap. Pada daerah ini

cenderung terbentuk fluk kalor kritis yang harus dihindari karena dapat

merusak komponen karena ketidaktahanan pada kalor yang terlalu tinggi.

Ketika permukaan diselimuti oleh uap yang tebal dan liquid tidak dapat

memasuki dan membasahi permukaan tersebut maka dapat membawa ke

fenomena fluk kalor kritis.

Heat Transfer pada Pengkondisian Udara

Pada tulisan ini hanya menitik berakkan di sistem ruangan pendingin, tidak

membicarakan refrigerant system. Pertama adalah proses radiasi, yaitu proses

perpindahan panas tanpa melalui medium. Penggunaan radiasi untuk proses air

conditioning adalah saat kalor telah dari ruangan (benda), aktifitas manusia di

10

Page 11: Istilah Dalam Heat Transfer

ruangan tersebut dan kalor masuk dari luar ruangan, misalkan panas matahari yang

terkontak di dinding ruangan. Komulatif dari kalor tadi akan menuju evaporasi,

dimana di evaporasi terjadi perubahan fase dari liquid ke gas, proses ini terjadi

karena kalor dari ruangan.

Proses kedua adalah konveksi, perpindahan kalor dengan berbeda medium,

maksudnya adalah dari konduksi berjalan ke radiasi. Contoh di kehidupan nyata

adalah penggunaan heater, dari panas coil menjadi uap panas. Misalkan suatu plat

panas kemudian, dialiri fluida gas. Properties gas dimana masa konstan dengan

pemanasan akan membuat volume mengembang sehingga masa jenis turun, hasil

akhir adalah gas panas akan naik keatas. Sehingga pada konveksi plat dipanaskan

dan dialiri gas, membuat temperature berbanding terbalik dengan kecepatan, namun

tidak berlaku kebalikannya. Untuk proses air conditioning konveksi berasal dari kalor

tubuh dari aktifitas seseorang di ruangan. Kalor akan naik diatas tubuh dibanding

udara dingin. Maka akan maksimal jika evaporator diletakkan di dinding atas.

Proses selanjutnya dalam heat transfer adalah konduksi, namun pada sistem

ini konduksi tidak terjadi. Kecuali evaporator tersentuh dengan reservoir panas.

Dalam mendisain pengkondisian udara faktor penting adalah temperature dan

humidity atau kelembapan. Faktor temperature dan humidity akan saling berkaitan

sehingga diperlukan tools yaitu psikometik diagram untuk tekanan tertentu.

Harapannya adalah didapat temperature dengan humidity sesuai standart

kenyamanan. Humidity akan berpengaruh pada kesehatan, contohnya paru-paru

basah apabila humidity relative 100% (uap air dibagi udara total adalah 

11

Page 12: Istilah Dalam Heat Transfer

Karakteristik Ice Slurry

Riset tentang ice slurry banyak ditujukan tentang aliran ice slurry untuk

mengetahui karakteristik thermofluida. Contohnya adalah Gupla dan Frazer (1990)

yang menjelaskan ice slurry menggunakan 6% ethylene glycol dengan fraksi es

pada ice slurry 0%-20% dan debit antara 1,18 m3/hour dan 2,16 m3/hour serta

ukuran ice slurry 0,125 mm dan 0,625 mm pada heat exchanger menghasilkan

kesimpulan bahwa kenaikan total koefisien perpindahan kalor sebanding dengan

debit dan berbanding terbalik dengan kenaikan fraksi es, tekanan jatuh konstan

sampai ice fraction 20% dan naik cepat pada kenaikan fraksi es lebih dari 20%.

Sedangkan Kauffeld (1999) melakukan riset dengan membandingkan campuran

etanol dan campuran potassium carbonate sebagai bahan ice slurry. Untuk larutan

etanol menghasilkan partikel es yang kecil mempunyai koefisien perpindahan kalor

yang meningkat seiring dengan bertambahnya fraksi es. Sedangkan dengan

campuran potassium carbonate menghasilkan partikel es yang besar dan

mempunyai koefisien perpindahan kalor yang menurun dengan bertambahnya fraksi

es.

Knodel (2000) menyimpulkan bahwa koefisien perpindahan kalor menurun

dengan bertambahnya fraksi es, hasil yang serupa dengan penelitian Gupla dan

Frazer (1990). Knodel menjelaskan bahwa pengurangan ini terjadi karena

perpindahan aliran fluida dari turbulen ke laminar karena faktor fraksi es yang

meningkat.  Hasil berbeda dilakukan oleh Bellas J, Chaer dan Tassou S.A (2002)

yaitu dengan mengukur ice slurry dari campuran 5% propylene glycol pada plate

heat exchanger dengan fraksi es antara 0 sampai 25% dan debit antara 1-3,7

m3/hour. Bellas menyimpulkan bahwa kenaikan fraksi es antara 0-20% membuat

tekanan jatuh naik sekitar 15% lebih dari jarak debit. Sedangkan total koefisien

perpindahan kalor naik secara signifikan dengan bertambahnya debit. Variasi fraksi

es tidak terlalu kelihatan pada hasil koefisien perpindahan kalor.

N. Putra, Imansyah, Noviandra dan R. Adiprana (2004) menggunakan ice

breakeruntuk menghasilkan ice slurry dan heat exchanger menghasilkan koefisien

perpindahan kalor naik ketika debit dan fraksi es naik. koefisien perpindahan kalor

dan tekanan jatuh adalah fungsi dari viscositas, reynold number, ukuran ice crystal

dan ice fraction.

Stamatiou dan Kawaji (2005) menguji koefisien perpindahan kalor dengan

menggunakan vertical rectangular channels yang diberikan heat flux. Hasil dari riset

12

Page 13: Istilah Dalam Heat Transfer

ini adalah terdapat nilai Nuselt Number (Nu) mengalami kenaikan dengan

bertambahnya fraksi es dan dinding heat flux. Dengan kata lain peleburan partikel es

pada awal pipa karena heat flux sehingga temperatur menjadi relatif rendah,

sehingga peranan perpindahan konveksi lebih tinggi dibanding konduksi. Selain itu,

kecepatan dipinggir dinding pipa berkuran ketika diberi heat flux, hal ini disebabkan

karena tidak terdapatnya ice fraction di pinggir diding panas, sedangkan kecepatan

pada fluida murni tidak berpengaruh ketika diberi heat flux.

Lee D.W., Yoon, E.S., Joo, M.C. dan  Sharma, A (2006) melakukan penelitian

perpindahan kalor dengan menggunakan 6,5% ethylene glycol pada pipa tembaga

diameter 13,84 mm panjang 1500 mm, ice slurry diberikan sirkulasi air panas pada

test section pada mass flux antara 800-3500 kg/m2s  dan fraksi es antara 0-25%.

Hasil penelitian ini adalah koefisien perpindahan kalor meningkat dengan

pertambahan debit dan fraksi es, namun efek fraksi es tidak terlalu siginifikan pada

debit tinggi. Pada area debit rendah terjadi kenaikan yang tajam pada koefisien

perpindahan kalor pada fraksi es lebih dari 10%.

Niezgoda-Zelasko (2006), Niezgoda-Zelasko-Zalewski (2006) dan Grozdek

(2009) melakukan penelitian tentang perpindahan kalor dan tekanan jatuh pada ice

slurry dari 10% ethanol dengan menggunakan pipa horisontal yang dipanaskan.

Hasilnya adalah pada fraksi es dan kecepatan yang tinggi mempunyai koefisien

perpindahan kalor dan tekanan jatuh yang tinggi juga. Penggunaan heat flux

mempengaruhi sedikit koefisien perpindahan kalor. Pada fraksi es antara 10-15%

mempunyai heat transfer coefficient yang naik secara perlahan pada aliran laminar

dan tidak ada kenaikan pada aliran turbulen dibanding dengan aliran satu fasa.

Melawati nilai tersebut mempunyai kenaikan heat transfer coefficient yang tinggi.

Jean Pierre Nedecarrats-Francoise Strub-Chistophe Peuverl (2009)

menggunakan pipa corrugated dengan diberi heat flux pada dinding pada

kecepatan ice slurry 0,3-1,9 m/s dan ice fraction 0-30%. Didapatkan hasil bahwa

nilai tekanan jatuh dan koefisien perpindahan kalor naik seiring dengan

bertambahnya fraksi es dan kecepatan. Pada penelitian ini ditemukan nilai kritis

antara tekanan jatuh dan perpindahan kalor yang menjadi titik turun sebelum naik

kembali. Perbandingan pipa corrugated dengan pipa halus untuk ice slurryadalah

nilai koefisien perpindahan kalor dan tekanan jatuh lebih tinggi sekitar 2,5 kali

dibanding hasil dari pipa halus.

13

Page 14: Istilah Dalam Heat Transfer

Penjelasan singkat diatas dapat disimpulkan bahwa karekteristik ice

slurrydipengaruhi oleh larutan pembentuk ice slurry, debit, fraksi es, dan ukuran

kristal. Namun hasil diatas masih belum dapat diterima secara luas untuk

menghitung perpindahan kalor dan tekanan jatuh dalam heat exchanger (Ayel et

al,.2003). Sehingga masih perlu dilakukan penelitian lebih lanjut tentang sifat-sifat

aliran ice slurry.

Diffusi Konveksi dan Skema Perhitungan

Difusi adalah suatu perpindahan fisik baik masa maupun kalor secara intra

molekuler, sehingga difusi erat kaitannya dengan konduksi. Konduksi identik dengan

suatu material solid, berbeda dengan konveksi. Konveksi biasa terjadi dengan

perpindahan kalor pada berbeda fase khususnya fluida, misalnya pendidihan  air.

Namun dalam kenyataannya konduksi juga terjadi pada fluida, kejadiannya ini terjadi

ketika kecepatan profil boundary layer nol atau berada di y = o saat

memperhitungkan sheer force yang berhubungan dengan viskositas. Maka dari itu

timbul beberapa bilangan tak berdimensi, misalnya Nuselt number (Nu), yaitu

bilangan perbandingan antara thermal resistance dari konduksi fluida dengan

konveksi fluida tersebut. selain itu terdapat parameter-parameter lain milasalnya Sc,

Sh yang timbul karena control volume dalam konservasi mass, sedangkan Nu,Pr

karena thermal.

Persamaan Umum pada general transport adalah

Suku pertama karena laju perubahan masa

Suku kedua konveksi

Suku ketiga konduksi

Suku keempat karena perubahan suku sumber, misalnya pada pembakaran dari

O2 berubah menjadi CO2, dan nilai CO2 adalah suku sumber

Karena persamaan dianggap steady state, maka temperatur tidak berubah terhadap

waktu dan jumlah mass flow yang masuk dan keluar sama, maka suku pertama

bernilai nol.

Persamaan hasil tinggal Untuk melakukan pendekatan

perhitungan secara manual dapat menggunakan metode numerik, iterasi gaus.

14

Page 15: Istilah Dalam Heat Transfer

namun apabila melakukan pendekatan secara numerik untuk digunakan dalam

software computer fluid dynamic terdapat beberapa skema dimana masing-masing

skema mempunyai kelebihan dan kekurangan masing-masing yang intinya untuk

melakukan suatu pendekatan secara akuran dan mempercepat waktu konvergensi

(konvergensi yang terjadi karena heat transfer, energi, dan fluida) dalam

perhitungan. Pendekatan numerik ini sangat berguna ketika data yang diinginkan

dalam perhitungan banyak dan sebanding dengan mesh/grid yang digunakan,

karena makin banyak mesh otomatis makin akurat. Namun belum tentu keakuratan

tersebut hanya dari mesh, faktor parameter juga mempengaruhi, misalnya koefisien

baja stainless steel akan berbeda jauh dengan baja stainless steel yang telah

berkurang lapisannya.

Dalam pendekatan tersebut inti kontinyunitas massa adalah harga mati dalam

pengasumsiannya. Terdapat beberapa pendekatan skema, antara lain :

1. Central Different — yaitu dengan menjumlahkan kecepatan output dan

input kemudian dibagi dua, untuk menentukan kecepatan rata-rata dimana

diambil pada keadaan fully development flow

2. Hybrid — Kombinasi antara central different dengan upwind

3. Power Low — Perubahan secara eksponensial dalam perhitungan

4. Upwind

5. Quick

Pendekatan tidak mempengaruhi faktor kekonvergensian dari perhitungan, karena

faktor kekonvergensian dipengaruhi oleh beberapa sebab, antara lain

Cell — terdapat cell yang belum diidentifikasi, sehingga parameter cell kosong,

misalnya ketika penentuan heat transfer salah satu cell tidak didefinisikan nilai

conductivitas thermal, sehingga program menjadi error ketika tidak dikenali

materialnya.

Boundary Layer — terdapat dinding yang terbuka, sehingga konvergensi massa

tidak terpenuhi. Dalam aplikasinya biasa menggunakan wall untuk boundary

layer

15

Page 16: Istilah Dalam Heat Transfer

Effisiensi Mesin Pendingin

Effisiensi sebuah mesin pendingin sering dinyatakan dengan istilah COP (Coefficient Of Performance) ataupun EER (Energy Efficiency Ratio).COP didapatkan dari perbandingan antara Kapasitas Pendinginan Qe (kW) dengan Daya Input Kompressor (kW)COP = Qe (kW) /W (kW)atau EER yaitu perbandingan Kapasitas Pendinginan (Btu/h) dengan Daya Input Kompressor (w)EER = Qe(Btu/h) / W (w)Semakin besar nilai COP atau EER semakin effisien sebuah mesin pendingin.

Kalau AC split wall mounted yang ada di pasaran, kira kira rentang nilai COP atau EER-nya berapa?

Ssecara umum rata-rata manufakturAC menuliskan 9000Btu/h untuk AC 1pk wall mounted.itu artinya jika Kompressor dengan daya 1pk akan menghasilkan pendinginan sebesar 9000Btu/h.1pk = 0.746 kW1Btu/h = 0.000293071kW

Jadi jika AC memiliki kapasitas pendinginan 9000Btu/h dgn daya input 1pk maka: COP = (9000 x 0.000293071) / 0.746COP = 2.638 / 0.746COP = 3.54

atau EER-nya:EER = 9000 / 746EER = 12

16

Page 17: Istilah Dalam Heat Transfer

Jadi makin besar COP atau EER- nya berarti Performance AC tersebut makin baik?

 Dipasaran ada beberapa manufaktur AC Split yang meng-claim paling hemat listrik dengan teknologi inverter-nya. Apakah ini berarti COP-nya naik juga?

Inverter system bukan berarti menaikkan nilai COP sehingga pemakaian energi listrik menjadi lebih hemat.Fixed speed drive adalah metoda yg digunakan pada ac konvensional. Kompressor bekerja sesuai dengan tegangan dan frekuensi jala-jala.Inverter adalah salah satu teknologi utk menghemat pemakaian arus listrik.Inverter memvariasikan tegangan dan frekuensi sesuai dgn kebutuhan atau dengan pengontrolan seperti PWM (Pulse Width Modulation)Ketika sistem pendingin mulai start up.....pada AC konvensional terjadi hentakan arus yg sangat besar 4-6kali FLA-nya karena Kompresor langsung mendapat tegangan dan frekuensi penuh (kalau di Indonesia misalnya 220VAC/50Hz utk single phase). Tetapi dengan sistem yg menggunakan teknologi inverter, untuk start up bisa dimulai dari 1/15 FLA sampai kemudian mencapai titik FLA secara bertahap.

Begitu juga ketika temperatur di ruangan yg dikondisikan mulai turun. AC konvensional

17

Page 18: Istilah Dalam Heat Transfer

tetap mendapat supply tegangan dan frekuensi yg sama seperti pada saat start up (kecepatan putaran kompressor tetap / tidak dipengaruhi oleh kondisi beban), berbeda dengan inverter system, dengan menerima input dari sensor ruangan inverter akan memvariasikan kapasitas kompresor menyesuaikan dengan beban pendinginan (kecepatan putar kompressor menyesuaikan beban).Jadi total penggunaan energi listrik jauh lebih hemat dengan inverter system dibanding dengan model konvensional.Nilai COP sendiri ditentukan dalam satu kondisi, misalnya pengukuran saat di indoor

temperatur 27°CDB / 19°CWB dan outdoor 35°CDB / 24°CWB

Teknologi inverter banyak digunakan pada AC jenis VRV ataupun VRF, apa yang dimaksud dengan VRV atau VRF tersebut?

VRV (Variable Refrigerant Volume) adalah hak patennya Daikin, model yang sama juga ada di manufaktur yang lain dengan nama yang berbeda, misalnya VRF (Variable Refrigerant Flow system) punya Fujitsu.Pada dasarnya keduanya sama,mengontrol jumlah aliran refrigeran yang mengalir ke Evaporator dan memvariasikan kecepatan putaran Kompresor, fan motor pendingin Kondenser, fan motor sirkulasi udara di Evaporator, intinya menyetel kondisi sistem supaya sesuai dengan kondisi beban.

Kondisi seperti apa yang bisa mempengaruhi effisiensi dan kerusakan apa saja yang umum terjadi pada AC jenis ini?

Kesalahan pada saat pemasangan baik itu piping design ataupun proses penanganan evacuation atau proses vakum atau pun penggunaan refrigeran yg tidak murni menjadi penyebab dasar kerusakan-kerusakan pada sistem.

Salah satu contoh: Proses vakum yg benar adalah dengan menggunakan alat vakum yang standard (mampu mencapai 29.9 inHg Vac.) sehingga mampu mengevakuasi udara dan foreign gas yg berada dalam pipa-pipa pada saat proses instalasi. Keberadaan udara dalam sistem selain menghambat proses refrigerasi juga bisa menyebabkan korosi (kandungan air yg terdapat di udara akan bereaksi dgn logam-logam yg ada di dalam komponen sistem refrigerasi, misalnya komponen mekanik pada kompressor. Yang  pada akhirnya bisa membuat Kompresor macet/electric motor dalam Kompresor menjadi short circuit.

18

Page 19: Istilah Dalam Heat Transfer

Kesalahan instalasi juga bisa berakibat fatal, pada sistem VRV/VRF pemasangan refnet joint dan ukuran pipa sangat menentukan agar sistem bisa bekerja normal. Pemasangan oil trap juga harus diperhatikan sehingga oli bisa bersirkulasi kembali kedalam kompresor (oli tidak terperangkap di jalur/komponen-komponen di indoor unit). Penggunaan oil separator pada sistem tidak berarti 100% oli tidak ikut bersirkulasi di dalam sistem.

Pemakaian refrigeran yang tidak murni juga sangat mempengaruhi kinerja mesin pendingin. Refrigeran yg beredar dipasaran walaupun type-nya sama bukan berarti 100% sesuai dengan karakteristik kimiawinya.

Admin pernah melakukan testing dengan memakai Refrigerant Identifier untuk melakukan pengecekan kemurnian refrigeran dan hasilnya ternyata untuk salah satu merk refrigeran R-134a yang kisaran harganya 400-500rb/13.6kg ternyata kandungan R-134a-nya cuma 26% sisanya R-22 + uap air.Dengan menggunakan refrigeran oplosan tersebut sudah jelas akan merusak kinerja mesin pendingin.

19

Page 20: Istilah Dalam Heat Transfer

Untuk kerusakan electric biasanya disebabkan fluktuasi tegangan listrik yg menyebabkan kinerja mesin tidak stabil.

Kerusakan-kerusakan sensor (thermistor, pressure switch, EEV solenoid dll) biasanya terjadi setelah sistem bekerja dalam waktu yang lama. Selebihnya human error pada saat part manufacturing atau saat instalasi unit.

Klik disini untuk melihat video cara penggunaan Refrigerant Identifier 

Sistem yang terpasang menggunakan R-22, kira-kira ada/tidak spesifikasi yang jelas untuk mengetahui kalau itu refrigeran murni?

Kalau untuk melakukan pengecekan hanya satu cara "gunakan Refrigerant Identifier" yang bisa mengidentifikasi komposisi chemicalnya.Refrigerant Identifier juga bisa dipakai untuk mengecek kondisi refrigeran dalam sistem yg sudah terpasang/terisi.

Cara lain adalah beli refrigeran yg bermerk seperti ELF, Freon, Genetron, Dupont. Harga memang jauh lebih mahal, tetapi kemurniannya terjamin.

20

Page 21: Istilah Dalam Heat Transfer

Bagaimana acuan yang baku untuk mengecek tekanan refrigeran yang tepat pada unit, kapan sebaiknya dilakukan pengecekan tersebut?Paling mudah lakukan pengecekan refrigeran pada saat peak load (biasanya saat siang hari) tapi jangan lagi hujan. Pada saat cuaca panas, mesin pendingin akan bekerja pada titik puncak.Sistem pendingin ruangan (AC) pada sisi tekanan rendah (Evaporator) bekerja pada titik evaporasi 0-10 derajat Celcius. Maksudnya pada titik puncak (peak load). Temperatur

Evaporasi berada dititik 10°C dan pada saat lowest load (beban terendah) tidak lebih

rendah dari titik 0°C.Ingat: "Tekanan kerja system dipengaruhi oleh beban pendinginan, semakin besar beban semakin tinggi kenaikan tekanan kerja system”.

Dari temperatur evaporasi tersebut bisa dikonversi ke tekanan kerja:

Untuk R-22: (0°C =3.97bar s/d 10°C = 5.8bar)Jadi range-nya dari 3.97 s/d 5.8baratau dalam satuan psig = 57.6 s/d 84.1psig57.6 psig saat beban terendah dan 84.1 psig saat beban puncak

jika system bekerja dibawah tekanan 57.6 di evaporator akan terjadi frost (bunga es) yang terjadi akibat uap air di udara membeku pada pipa di evaporator atau di bagian yang tekanannya dibawah 57.6psig.

Jika sistem bekerja diatas 84.1 psig, sistem bekerja eksta yang bisa menyebabkan overload. Kalaupun tidak terjadi overload, umur Kompressor tidak bisa bertahan lama dan konsumsi arus listrik menjadi lebih boros. Penyebabnya biasanya kapasitas unit pendingin lebih kecil dari beban pendinginan, atau bisa juga sistem mengalami overcharge. 

21

Page 22: Istilah Dalam Heat Transfer

Biasanya secara umum AC itu disebutkan dalam satuan PK, kalau di liat dari bahasan COP/EER di atas, maksud satuan PK di AC itu adalah daya kompresor? Bukan kapasitas pendinginannya, benarkah?

Di Indonesia daya sebuah motor kompresor sering disebut PK.PK, yaitu singkatan dari bahasa belanda “Paardekracht” yang artinya juga adalah TENAGA KUDA.COP/EER adalah ukuran prestasi kinerja suatu mesin pendingin.Satuan PK yang sering disebut di AC adalah daya Kompresor-nya.Sedangkan Kapasitas pendingin sering dinyatakan dalam Btu/h atau kW

22

Page 23: Istilah Dalam Heat Transfer

Saya pernah dengar ada yang bilang kalau ruangan kecil (contoh : 3m x 3m x 3m) pakai AC dengan PK besar (misal 1 PK atau 1 1/2 PK) maka AC bisa rusak. Benarkah?Kemudian tadi disebutkan bahwa 1 PK = 0,746 kW. Itu sama dengan 746 Watt kan?. Nah bagaimana dengan AC 1 PK tapi wattnya cuma 600 lebih. Apa itu berarti itu gak benar-benar 1 PK?Ya , bisa dikatakan seperti itu. AC dengan kapasitas yang oversize bisa membuat refrigeran cair tidak menguap dengan sempurna di evaporator (terutama yang menggunakan pipa kapiler sebagai expansion device-nya). Akibatnya refrigeran cair akan masuk ke pipa suction dan kemudian bisa masuk ke Kompresor. Refrigeran cair yang masuk ke Kompresor bisa merusak suction/discharge valve pada Kompresor tersebut.Yang pasti dengan kapasitas AC yang oversize, pemakaian listrik menjadi lebih boros, biaya instalasi lebih besar. Apalagi jika jenis AC yang digunakan masih type konvensional (tidak ada pengontrolan kapasitas) operasi AC (cycle ON-OFFnya akan lebih sering dibanding dengan AC yang memiliki kapasitas sesuai dengan ukuran ruangan).

Daya sebuah mesin pendingin dinyatakan pada satu titik tertentu. Misalkan: Manufaktur menyebutkan kapasitas mesin pendingin adalah 9000Btu/h dengan

input power 746 Watt pada kondisi indoor temperatur 27°CDB / 19°CWB dan outdoor

35°CDB / 24°CWB

Artinya: Dengan daya 1HP mesin akan menghasilkan kapasitas sebesar 9000Btu/h pada kondisi seperti tersebut diatas. Jika temperatur turun/berbeda dengan data yang diberikan manufaktur maka kapasitas mesin pendingin akan berbeda juga. Begitu juga dengan input power, akan berbeda.Secara umum dengan daya 1HP sebuah Air Conditioner akan menghasilkan kapasitas

pendinginan rata-rata 9000Btu/h apda temperatur evaporasi antara 0 s/d 10°C. Tetapi jika design unit lebih baik lagi maka bisa saja 1HP menghasilkan kapasitas pendinginan diatas 9000Btu/h, hal yg mempengaruhinya adalah COP/EER, semakin besar nilai COP/EER maka semakin effisien sebuah mesin pendingin.Maka jika membeli Air Conditioner coba perhatikan perbandingan kapasitas pendinginan dengan daya inputnya (perlu diperhatikan juga daya input yg tertulis pada nameplate Air Conditioner adalah daya total untuk seluruh system, jadi daya kompresor akan lebih kecil dari yg tertera pada name plate tersebut.Bisa saja seperti yang disebutkan dengan daya 600W bisa menghasilkan kapasitas pendinginan 9000Btu/h, tetapi itu bukan berarti Kompresornya 1PK.

COP aktual/COP carnot x 100% itu dipakainya buat apa dan kapan diperlukannya?

Carnot cycle adalah cycle ideal, cycle yg 100% effisien.sedangkan aktual cycle, selalu terjadi kerugian-kerugian, faktor gesekan, kerugian slip loss pada motor penggerak, dllUntuk menentukan seberapa besar efisiensi sebuah mesin maka diperlukan pembanding.Maka carnot cycle adalah pembanding terbaik utk semua mesin yg ada.

23

Page 24: Istilah Dalam Heat Transfer

Jadi kita bisa membandingkan efisiensi dua mesin aktual yg berbeda, semakin efisien sebuah mesin, semakin hemat dalam konsumsi arus listrik.

24

Page 26: Istilah Dalam Heat Transfer

Ukuran Kondenser vs Evaporator

Evaporator berfungsi untuk menyerap kalor untuk kemudian dibuang di Kondenser.Besarnya kalor yang diserap di Evaporator = Qe

Untuk memindahkan kalor yang diserap di Evaporator diperlukan daya/tenaga dari luar/external yaitu Kompresor.Besarnya daya untuk memindahkan kalor dari Evaporator ke Kondenser = W

Kondenser berfungsi untuk membuang/melepaskan kalor yang diserap oleh Evaporator.Besarnya kalor yang dibuang di Kondenser =Qc

Daya external untuk menggerakkan Kompresor tidak semuanya menjadi tenaga tetapi sebagian lagi menjadi panas akibat adanya gesekan antara bagian-bagian yang bergerak di Kompresor saat proses

26

Page 27: Istilah Dalam Heat Transfer

kompresi.

Kemana kalor yang timbul akibat gesekan itu harus dibuang agar proses bisa berlangsung terus menerus?Jawabannya ya di Kondenser.

Persamaannya Qc = Qe + W

Jadi terlihat jelas bahwa ukuran Kondenser akan lebih besar daripada Evaporator karena harus bisa membuang kalor yang diserap di Evaporator ditambah dengan kalor yang timbul selama proses kompresi

EvaporasiSeperti terlihat pada gambar diatas, proses ini bermula dari titik 4 dan berakhir di titik 1, pada proses ini terjadi kenaikan enthalpy karena refrigeran menyerap sejumlah kalor dari udara/beban pendingian yang melalui Evaporator.

KompresiProses ini terjadi di Kompresor yaitu dari titik 1 dan berakhir di titik 2, dimana kalor yang diserap di Evaporator harus dipindahkan agar proses penyerapan kalor di Evaporator bisa terus berlangsung. Secara natural kalor mengalir dari zat yang bertemperatur tinggi ke zat yang bertemperatur lebih rendah. Tetapi kalor juga bisa mengalir dari zat yang bertemperatur lebih rendah ke zat yang bertemperatur lebih tinggi dengan syarat ada media pembantunya, yaitu sebuah pompa kalor. Dalam sistem refrigerasi, Kompresor digunakan sebagai pompa kalor. Kenapa harus dikompresikan? Sebab pada proses pembuangan kalor harus terjadi secara natural juga, dalam arti temperatur refrigeran harus dinaikkan diatas temperatur media pendingin kondenser agar terjadi proses pelepasan kalor. Kompresor bekerja untuk memompa dan menaikkan tekanan refrigeran sehingga temperatur kondensasinya berada diatas temperatur media pendingin Kondenser.Ketika proses kompresi terjadi gesekan-gesekan diantara bagian-bagian yang bergerak di Kompresor juga kalor yang timbul akibat pembebanan refrigeran yang dipindahkan tersebut. Jumlah kalor yang dibutuhkan untuk proses kompresi ini menjadi penambah kalor yang harus dibuang di Kondenser.

KondensasiProses ini terjadi di Kondenser, berawal dari titik 2 dan berakhir di titik 3, dimana kalor yang diserap di Evaporator dan kalor yang timbul selama proses kompresi harus dibuang sehingga kondisi refrigeran bisa dikembalikan ke kondisi awal proses Evaporasi untuk menjaga kelangsungan siklus refrigerasi.

EkspansiDengan menggunakan sebuah komponen penghambat aliran/pengatur aliran, refrigeran yang sudah kembali ke kondisi awal diturunkan tekanannya untuk memulai lagi proses Evaporasi.Pada proses ekspansi ini tidak terjadi penambahan/pengurangan kalor (secara teoritis).Proses ekspansi dimulai dari titik 3 dan berakhir di titik 4.

Siklus berulang terus selama semua komponen bekerja dengan normal dan ukurannya sesuai.

27

Page 28: Istilah Dalam Heat Transfer

Kelistrikan Kulkas (Refrigerator Electrical)Kali ini kita akan membahas tentang cara kerja rangkaian kelistrikan pada sebuah refrigerator dengan kontrol defrost otomatis (automatic defrost control). Refrigerator yang dibahas disini adalah jenis aplikasi yang umum ditemukan di rumah tangga (domestic refrigerator).

OverviewRefrigerator adalah suatu alat/mesin yang berfungsi untuk menyimpan makanan sehingga makanan menjadi lebih awet dan segar. 

Kenapa makanan yang disimpan dalam refrigerator bisa lebih tahan lama dibandingkan dengan ditempatkan di udara terbuka?Penyebab tidak tahan lamanya makanan adalah terdapatnya bakteri pembusuk dalam makanan tersebut, dalam kondisi udara terbuka (temperatur ruang tinggi, misalnya 30°C) perkembangbiakan bakteri terjadi sangat cepat akibatnya makanan menjadi cepat busuk. Berdasarkan penelitian perkembangbiakan ini bisa dihambat (diperlambat) jika temperatur ruang diturunkan. Perkembangbiakan bakteri yang signifikan ini ternyata ketika temperatur ruang diturunkan dibawah 10°C menjadi sangat lambat. Dengan demikian proses pembusukan makanan dapat diperlambat juga.Maka dibuatlah suatu alat yang berfungsi untuk menjaga/ mengkondisikan temperatur untuk menjaga makanan  tersebut sehingga bisa bertahan lebih lama. Alat tersebut dinamakan "refrigerator" atau kita mengenalnya sebagai kulkas.

Bagaimana refrigerator bisa menjaga temperatur yang kita inginkan?Sebuah alat yang dinamakan thermostat, bekerja untuk mengontrol temperatur dalam ruang yang didinginkan.Thermostat akan menjaga temperatur dalam batasan yang telah ditentukan (di-setting).Anda pernah melihat tombol pengatur di dalam refrigerator dengan tanda 1-2-3 dst, high-medium-low, warm-cool-coldest, ataupun tanda lainnya untuk menyatakan level temperatur? Itulah yang dinamakan thermostat.

Ada refrigerator dengan 2 ruang yang berbeda, apakah fungsi masing-masing ruangan tersebut?Itu adalah refrigerator no-frost (frost free). Refrigerator/kulkas 2 pintu kalau secara umumnya disebut seperti itu.Pada refrigerator jenis ini terdapat dua kategori temperatur ruang yang berbeda yaitu:1. Ruang Freezer: untuk membekukan makanan dengan range temperaturnya dari 0°C s/d -25°C (umumnya ditempatkan dibagian atas /pintu atas)2. Ruang Refrigerator: untuk menyimpan makanan dalam waktu beberapa hari saja dengan range temperaturnya dari+2°C s/d +10°C (umumnya ditempatkan di bagian bawah).

Untuk menjaga temperatur di masing-masing ruang maka diperlukan suatu rangkaian kelistrikan yang bisa mengontrol kerja kompresor dan juga mengatur proses pencairan bunga es. Dibawah ini adalah salah satu contoh rangkaian pengontrol sebuah refrigerator yang umum digunakan banyak manufaktur.

28

Page 29: Istilah Dalam Heat Transfer

Sebelum kita membahas cara kerjanya, disini akan saya jelaskan dulu masing masing komponennya:

1. Thermostat: Ada dua cara pemasangan thermostat, dipasang dibagian freezer atau dipasang dibagian refrigerator. Jika thermostat yang memiliki sebuah kontak listrik dipasang dibagian freezer untuk mengontrol kerja kompresor maka untuk mengontrol temperatur ruangan refrigerator digunakan mechanical thermostat yang mengontrol buka tutupnya saluran udara dingin dari bagian freezer yang masuk ke ruang refrigerator. 

2. Defrost Timer: suatu alat yang berfungsi untuk mengatur lamanya kerja kompresor dan mengatur proses pencairan bunga es di Evaporator (defrost cycle). Kompresor diatur umumnya bekerja sekitar 6 jam setelah itu harus dilakukan pencairan bunga es yang menggumpal di Evaporator dan bak penampung air yang terdapat dibawahnya. Lamanya proses defrost tergantung ketebalan es di Evaporator, semakin tebal semakin lama. 

29

Page 30: Istilah Dalam Heat Transfer

3. Defrost Thermo: Suatu alat yang berfungsi untuk mendeteksi temperatur di sekitar Evaporator sehingga bisa mengatur apakah proses pencairan es perlu dilakukan atau tidak. Alat ini juga berfungsi untuk menghentikan proses defrost apabila temperatur evaporator sudah terdeteksi diatas 0°C. Umumnya sekitar 4°C. Tergantung peletakan dari Defrost Thermo itu sendiri.

4. Plate Heater: berfungsi untuk mencairkan es di bagian penampung air selama proses defrost.

5. Defrost Heater: adalah pemanas utama yang berfungsi untuk mencairkan es yang ada di Evaporator.Ukuran heater ini sekitar 120-150Watt.

6. Thermo Fuse: Apabila Defrost Thermo mengalami kerusakan. Misalnya tidak mau memutus pada temperatur yang telah ditetapkan maka Defrost Heater akan terus memanaskan ruangan sekitar Evaporator. Akibatnya temperatur di ruangan Evaporator akan naik terus dan jika dibiarkan akan sangat berbahaya, selain heater bisa rusak, juga interior dari kulkas tesebut kemungkinan besar akan meleleh karena pemanasan yang tidak terkontrol tersebut. Thermo Fuse akan putus jika temperaturnya mencapai 72°C (beberapa manufaktur ada yang membatasi sampai 70 atau 71°C).

7. Kompresor Motor: berfungsi untuk menggerakkan Kompresor sehingga refrigeran bisa bersirkulasi.

8. Thermal Overload Protector: Mencegah terbakarnya Motor Kompresor yang diakibatkan oleh panas yang berlebihan.

9. PTC Starter: Salah satu jenis starter yang digunakan saat Kompresor mulai bekerja.

10. SC (Starting Capacitor): Kapasitor yang berfungsi untuk menambah torsi  pada saat Kompresor mulai bekerja.

11. RC (Running Capacitor): fungsi utamanya untuk menggeser sudut fase, dan memanfaatkan kumparan bantu sehingga Kompresor bekerja lebih effisien.

12. Evaporator Fan Motor: Berfungsi untuk mensirkulasikan udara dalam ruangan.

13. Freezer Door Switch: Sebuah saklar yang dipasang di bagian pintu Freezer, berfungsi untuk mematikan kipas saat pintu dibuka, sehingga bisa mengurangi keluarnya udara dingin dari ruangan freezer.

14. Refrigerator Door Switch: Sebuah saklar yang dipasang di bagian pintu Refrigerator, berfungsi untuk mematikan kipas evaporator saat pintu dibuka, sehingga bisa mengurangi keluarnya udara dingin dari ruangan refrigerator.Selain itu saklar ini juga berfungsi untuk menghidupkan lampu penerangan dalam ruang refrigerator.

15. Refrigerator Interior Light: Sebuah lampu penerangan yang akan hidup jika pintu refrigerator dibuka.

Asumsi Penyetelan dan Komponen KarakteristikSebelum menjelaskan prinsip kerjanya, disini saya buat beberapa asumsi penyetelan dan karakteristik komponen untuk memudahkan penjelasannya:1. Temperatur Ruang Freezer (Electric Thermostat) diset pada range -15°C s/d -20°C.

2. Temperatur Ruang Refrigerator (Damper Thermostat) diset pada range +4°C s/d +2°C.

3. Defrost timer mengatur kerja Kompresor selama 6 jam, dan setelah proses defrost selesai, kontak listrik akan kembali ke posisi Kompresor (Run) setelah 7 menit Defrost Thermo memutus.

4. Defrost Thermo akan terhubung pada temperatur -2°C dan memutus pada temperatur 4°C.

5. Tegangan normal untuk refrigerator adalah 220VAC / 50Hz

6. Kondisi awal temperatur ruang/product sekitar 30°C.

Cara Kerja Rangkaian Kelistrikan Refrigerator / KulkasPada saat kulkas diberi tegangan yang sesuai dan posisi freezer thermostat dalam keadaan OFF maka aliran listrik akan seperti pada gambar dibawah ini

30

Page 31: Istilah Dalam Heat Transfer

Sistem masih dalam keadaan mati. Jika kita mengukur dengan menggunakan Voltmeter di kedua kaki kontak Thermostat maka akan terbaca tegangan sesuai tegangan input, misalnya 220VAC. Dalam posisi ini hanya satu komponen yang bisa aktif, yaitu lampu penerangan ruang refrigerator. Jika pintu dibuka maka lampu akan menyala karena mendapat supply tegangan penuh sebesar 220VAC seperti terlihat pada gambar dibawah ini:

31

Page 32: Istilah Dalam Heat Transfer

Dan jika pintu ditutup lagi, lampu interior di ruang refrigerator akan mati.

Kemudian jika posisi thermostat diubah ke posisi 3 misalnya posisi tersebut adalah range -15°C s/d -20°C, maka aliran listriknya akan menjadi seperti gambar dibawah ini:

32

Page 33: Istilah Dalam Heat Transfer

Saat kontak Freezer Thermostat terhubung, maka Timer Motor, Evaporator Fan Motor, Kompresor, Running Capacitor, Starting Capacitor dan PTC Starter Relay akan bekerja sesuai dengan fungsinya masing-masing.Setelah putaran Motor Kompresor mencapai 75% putaran maksimumnya, PTC Starter akan memutus arus yang melalui rangkaian Start Capacitor, karena torsi yang dibutuhkan sekarang tidak terlalu besar (Start Capacitor sudah tidak diperlukan lagi ketika motor sudah mencapai 75% putaran maksimumnya). Tetapi kumparan bantu (lilitan start) masih mendapat arus yang melalui Running Capacitor dengan torsi yang lebih kecil. Untuk lebih jelasnya perhatikan gambar di bawah ini:

33

Page 34: Istilah Dalam Heat Transfer

Ketika Kompresor bekerja, temperatur dalam ruangan pelahan-lahan akan turun dari 30°C menuju temperatur yang sesuai dengan penyetelan. Ketika temperatur ruang refrigerator turun perlahan2 posisi damper pada thermostat mulai menutup saluran udara yang masuk ke ruang refrigerator, dan akan menutup sempurna ketika temperatur ruangnya mencapai +2°C maka damper akan menutup sempurna. Tidak ada aliran udara lagi yang masuk ke ruang refrigerator.

Sementara temperatur ruang refrigerator telah tercapai, Kompresor masih tetap bekerja untuk mendinginkan ruang freezer-nya. Pada saat temperatur di Evaporator mencapai -2°C, kontak point pada Defrost Thermo akan menutup. Lihat gambar dibawah ini:

34

Page 35: Istilah Dalam Heat Transfer

Dengan terhubungnya kontak pada defrost thermo, tidak akan memberi pengaruh apa-apa pada sistem. Menutupnya kontak ini hanya sebagai persiapan jika waktu untuk proses defrost tercapai maka Defrost Heater bisa bekerja untuk mencairkan es di Evaporator.

Kembali ke Kompresor yang masih bekerja terus untuk mendinginkan ruangan freezer. Ketika temperatur ruang freezer sampai pada batas penyetelan yaitu -20°C, maka Thermostat akan memutus (cut-out). Katakanlah dari kondisi awal (30°C) sampai tercapai temperatur yang diinginkan (-20°C) memerlukan waktu sekitar 2 jam.

Selama Thermostat ini memutus semua komponen mati kecuali lampu refrigerator jika dibuka akan hidup.

Lihat gambar dibawah:

35

Page 36: Istilah Dalam Heat Transfer

Ketika Kompresor mati, temperatur ruang perlahan-lahan akan naik kembali. Jadi dari -20°C termperatur naik lagi menjadi -19°C terus naik ke -18°C dan terus sampai mencapai -15°C kontak Thermostat akan kembali terhubungsehingga Kompresor bekerja lagi. Jadi temperatur ruangan akan tetap dijaga antara -20°C sampai dengan -15°C. Begitu juga dengan ruang di refrigerator, jika temperatur naik kembali sampai +4°C maka damper akan membuka kembali.

Proses ini tetap berulang sehingga temperatur di kedua ruang terjaga dalam range yang telah ditentukan (sesuai setting pada thermostat).

Kapan proses defrost dimulai?

36

Page 37: Istilah Dalam Heat Transfer

Ketika waktu running timer motor tercapai (6 jam). Maka Timer Motor akan memindahkan kontaknya dari posisi 3-4 (Kompressor Run / cooling process) ke posisi 3-2 (defrosting proses / proses pencairan bunga es di Evaporator). Proses pencairan bunga es dimulai. Timer motor mati, sehingga pada kondisi ini hanya kedua Heater (Defrost Heater yag berfungsi mencairkan es di Evaporator dan Plate Heater yang befungsi untuk mencairkan es di bak penampungan air di bawah Evaporator. 

Lihat wiring di bawah untuk penjelasan proses defrost:

Karena Heater aktif, maka lama kelamaan temperatur di bagian Evaporator dan sekitarnya akan naik. Dengan naiknya temperatur ini maka lama kelamaan seluruh es akan mencair. Air hasil prosed defrost ini kemudian ditampung dalam wadah yang diletakkan di bagian bawah (diatas pre-cooler)

37

Page 38: Istilah Dalam Heat Transfer

atau belakang (diatas Kompresor). Ketika temperatur di body Defrost Thermo mencapai +4°C kontak Defrost Thermo akan memutus sehingga Heater akan berhenti bekerja. 

Saat kontak Defrost Thermo memutus, Timer Motor mulai bekerja lagi. Ketika Timer Motor mulai bekerja, kontak pada Timer tidak langsung berpindah, ada perlambatan (delay) sekitar 7 menit. Delay ini bertujuan untuk membiarkan seluruh air jatuh ke bak penampungan dan memberi waktu agar temperatur Heater tidak terlalu tinggi. Sehingga ketika Fan Motor bekerja mensirkulasikan udara tidak membawa panas heater ke dalam ruangan. Setelah delay time tercapai, kontak Defrost Timer akan kembali ke posisi 3-4 dan Kompresor bekerja kembali untuk mendinginkan ruangan

38

Page 39: Istilah Dalam Heat Transfer

39