chap.19 production 鄭先祐 (ayo) 教授 國立台南大學 環境與生態學院...

117
Chap.19 Production 鄭鄭鄭 (Ayo) 鄭鄭 鄭鄭鄭鄭鄭鄭 鄭鄭鄭鄭鄭鄭鄭 鄭鄭鄭鄭鄭鄭鄭鄭鄭 鄭鄭鄭鄭 + 鄭鄭鄭鄭 ( 鄭鄭鄭 )

Upload: dina-nelson

Post on 31-Dec-2015

240 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Chap.19 Production

鄭先祐 (Ayo) 教授國立台南大學 環境與生態學院

生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Page 2: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

19 Production

Case Study: Life in the Deep Blue Sea, How Can It Be?

1.Primary Production2.Environmental Controls on NPP3.Global Patterns of NPP4.Secondary ProductionCase Study RevisitedConnections in Nature: Energy-Driven

Succession and Evolution in Hydrothermal Vent Communities

2

Page 3: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Case Study: Life in the Deep Blue Sea, How Can It Be?

The deep sea was once thought to have few forms of life because of the darkness (no photosynthesis), and tremendous pressures.

But in 1977, a whole new kind of community was discovered in the deep sea.

3

Page 4: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Case Study: Life in the Deep Blue Sea, How Can It Be?Researchers using the submersible

Alvin were searching the mid-ocean ridges for hot springs.

The ridges are the site of sea-floor spreading and are volcanically active.

Geologists hypothesized that heat from Earth’s crust would be released there by hot springs.

4

Page 5: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.1 Alvin in Action

5

The deep-sea-submersible craft Alvin was instrumental in locating and exploring the first known hydrothermal vent site in 1977. The Alvin can carry two scientists, and is equipped with video cameras and robotic arms for collecting specimens from the seafloor.

Page 6: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Case Study: Life in the Deep Blue Sea, How Can It Be?

Hot springs, or hydrothermal vents, were indeed found, along with an amazing community of living organisms— tube worms (Riftia), giant clams, shrimps, crabs, and polychaete worms.

Where did these organisms get energy? Photosynthesis was out, and the rate at which dead organisms from the upper zones accumulate on the bottom is very low.

6

Page 7: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.2 Life around a Hydrothermal Vent

7

Tubeworms over 2 m in length surround a “black smoker” hydrothermal vent. The vent is spewing (湧出 ) superheated water as hot as 400 C, which contains high concentrations of dissolved metals and chemicals, particularly hydrogen sulfide.

Page 8: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Case Study: Life in the Deep Blue Sea, How Can It Be?

In addition, the water coming out of the vents was extremely hot, and contained minerals that would be toxic to most organisms.

How do these communities survive?

8

Page 9: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Introduction

In 1942, a groundbreaking paper on energy flows in a bog ecosystem was published, one of the first in the area of ecosystem science.

Instead of putting the organisms into taxonomic categories, Lindeman grouped them into functional categories, based primarily on how they obtained their energy.

9

Page 10: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.3 Energy Flow in a Bog

10

the central position of "ooze" (organic matter) in the diagram.

Page 11: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Introduction

The term ecosystem was first used by A. G. Tansley (1935) to refer to all of the components of an ecological system, biotic and abiotic, that influence the flow of energy and elements.

The ecosystem concept is a powerful tool for integrating ecology with other disciplines such as geochemistry, hydrology, and atmospheric science.

11

Page 12: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Primary production is the chemical energy generated by autotrophs, derived from fixation of CO2 in photosynthesis and chemosynthesis.

Primary production is the source of energy for all organisms, from bacteria to humans.

Concept 19.1: Energy in ecosystems originates with primary production by autotrophs.

12

Page 13: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Energy assimilated by autotrophs is stored as carbon compounds in plant tissues; carbon is the currency used for the measurement of primary production.

Primary productivity is the rate of primary production.

13

Page 14: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Gross primary production (GPP)—total amount of carbon fixed by autotrophs in an ecosystem.

GPP depends on the influence of climate on photosynthetic rate and the leaf area index (LAI)—leaf area per unit of ground area.

14

Page 15: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

LAI varies among biomes:Less than 0.1 in Arctic tundra (less than

10% of the ground surface has leaf cover).

12 in boreal and tropical forests (on average, there are 12 layers of leaves between the canopy and the ground).

15

Page 16: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Because of shading, the incremental gain in photosynthesis for each added leaf layer decreases.

Eventually, the respiratory costs associated with adding leaf layers outweigh the photosynthetic benefits.

16

Page 17: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.4 Diminishing Returns for Added Leaf Layers (Part 1)

17

Photosynthesis increases as the leaf area index increases.....

...but the incremental carbon gain is less for each additional leaf layer.

Layer 1 represents the top of the canopy ad layer 15 represents the bottom.

Page 18: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.4 Diminishing Returns for Added Leaf Layers (Part 2)

18

Shading of the leaves below the top of the canopy increases with the addition of each new leaf layer.

Page 19: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Plants use about half of the carbon fixed in photosynthesis for cellular respiration to support biosynthesis and cellular maintenance.

All living plant tissues lose carbon via respiration, but not all tissues acquire carbon via photosynthesis (e.g., woody stems).

19

Page 20: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Net primary production (NPP):NPP = GPP – respiration

NPP represents the biomass gained by the plant.

NPP is the energy left over for plant growth and consumption by detritivores and herbivores.

NPP represents storage of carbon in ecosystems.

20

Page 21: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Plants can respond to environmental conditions by allocating carbon to the growth of different tissues.

Allocation of NPP to growth of leaves, stems, and roots is balanced so that plants can maintain supplies of water, nutrients, and carbon. Example: Grassland plants allocate more

NPP to roots because soil nutrients and water are scarce.

21

Page 22: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.5 Allocation of NPP to Roots

22

In biomes where competition for light is important, a smaller percentage of NPP is allocated to roots.

In nutrient-poor biomes, such as tundra and grasslands, over 50% of NPP is allocated to roots.

Page 23: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Allocation of NPP to storage products such as starch provides insurance against losses of tissues to herbivores, disturbances such as fire, and climatic events such as frost.

Substantial amounts of NPP (up to 20%) may be allocated to defensive secondary compounds.

23

Page 24: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

As ecosystems develop during succession, NPP changes as LAI, ratio of photosynthetic to nonphotosynthetic tissue, and plant species composition all change.

The highest NPP is usually in the intermediate successional stages, when photosynthetic tissues, plant diversity, and nutrient supply tends to be highest.

24

Page 25: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.6 NPP Changes during Forest Succession

25

GPP increases as more tree become established and grow, increasing LAI.

GPP drops as photosynthesis rates and leaf area index decrease after maximum forest development.

respiration remains a constant proportion of GPP.

NPP declines due to lower GPP.

Page 26: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Although NPP may decrease in later successional stages, old-growth ecosystems have large pools of stored carbon and nutrients and provide habitat for late successional animal species.

26

Page 27: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

It is important to be able to measure NPP.NPP is the ultimate source of energy for

all organisms in an ecosystem.Variation in NPP is an indication of

ecosystem health—changes in primary productivity can be symptomatic of stress.

NPP is associated with the global carbon cycle.

27

Page 28: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

In terrestrial ecosystems, NPP can be estimated by measuring the increase in plant biomass in experimental plots, and scaling up to the whole ecosystem.

Harvest techniques provide reasonable estimates of aboveground NPP, particularly if corrections are made for losses to herbivory and mortality.

28

Page 29: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Measuring belowground NPP is more difficult.Roots turn over more quickly than shoots; that is, more roots are “born” and die during the growing season.Roots may exude a significant amount of carbon into the soil, or transfer carbon to mycorrhizal or bacterial symbionts.

29

Page 30: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Harvests for measuring root biomass must be more frequent, and additional correction factors must be used.

Biomass can be estimated from aboveground measurements and algorithms that relate above- and belowground biomass.

30

Page 31: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Minirhizotrons are underground viewing tubes outfitted with video cameras. They have led to significant advances in

the understanding of belowground production processes.

31

Page 32: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.7 A Tool for Viewing Belowground Dynamics (Part 1)

32

minirhizotrons

Page 33: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.7 A Tool for Viewing Belowground Dynamics (Part 2)

33

(B) a view of root through a minirhizotron.

Page 34: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Harvest techniques are impractical for large or biologically diverse ecosystems.

Chlorophyll concentrations can provide a proxy for GPP and NPP. They can be estimated using remote

sensing methods that rely on reflection of solar radiation.

34

Page 35: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Chlorophyll absorbs visible solar radiation in blue and red wavelengths and has a characteristic “spectral signature.”

Plants also have higher reflectance in the infrared wavelengths than do bare soil or water.

Indices for estimating NPP from reflection of several different wavelengths have been developed.

35

Page 36: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

NDVI (normalized difference vegetation index) uses the difference between visible light and near-infrared reflectance to estimate the absorption of light by chlorophyll.

This is then used to estimate CO2 uptake.

NDVI is measured using satellite sensors.

36

Page 37: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.8 Remote Sensing of Terrestrial NPP

37

Terrestrial NPP is highest in the tropics... and declines in the north and south.

Page 38: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

NPP can be estimated from GPP and respiration measurements.

This involves measuring change in CO2 concentration in a closed chamber.

Sometimes whole stands of plants are enclosed in a chamber or tent and exchange of CO2 with the atmosphere in the tent is measured.

38

Page 39: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Sources of CO2 added to the tent atmosphere are respiration by plants and heterotrophs, including soil microorganisms.

Uptake of CO2 is by photosynthesis.

39

Page 40: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

The net change in CO2 concentration inside the tent is a balance of GPP uptake and total respiration—net ecosystem production or net ecosystem exchange (NEE).

Heterotrophic respiration must be subtracted to obtain NPP.

40

Page 41: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

NEE can also be estimated by measuring CO2 at various heights in a plant canopy and the atmosphere above, called eddy correlation or eddy covariance.

A gradient of CO2 develops because of photosynthesis and respiration.

During the day, CO2 decreases in the canopy with photosynthesis. At night, CO2 is higher in the canopy.

41

Page 42: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Instruments are mounted on towers to take continuous CO2 measurements.

NEE can be estimated for up to several square kilometers of the surrounding area.

A network of these sites has been established in the Americas to increase our understanding of carbon and climate.

42

Page 43: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.9 Eddy Covariance Estimates of NPP (Part 1)

43

(A) A tower projecting above a subalpine forest on Niwot Ridge, Colorado. Attached to the tower are instruments for measuring microclimate (temperature, wind speed, radiation) and atmospheric CO2 concentrations at frequent intervals.

Page 44: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.9 Eddy Covariance Estimates of NPP (Part 2)

44

CO2 concentrations are highest at night without photosynthesis.

Photosynthesis during the day draws canopy CO2 concentration down to the same level or lower than the atmosphere above it.

Page 45: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Phytoplankton do most of the photosynthesis in aquatic habitats.

Phytoplankton turn over much more rapidly than terrestrial plants, so biomass at any given time is low compared with NPP; harvest techniques are not used.

45

Page 46: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Photosynthesis and respiration are measured in water samples collected and incubated at the site with light (for photosynthesis) and without light (for respiration).

The difference in the rates is equal to NPP.

46

Page 47: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Primary Production

Remote sensing of chlorophyll concentrations in the ocean using satellite sensors provides good estimates of marine NPP.

Indices are used to indicate how much light is being absorbed by chlorophyll, which is then related to NPP.

47

Page 48: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.10 Remote Sensing of Marine NPP

48

Primary production in the oceans, estimated using a satellite-based sensor (Sea-viewing Wide Field-of-view Sensor (SeaWiFS)).

Page 49: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

NPP varies substantially over space and time.

NPP is correlated with climate (temperature and precipitation) on a global scale.

Concept 19.2: Net primary productivity is constrained by both physical and biotic environmental factors.

49

Page 50: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.11 Global Patterns of Terrestrial NPP Are Correlated with Climate (Part 1)

50

NPP increases with increasing precipitation up to about 2,400 mm per year.....

...then decreases at higher levels.

Page 51: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.11 Global Patterns of Terrestrial NPP Are Correlated with Climate (Part 2)

51

NPP increases with increasing temperature.

Page 52: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Water availability influences photosynthesis via the opening and closing of stomates, and temperature influences the enzymes that facilitate photosynthesis.

At very high precipitation, NPP may decrease because of greater cloud cover and lower sunlight, leaching of nutrients from soils, and soil saturation, which results in anoxic conditions.

52

Page 53: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Climate influence on NPP can also be indirect, mediated by factors such as nutrient availability.

NPP in a short-grass steppe ecosystem changed in response to year-to-year variation in precipitation (Lauenroth and Sala 1992).

53

Page 54: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

They also looked at the relationship between NPP and precipitation across several grassland ecosystems in the central U.S.

NPP variation with precipitation was greater over the range of sites, than it was from year to year at one site.

54

Page 55: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.12 The Sensitivity of NPP to Changes in Precipitation Varies among Grassland Ecosystems

55

Growth response of plants from sites with higher average annual precipitation.

Growth of short-grass steppe plants responds less to increased precipitation.

Page 56: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

The difference was attributed to variation in species composition across the sites.

Different grass species have different growth responses to water availability.

They also suggested there was a time lag in the response of the short-grass steppe to increased precipitation.

56

Page 57: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

The results of several experiments indicate that nutrients, particularly nitrogen, control NPP in terrestrial ecosystems.

In a fertilization experiment in two alpine communities—dry and wet meadows—N, P, and N+P were added to different plots (Bowman et al. 1993).

57

Page 58: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

In the dry meadow, N limited NPP.In the wet meadow, both N and P

limited NPP.Another experiment showed that the

addition of water to the dry meadow did not increase NPP.

Soil moisture affects nutrient supply through its effects on decomposition and movement of nutrients in the soil.

58

Page 59: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.13 Nutrient Availability Influences NPP in Alpine Communities (Part 1)

59

(A) Fertilization plots in a dry meadow alpine community in the Colorado Rocky Mountains, dominated by sedges(莎草 ), forbs(草本植物 ), and grasses.

Page 60: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.13 Nutrient Availability Influences NPP in Alpine Communities (Part 2)

60

Kobresia is the dominant sedge in the dry meadow.

The N and N+P treatments increased biomass in the dry meadow.

Increases in the nondominant plants accounted for most accounted for most of the response of the dry meadow vegetation.

The P, N, and N+P treatments all increased biomass in the wet meadow.

Increases in the dominant plants determined the response of the wet meadow vegetation.

Page 61: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Increase in NPP was not uniform across all plant types.

Change in NPP in the dry meadow resulted from change in species composition. The dominant plant biomass did not increase as much as others.

In the wet meadow, the dominant’s biomass increased more than the others.

61

Page 62: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Plants from resource-poor communities show less response to fertilization than plants from resource-rich communities.

They have different capacities to use resources.

Plants of resource-poor communities tend to have low intrinsic growth rates, which lowers their resource requirements.

62

Page 63: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Plants of resource-rich communities tend to have higher growth rates, which make them better able to compete for resources, particularly light.

When nutrient-poor communities are fertilized, there is often a change in species composition; indicating the importance of species composition in NPP rates.

63

Page 64: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.14 Growth Responses of Alpine Plants to Added Nitrogen

64

The growth of Kobresia and the two Carex sedges was less responsive to added nitrogen.....

...than that of the three grasses (Calamagrostiis, Deschampsia, and Trisetum).

Page 65: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

NPP in lake ecosystems is often limited by phosphorus availability.

Many lake experiments use enclosures called “limnocorrals”—clear containers with open tops to which nutrients can be added.

NPP is measured by change in chlorophyll concentrations or number of phytoplankton cells.

65

Page 66: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.15 Lake Mesocosm Fertilization Studies

66

Student assistants add nutrients to an experimental enclosure in Redfish Lake, Idaho. The experiment tests whether nutrients stimulate |NPP in the lake to assist recovery of endangered Snake River sockeye salmon.

Page 67: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Whole-lake fertilization experiments have also been done at the Experimental Lakes Area in Ontario.

Declining water quality in the 1960s motivated David Schindler to do experiments to determine whether inputs of nutrients in wastewater were causing the dramatic increases in the growth of phytoplankton.

67

Page 68: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Nitrogen, carbon, and phosphorus were added to all or half of several lakes.

Results showed that P was the limiting nutrient.

P addition resulted in massive increases in cyanobacteria.

68

Page 69: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.16 Response of a Lake to Phosphorus Fertilization

69

This section, which was treated with a combination of phosphorus, nitrogen, and carbon, experienced a massive bloom of cyanobacteria.

A divider separates the two treatment areas

This section was treated only with carbon and nitrogen, and remained clear.

Page 70: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

In rivers and streams, NPP is often low. The majority of the energy is derived from terrestrial organic matter.

Water flow limits phytoplankton growth; most NPP is from macrophytes and attached algae.

The river continuum concept describes the increasing importance of in-stream NPP as the river flows downstream.

70

Page 71: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Suspended sediment in rivers can limit light penetration; thus water clarity often controls NPP.

Nutrients, particularly nitrogen and phosphorus, can also limit NPP in streams and rivers.

71

Page 72: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Limiting nutrients vary in marine ecosystems.

Estuaries are usually nutrient-rich; variation in NPP is correlated with N inputs from rivers.

N from agricultural and industrial practices can result in blooms of algae and “dead zones.”

72

Page 73: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Dead zones are areas of low oxygen, and high fish and zooplankton mortality.

The bacterial decomposition of algae from the blooms depletes the dissolved oxygen in the water.

73

Page 74: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

In the open ocean, NPP is mainly from phytoplankton.

Picoplankton (cells < 1 μm) contribute as much as 50% of the total marine NPP.

Floating seaweeds such as Sargassum also contribute to NPP.

74

Page 75: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

In coastal areas, kelp forests may have leaf area indices and rates of NPP as high as those of tropical forests.

“Meadows” of seagrasses such as eelgrass (genus Zostera) are also important near shore zones.

75

Page 76: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

In the open ocean, NPP is mostly limited by nitrogen.

But NPP in the equatorial Pacific Ocean appears to be limited by iron (Martin et al. 1994).

76

Page 77: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Because windblown dust from Asia is a source of iron, it could be important in the global climate system through its influence on marine NPP, and thus on atmospheric CO2 concentrations.

During glacial periods, large parts of the earth could have contributed dust (and iron) that fertilized the oceans.

77

Page 78: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

The concomitant increase in CO2 uptake by marine phytoplankton could have reduced atmospheric CO2 concentrations, setting up a positive feedback that cooled the climate even more.

This led to the suggestion that fertilizing the oceans with iron could reduce global warming.

78

Page 79: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

Martin is famously quoted as having said “Give me half a tanker-load of iron, and I’ll give you an Ice Age.”

Large-scale experiments with iron sulfate additions were done in 1993, called IronEx I.

A 64 km2 area was fertilized with 445 kg of iron, which resulted in a doubling of phytoplankton biomass and a fourfold increase in NPP.

79

Page 80: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.17 Effect of Iron Fertilization on Marine NPP (Part 1)

80

NPP was much higher in the iron plume.

IronEx 1 released a plume of iron into the equatorial Pacific Ocean to study the effects of iron fertilization on NPP. (A) This vertical profile shows primary production at various depths outside the iron plume and inside the plume on three specific days:1,2,and 3 following the release of the iron.

Page 81: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.17 Effect of Iron Fertilization on Marine NPP (Part 2)

81

(B) Researchers deploy a plump to add iron to the ocean.

Page 82: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Environmental Controls on NPP

This and other experiments support the iron limitation hypothesis.

But large-scale fertilization of the oceans is unlikely to be a solution to the increasing CO2 in the atmosphere. Some of the CO2 taken up by phytoplankton

is returned to the atmosphere via respiration of zooplankton and bacteria.

Also, iron is lost relatively quickly from the surface photic zone, sinking to deeper layers where it is unavailable to support phytoplankton growth.

82

Page 83: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Global Patterns of NPP

Remote sensing and eddy covariance techniques have improved our ability to estimate global patterns of NPP.

Concept 19.3: Global patterns of net primary production reflect climatic controls and biome types.

83

Page 84: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Global Patterns of NPPGlobal NPP has been estimated to be

105 petagrams (1 Pg = 1015 g) of carbon per year.

54% of this carbon is taken up by terrestrial ecosystems, 46% by primary producers in the oceans.

The average rate of NPP for the land surface (426 g C/m2/year) is higher than for oceans (140 g C/m2/year).

84

Page 85: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Global Patterns of NPP

Highest rates of NPP on land are found in the tropics.

This pattern results from latitudinal variation in climate and length of the growing season.

Tropical zones have long growing seasons and high precipitation, promoting high rates of NPP.

85

Page 86: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.18 Latitudinal Variation in NPP

86

The correlation of NPP with climate is most apparent in the Northern Hemisphere due to its large land surface area.

The highest rates of terrestrial NPP are found in the tropics.

NPP declines in the arid regions at about 25 N and S.

Terrestrial NPP rise again at mid-latitudes.

Oceanic NPP peaks at mid-latitudes, where zones of upwelling are found.

Page 87: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Global Patterns of NPP

NPP decreases in arid regions at about 25° N and S.

High latitudes have short growing seasons; low temperatures constrain nutrient supply by lowering decomposition rates, which in turn limits NPP.

87

Page 88: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Global Patterns of NPP

Oceanic NPP peaks at mid-latitudes, where zones of upwelling are found.

Upwellings bring nutrient-rich deep water to the surface.

88

Page 89: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Global Patterns of NPP

NPP varies among biomes.Tropical forests and savannas

contribute about 60% of terrestrial NPP (30% of global NPP).

Coastal zones account for 20% of oceanic NPP, or about 10% of total global NPP.

The open ocean accounts for the majority of oceanic NPP, and about 40% of total global NPP.

89

Page 90: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

90

Page 91: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Global Patterns of NPP

Variation in NPP among terrestrial biomes is associated mostly with differences in leaf area index and length of growing season.

Variation in NPP among aquatic ecosystems is primarily related to variation in inputs of nutrients.

91

Page 92: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Secondary Production

Secondary production —energy derived from consumption of organic compounds that were produced by other organisms.

Concept 19.4: Secondary production is generated through the consumption of organic matter by heterotrophs.

92

Page 93: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Secondary Production

Heterotrophs are classified according to the type of food they eat.

Herbivores consume plants and algae; carnivores consume other live animals; detritivores consume dead organic matter (detritus).

Omnivores consume both plants and animals.

93

Page 94: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Secondary Production

Determining what organisms eat is not always simple.

One method compares the isotopic composition of an organism to its potential food sources.

Concentrations of naturally occurring stable isotopes of carbon (13C), nitrogen (15N), and sulfur (34S) differ among potential food items.

94

Page 95: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Secondary Production

To address the question of why ants in tropical rainforest canopies are so abundant relative to the abundance of suitable prey, Davidson et al. (2002) hypothesized that the ants must be obtaining most of their food directly or indirectly from plant sources.

95

Page 96: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Secondary Production

They measured the 15N composition of plants, sap-feeding insects, herbivores, and predatory arthropods.

15N values of the ants indicated that most of their nitrogen, and thus their diet, came from sap ( 樹汁 ) exuded by sap-feeding insects.

96

Page 97: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.19 Nitrogen Isotopic Composition of Ants and Their Diets

97

The 15N values of the majority of the ant subfamilies indicate that they feed on phloem sap exuded by sap-feeding insects, as well as other plant sources.

Page 98: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Secondary Production

Some organic matter consumed by heterotrophs is incorporated into biomass, some is used in respiration, some is egested in urine and feces.

Net secondary production = ingestion – respiration – egestion

98

Page 99: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Secondary Production

Net secondary production depends on the “quality” of the heterotroph’s food (digestibility and nutrient content), and physiology.

Animals with high respiration rates (e.g., endotherms) have less energy left over to allocate to growth.

99

Page 100: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Secondary Production

Net secondary production in most ecosystems is a small fraction of NPP.

The fraction is greater in aquatic ecosystems than terrestrial.

Most is associated with detritivores, primarily bacterial and fungi.

100

Page 101: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Case Study Revisited: Life in the Deep Blue Sea, How Can It Be?

In chemosynthesis, some bacteria use chemicals such as hydrogen sulfide (H2S, and HS– and S2–), as electron donors to take up CO2 and convert it to carbohydrates:

The bacteria are called chemoautotrophs.

n224222

2 O)(CHSOOHOCOS

101

Page 102: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Case Study Revisited: Life in the Deep Blue Sea, How Can It Be?Several lines of evidence suggested that

chemoautotrophs were the major source of energy for the hydrothermal vent ecosystems: Ratios of 13C/12C in the vent invertebrates

were different from those of phytoplankton in the photic zone.

This indicated their food source was not detritus from the upper ocean.

Tube worms from the vents (Riftia) were found to lack mouths and digestive systems.

102

Page 103: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Case Study Revisited: Life in the Deep Blue Sea, How Can It Be?

They have trophosomes, specialized tissue that contains symbiotic bacteria, elemental sulfur, enzymes associated with the Calvin cycle, and enzymes involved in sulfur metabolism.

103

Page 104: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.20 Riftia Anatomy

104

The plume absorbs oxygen, carbon dioxide, ad hydrogen sulfide from the water and transports it into the interior of the tube worm.The vestimentum anchors the tube worm into the top of the structural tube, and contains rudimentary heart and brain tissues.The trophosome contains the symbiotic chemoautotrophic bacteria that generate chemical energy for the tubeworm.

The tube provides protection and support.

The opisthosome anchors the tubeworm to the substratum and produces new tube material.

Page 105: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Case Study Revisited: Life in the Deep Blue Sea, How Can It Be?Clams and other organisms in the

vent communities also housed symbiotic bacteria.

The tube worms and clams get carbohydrates from the chemoautotrophic bacteria.

The bacteria also detoxify sulfides in the water, which would normally inhibit aerobic respiration.

105

Page 106: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Case Study Revisited: Life in the Deep Blue Sea, How Can It Be?

The invertebrates supply the bacteria with CO2, O2, and sulfides at higher rates than they could get if they were free-living.

The symbiosis is therefore a mutualism, and results in higher productivity than if the organisms lived separately.

106

Page 107: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Connections in Nature: Energy-Driven Succession and Evolution in Hydrothermal Vent Communities

Hydrothermal vent ecosystems last about 20 to 200 years.

The hot spring eventually stops emitting water and sulfides, and the community collapses.

Rates of colonization and development of vent communities are higher when they are closer to other existing vent communities.

107

Page 108: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Connections in Nature: Energy-Driven Succession and Evolution in Hydrothermal Vent Communities

Colonization begins with chemoautotrophic bacteria, sometimes in very high densities.

Tube worms are often the first invertebrates to arrive.

Clams and other mollusks are thought to be better competitors and over time they increase in abundance at the expense of the tube worms.

108

Page 109: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Connections in Nature: Energy-Driven Succession and Evolution in Hydrothermal Vent Communities

Scavengers and carnivores, such as crabs and lobsters, are found at low densities in the developing community.

When the vent stops flowing, worm and bivalve populations decline; and scavengers increase until the energy available in the form of detritus is gone.

109

Page 110: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.21 Succession in Hydrothermal Vent Communities

110

Bacteria generated sediments cloud the water within weeks of the initial eruption of a vent (April 1991).

The site has been colonized by tube worms in the genus Tevnia (bottom right) (March 1992).

Larger tubeworms in the genus Riftia dominate the site (December 1993).

Continued dominance by Riftia (October 1994).

A decrease in the temperature of the vent water has increased the iron concentration in the water, resulting in iron oxide precipitation that has given the Riftia individuals a rusty appearance (November 1995).

Page 111: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Connections in Nature: Energy-Driven Succession and Evolution in Hydrothermal Vent Communities

The pattern of succession in these communities is subject to the same random factors found in other habitats: The order of arrival of organisms can influence the long-term dynamics of the community.

111

Page 112: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Connections in Nature: Energy-Driven Succession and Evolution in Hydrothermal Vent CommunitiesPhylogenetic relationships between

vent organisms and their non-vent relatives show deep evolutionary divergence.

About 500 vent species have been described, 90% are endemic.

112

Page 113: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Connections in Nature: Energy-Driven Succession and Evolution in Hydrothermal Vent Communities

Phylogenetics can also be used to explore coevolution in the invertebrates and their bacterial symbionts.

Clams in the family Vesicomyidae transfer bacteria to their offspring in the cytoplasm of their eggs.

113

Page 114: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Connections in Nature: Energy-Driven Succession and Evolution in Hydrothermal Vent CommunitiesPeek et al. (1998) collected eight

species of clams in three genera.They used ribosomal DNA to construct

phylogenetic trees. The trees showed remarkable

congruence, providing strong evidence that speciation in the clams and their bacterial symbionts has occurred synchronously.

114

Page 115: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Figure 19.22 Coevolution of Vent Clams and Their Symbiotic Bacteria

115

The phylogenetic trees of vesicomyid clams collected from hydrothermal vents and their accompanying chemautotropic bacterial symbionts show remarkable parallels, suggesting coevolutionary development of these species.

Page 116: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Connections in Nature: Energy-Driven Succession and Evolution in Hydrothermal Vent Communities

It has been suggested that life on Earth originated in hydrothermal vents.

The reducing environment of the vents is conducive to abiotic synthesis of amino acids.

There are vents with lower temperatures at shallow depths where amino acid genesis could (and does) occur.

116

Page 117: Chap.19 Production 鄭先祐 (Ayo) 教授 國立台南大學 環境與生態學院 生態科學與技術學系 環境生態 + 生態旅遊 ( 碩士班 )

Ayo NUTN website:http://myweb.nutn.edu.tw/~hycheng/

問題與討論