chapter 1 calculus math algebra note solution

29
線性代數 I─應用數學系 莊重老師 1 6-7-2011 Linear Algebra (線性代數) 絕大部分的自然科學現象和工程問題是非線性的,但要了解這些可能超過個 100 個變數的非線性問題,一個主要方式即先將此問題線性化(Linearization) 。因 此,線性代數(以下簡稱線代)和矩陣理論是: (i) 很多數學分枝,如方程、微分幾何、機率等的基本工具; (ii) 也是一個 active and alive 的研究領域,如頂級應數期刊 SIAM 系列,就 有一期刊是專門討論矩陣理論和其應用(SIMAX)(iii) 在其他領域有極大應用價值:如工程領域、物理領域和經濟領域。 正因為線性代數的重要性、多樣性和應用性,如何選擇一本線代的書是要費 心思的,以下先介紹三本好書: 1G. Strang, Linear Algebra and Its Applications, 4th edition, Brooks/ Cole, 2006. 2. K. Hoffman and R. Kunze, Linear Algebra, 2nd edition, Prentice-Hall, 1971. 3. S.H. Friedberg, A.J. Insel, L.E Spence, 4th edition, Linear Algebra, Prentice-Hall, 2003. 第一本書作者,Gilbert Strang 是在 MIT 任教,又此書的 Lectures 被錄製為 開放式課程。書的寫法非常能傳達線代的美麗和應用價值。作者嘗試解釋觀念而 不是只導出觀念。同時也提供許多直觀且能 visualized 的想法。書的寫法另一特 色是非常對話式,不像定義─定理─證明的傳統式的寫法。幾年前,我曾經以這 本書教本系大二學生,不少學生非常不習慣這種對話式的寫法,因為他們覺得不 容易找到重點。這本書也非常適合唸第二次線代的學生或老師來讀,當更可

Upload: leepsteer-loo

Post on 30-Sep-2015

63 views

Category:

Documents


1 download

DESCRIPTION

Chapter 1 Calculus Math Algebra Note Solution University

TRANSCRIPT

  • I

    1

    6-7-2011

    Linear Algebra ()

    100 (Linearization)

    ()

    (i)

    (ii) active and alive SIAM

    (SIMAX)

    (iii)

    1G. Strang, Linear Algebra and Its Applications, 4th edition, Brooks/ Cole,

    2006.

    2. K. Hoffman and R. Kunze, Linear Algebra, 2nd edition, Prentice-Hall, 1971.

    3. S.H. Friedberg, A.J. Insel, L.E Spence, 4th edition, Linear Algebra,

    Prentice-Hall, 2003.

    Gilbert Strang MIT Lectures

    visualized

  • I

    2

    appreciate

    classical

    LUQRSVD least squares

    3

    1. Webpage Video Lectures

    2.

  • I

    3

    Ch1 Vector Spaces ()

    H.W. 1,9,11-19

    (Vector Spaces, VS)

    VS

    VS (prototype)

    Definitions

    A vector space V over a field F consists of a set on which two operations (called

    addition and scalar multiplication) are defined, so that the following 10 properties

    hold.

    (VS-1) whenever , . ( )

    (VS 0) whenever and . ( )

    (VS 1) for all , . ( )

    (VS 2) ( ) ( ) for all , , . ( )

    (VS 3) so that

    x y V x y V

    x V F x V

    x y y x x y V

    x y z x y z x y z V

    V x

    0 0

    for all . ( )

    (VS 4) For each , s.t. . ( )

    x x

    x V y V x y

    0

    V

    (VS 5) For each element in , 1 . Here 1 .

    and is the identity element for multiplication.

    x V x x F

  • I

    4

    (VS 6) ( ) ( ) for all , and . ( )

    (VS 7) ( ) for all and , . ( )

    (VS 8) ( ) for all , and . ( )

    ab x a bx a b F x V

    a x y ax ay a F x y V

    a b x ax bx a b F x V

    Remark

    (i) The elements of the field F are called scalars.

    (ii) The elements of the VS are called vectors.

    (iii) (field) 4 ()

    ()

    C

    Ex1.

    1

    1

    (i) : , 1, 2,..., , is a field , , VS.

    (ii) : R, 1, 2,..., .

    Is a VS over the complex numbers ?

    No, (VS0) is viola

    n n ni

    n

    i

    n

    aF a F i n F R

    a

    aV a i n F

    a

    V

    ted. ( 1.2- Ex15).

  • I

    5

    Ex2.

    (i) ( ) : , 1 , 1 is a VS.

    (ii) , , . is a VS.

    (iii) , , R. is not a VS.

    m n ij ijm n

    ij ijm n

    ij ij

    M F A a a F i m j n

    V A a a R F Q V

    V A a a Q F V

    Ex3.

    ( , ) : , where is a field is a VS.F S F f S F F

    Ex4.

    -1-1 0( ) : ( ) ... , , 1 , is a VS.n nn n nP f x f x a x a x a a F i n n N Ex5.

    1( ) : is a VS.i i iS a a F VS

    Ex6.

    1 2 1 2( , ) : , . .S a a a a R F R

    1 2 1 2 1 1 2 2

    1 2 1 2

    : ( , ) ( , ) ( , - ).

    Scalar multiplication (SM): ( , ) ( , ).

    (VS1), (VS2) and (VS8) fail to hold.

    a a b b a b a b

    c a a ca ca

  • I

    6

    Ex7.

    1 2 1 2 1 1

    1 2 1

    S .

    : ( , ) ( , ) ( , 0).

    SM: ( , ) ( ,0).

    (VS3), (VS5) (X)

    F R

    a a b b a b

    c a a c a

    ,

    Ex8.

    1 2 1 21 2 1 2 1 1 2 2

    1 2 1 2

    ( , ) : , .

    : ( , ) ( , ) ( 2 , +3 ).

    SM: ( , ) ( , ).

    (VS1)(VS2)(VS8) (X)

    V a a a a R

    a a b b a b a b

    c a a ca ca

    Ex9.

    1 2 21

    :

    SM:

    (0,0) if 0, ( , )

    , if 0.

    (VS8) (X)

    V

    cc a a aca c

    c

    .

  • I

    7

    (3) (4) (2) (2)

    Thm1.1 If , , are in , a VS, such that , then . ( )

    Pf: (4) with .

    ( ) ( ) ( ) ( ) .

    Cor1. in (VS3) is unique.

    x y z V V x z y z x y

    v V z v

    x x x z v x z v y z v y z v y

    0

    0

    0

    Pf: Let and be such that for all .

    .

    x V

    x x

    0 0

    0

    Thm 1.1

    = .

    = .

    x x

    x x

    0

    0 0 0 0

    Cor2. The vector in (VS4) is unique.

    Pf: Let and in V be such that . Then .

    Remark: Since is unique, we shall denote such by - .

    y

    y y x y x y y y

    y y x

    0

    Thm1.2 : a vector space. Then

    (a) 0 for (0 , ).

    (b)( - ) -( ) (- ) for a and .

    (c) for a .

    V

    x x V F V

    a x ax a x F x V

    a F

    0 0

    0 0

  • I

    8

    Thm1.1

    Pf: (a) 0 0 (0 0) 0 0 .

    0 .

    (b) - ( ) is the unique element of such that -( ) .

    Wanted: (- ) . (*)

    (Then - ( )

    x x x x x

    x

    ax V ax ax

    ax a x

    ax

    0

    0

    0

    0

    =(- ) .)a x

    (8) (a)

    To see(*), we have that:

    (- ) =( (- )) 0 = .

    -( ) = (- ) .

    -(1 )= (-1) - (-1) .

    ax a x a a x x

    ax a x

    x x x x

    0

    Hence,

    (- )= (-1) = (-1) = (- ) .a x a x a x a x

    (c) a +a = a( + )= a = a + a = .0 0 0 0 0 0 0 0 0

  • I

    9

    H.W. 1,8,17-21,23,26,30,31

    1.3 Subspaces ()

    1

    subspace 23subspace

    Def: Let be a VS over a field . Then is called a subspace of if is a VS

    over the under the operations of addition and SM defined on .

    Remarks:

    (i) and are subspaces of .

    V F W V V W

    F V

    V V

    0

    (ii) (VS 1-2, 5-8) subspaces

    (VS -1,0,3,4).

    (iii) (VS -1,0,3) , (VS -1,0).

    W W

    V

    Thm1.3 , where is a VS. Then is a subspace of

    (a) 0 . (VS3)

    (b) whenever, , . (VS-1)

    (c) whenever, , . (VS0)

    W V V W V

    W

    x y W x y W

    cx W c F x W

    (3) (3)

    Thm1.1

    Pf: ( )

    Let 0 and 0 be zero vectors for and , respectively. Let . Then

    0 and 0 . Hence, 0 0 .

    0 0 .

    V W

    W V x W

    x x x x x x

  • I

    10

    Thm1.2-b

    ( ) To complete the proof, we need to show that

    ( ), ( ), ( ) For each , s.t. 0.

    To see this, let . Then - ( ) = (-1) .

    By (c) (-1) . Hence, -( ) .

    Re mark

    a b c x W y W x y

    x W V x x

    x W x W

    : Thm1.2-a , ( ), ( ) (Ex.17)

    Def: Let ( ) . Define the tramspose of by ( ) .

    is symmetric .

    Ex1. The set of all symmetric matrices in ( ) is a subspace of

    t tij m n ji n m

    T

    n n

    W b c

    A a A A A a

    A A A

    W M F

    .

    ( ).

    Ex2. ( ) ( ), a subspace.

    Ex3. ( ) ( , ), a subspace.

    Ex4. The set of diagonal matrices is a subspace of ( ).

    n n

    n

    n n

    M F

    P F P F

    C R F R R

    M F

    2

    Ex5. ( ) : Trace 0 .

    Ex6. ( ) ( ) : 0 is not a subspace of ( ).

    Ex7. ( , ) : , is fixed is a subspace of .

    ( , ) : , and 0 are fixed is not a subspace

    n n

    ij n n ij n n

    W A M F A

    W A a M F a M F

    W x mx x R m R

    W x mx b x R m b

    2 of .R

    1 2

    Thm 1.4 Any intersection of subspace of a vector space is a subspace of .

    Is a subspace of ?

    V V

    W W V

  • I

    11

    1 2 1 2 2 1

    1 2 1 2

    (Ex19. a subspace of or .)

    Def. { : and y }.

    W W V W W W W

    S S x y x S S

    1 2

    1 2 1 2

    1 2

    Def. A vector space is called the direct sum of and if (i) , 1, 2,

    are subspace, (ii) {0} and (iii) . We denote that

    is the direct sum of and by wri

    iV W W W i

    W W W W V V

    W W

    1 2ting .V W W

  • I

    12

    H.W. 1, 3(a),4(a),5(g),9-12,15,16 1.4 Linear Combinations and Systems of Linear Equations

    linear combination ( )

    span Span "

    "

    S S V V

    S

    S S S

    1

    Def. : a vector space

    , .

    A vector is called a linear combination ( ) of vectors of

    if , , 1, 2,..., . s.t.

    .

    In this case, we also say that is a li

    i i

    n

    i ii

    V

    S V S

    v V S

    u V a F i n

    v a u

    v

    1 2

    1 2

    near combination ( .) of , ,..., and

    call , ,..., the coefficients of the linear combination.

    n

    n

    l.c u u u

    a a a

    1

    Def: , , : a vector space.

    The span of span ( ) = The set of all of the vectors of

    : , , 1, 2,..., , .

    For convenience, we define span

    n

    i i i ii

    S V S V

    S S l.c.

    S a u u S a F i n n N

    ( ) 0 .

  • I

    13

    Def: A subset of a vector generates (or spans) if Span ( ) .

    In this case, we also say that the vectors of generate (or span) .

    S V V S V

    S V

    2 21 2 1 2Ex1. Let , {(0,1), (1,0)}. Let ( , ) . Then (1,0) (0,1).

    Hence, any vector is a of vectors of .

    V R S x x x R x x x

    l.c. S

    Thm1.5

    (i) Span ( ) : is a subspace of .S V

    (ii) : a subspace of and .W V W S

    Then Span ( ) ( pan ( ) ).

    Proof:

    (i) Span( ) 0 is a subspace.

    0 0 span ( ), where .

    If and Span ( ) , then , , 1, 2,... . and , , 1,i i j j

    W S S S S

    S

    S z S z S

    x y S a F u S i n b F v S j

    1 1 1 1

    2,... . s.t.

    , , and so Span ( ). n m n m

    i i j j i i j ji j i j

    m

    x a u y b u x y a u b u S

    1

    1

    Moreover, for .

    ( ) Span ( ).

    Span ( ) is a subspace of .

    (ii) If Span ( ), then , where , .

    n

    i i ii

    n

    i i i i i ii

    c F

    cx c a u S

    S V

    x S x a u a F u S W a u W

  • I

    14

    1 Span ( ) .

    n

    i ii

    a u W x W S W

    1 1 2 2 3 3 4 4 5 5

    1

    Ex2. Can a vector be expressed as a of other vectors ? Such question often reduces to

    the problem of solving a system of linear equation.

    (2,6,8) .

    l.c.

    a u a u a u a u a u

    u

    2 3 4 5(1, 2,1), (-2, -4, -2), (0, 2,3), (2,0, -3) and (-3,8,16).u u u u

    1 2 4 5

    1 2 3 5

    1 2 3 4 5

    - 2 2 - 3 2,

    2 - 4 2 8 6,

    - 2 3 - 3 16 8.

    1 0 1 .

    0 0 1

    a a a a

    a a a a

    a a a a a

    1 2 5

    3 5

    4 5

    ( )

    - 2 -4,

    3 7,

    -2 3.

    1 -2 0 0 1 -4 0 0 1 0 3 7 .

    0 0 0 1 -2 3

    a a a

    a a

    a a

  • I

    15

    1 2 5

    3 5

    4 5

    2 5

    2 - - 4,

    -3 7,

    2 3.

    ,

    a a a

    a a

    a a

    a a

    .

    3

    3 2 3 2 3 2

    3 2

    Ex3. ( )

    Is 2 - 2 12 - 6 a of - 2 - 5 - 3, and 3 - 5 -4 -9 ?

    How about 3 - 2 7 +8 ?

    P R

    x x x l.c. x x x x x x

    x x x

    3 2 3 2 3 2

    Sol:

    (Case1) 2 - 2 12 - 6 ( - 2 - 5 - 3) (3 - 5 - 4 - 9). x x x a x x x b x x x

    3 2,

    - 2 - 5 -2,

    - 5 - 4 12,

    - 3 - 9 -6.

    a b

    a b

    a b

    a b

    1 3 2 1 3 2 1 0 -4-2 -5 -2 0 1 2 0 1 2

    .-5 -4 12 0 11 22 0 0 0-3 -9 -6 0 0 0 0 0 0

    (Case2)

    1 3 3 1 3 3-2 -5 -2 0 1 4

    .-5 -4 7 0 11 22-3 -9 8 0 0 17

  • I

    16

    3Ex4. span (1,0,0)(0,1,0) = the -plane in .Re mark.1 0 span ( ).

    xy R

    S

    3

    1 1

    2 2 1

    3 3

    Ex5. (1,1,0), (1,0,1) and (0,1,1) spans .

    1 1 0 1 1 0 1 0 1 0 -1 1 - .

    0 1 1 0 1 1

    S R

    a aa a aa a

    1 2

    1 2 1 2

    3 3 2 1

    2 3 1

    3 2 1

    3 2 1

    1 1 0 1 0 1 0 1 -1 - 0 1 -1 - .

    0 1 1 0 0 2 -

    11 0 0 ( - + )21 0 1 0 ( - + ) .210 0 1 ( + - )2

    a aa a a a

    a a a a

    a a a

    a a a

    a a a

    2 2 2 2

    2 2

    Ex6. 3 2,2 5 - 3, - - 4 4 span(S)= ( ).

    Ex7.

    1 1 1 1 1 0 0 1 (i) , , , span(S) ( ).

    1 0 0 1 1 1 1 1

    1 1 1 1 1 0 (ii) , and .

    1 0 0 1 1 1

    T

    S x x x x x x P R

    S M R

    S

    2 2hen Span ( ). S M R

  • I

    17

    1 1

    2 2 1

    3 3 1

    4 4

    1 2 1

    2 1 2 1

    1 3 1 3

    4 1 2 4

    1 1 1 1 1 11 0 1 0 1 0

    .1 1 0 0 0 10 1 1 0 1 1

    1 1 1 1 0 1 20 1 0 0 1 0

    .0 0 1 0 0 10 1 1 0 0 1

    a aa a aa a aa a

    a a aa a a aa a a a

    a a a a

    1 2 3

    2 1

    1 3

    3 2 4

    1 33 2 4 1 3

    2 4

    2 2

    1 0 00 1 0

    .0 0 10 0 1

    ,

    1 0 1 1 1 0Ex8. Span , and .

    0 1 0 1 1 1

    any linear combination of the vectors

    a a aa aa a

    a a a

    a aa a a a a A S

    a a

    R

    of the above set has equal diagonal entries.

  • I

    18

    H.W. 1, 3, 8,12,16,17,20

    1.5 Linear Dependence and Linear Independence

    Goal: Let W be a subspace of a vector space V.

    Finding a smallest finite subset S that generates W.

    Finding such smallest finite subset leads to the concept of linear

    dependence ( l.d.) and linear independence (l.i.).

    1

    Def (i) A subset of a vector space is called l.d. if distinct vectors , 1,..., in

    and scalars a , 1, 2,..., , not all zero, s.t.

    0.

    i

    i

    n

    i ii

    s S V u i n S

    i n

    a u

    In this case, we also say that the vectors of are l.d. (Any set containing the zero vector of l.d.).

    l.d. "

    S S

    trial".

    "

    0.

    . trial"

    1 2 1 21

    (ii) If is not l.d., then is called l.i. (For any finite number of distinct vectors

    u , ,.. in and 0, where , then ... 0).n

    n i i i ni

    S S

    u u S a u a F a a a

  • I

    19

    1 2 3 41 2 3 4

    Ex1. (1,3, 4,2), (2, 2, 4,0), (1, 3,2, 4), ( 1,0,1,0) , , , .

    Then 4 3 2 0 0.

    is l.d.

    S u u u u

    u u u u

    S .

    Ex2.

    1 -3 2 -3 7 4 -2 3 11 , , .

    -4 0 5 6 -2 -7 -1 -3 2

    1 -3 -2 0 1 -3 -2 0-4 6 -1 0 0 -6 -9 0-3 7 3 0 0 -2 -3 0

    .0 -2 -3 0 0 -2 -3 02 4 11 0 0 10 15 05 -7 2 0 0 8 2 0

    1 -

    S

    3 2 1

    3 -2 03 50 1 0 1 0 02 23 30 1 0 0 1 02 2

    .3 0 0 0 00 1 02 0 0 0 03 0 0 0 00 1 02

    0 0 0 030 1 02

    -2, 3, 5. is l.du u u S ..

  • I

    20

    1 2 1 2

    2 1

    Thm1.6 Let be a vector space, and let . If is l.d., then is l.d.

    Cor. If is l.i , then is l.i.

    Thm1.7 : l.i. and - . Then is l.d Span(S), or equivalen

    V S S V S S .

    S . S .

    S v V S S v . v

    tly Span ( ) is l.i.( , , l.d. Span( )).

    v S S v .

    S v S v S

    1

    1 21

    Pf: ( ) is l.d. distinct vectors ,..., and , 1, 2,..., ,

    not all zero; such that 0. Moreover, , ..., . Otherwise, = 0

    for all 1, 2...... . WLOG, let

    n i

    n

    i i n ii

    n

    S v u u S v a F i n

    a u v u u u a

    i n u

    . Then , 1, 2,..., -1.iv u S i n

    -1

    1

    -1

    1

    0.

    Hence 0. Otherwise, 0, for all 1, 2,..., -1,

    - Span ( ).

    ( ) Span(S) , , 1, 2,..., , s.t.

    n

    i i n ni

    n i

    ni

    ii n

    i i

    a u a v

    a a i n

    av u v S

    a

    v u S a F i n

    1

    1

    . Here we may assume that , are distinct.

    Hence, , ,..., are distinct.

    n

    i i ii

    n

    v a u u

    v u u

  • I

    21

    1

    1

    Thm1.6

    0 (-1) .

    , ,..., is l.d..

    is l.d..

    n

    i ii

    n

    v a u

    v u u

    S v

    Re mark: 1. If no proper subset of generates the span of , then must be linearly independent.

    Otherwise, a proper subset of with Span( ) = Span( ), a contraditoin.

    S S S

    S S S S

    2. If Span( ) , where is a subspace of a vector space , and no proper subset

    of is a generating set for , then is a l.i. Such is called a linearly independent

    gener

    S W W V

    S W S S

    ating set for .W

  • I

    22

    H.W. 1,2(a),3(a),5,10(a),13,14,21,22,30,31

    1.6 Bases and Dimension ()

    building block linearly independent generating (l.i.g.)

    set

    (basis)

    (dimension)

    1

    1 2

    Def: A basis for a vector space is a l.i. subset of that generates .

    Ex1. Span( ) 0 =

    Ex2. (0,0, ,...,0).Then e , ,..., for .

    Ex3. = that matrix whose only nonzero entry is

    in

    i n

    ij

    V V V

    e i e e F

    E

    2

    a 1 in the th row and the th column.

    Then ,1 ,1 for ( ).

    Ex4. = 1, ,..., for ( ).

    Ex5. = 1, , ... for ( ).

    ijm n

    nn

    i j

    E i m j n M F

    x x P F

    x x P F

    1 2

    1

    Thm1.8 : a vector space. , ,..., .

    Then

    is a basis for each .

    ! , 1 , s.t.

    .

    n

    i

    n

    i ii

    V u u u

    V v V

    a F i n

    v a u

  • I

    23

    1 1

    Pf: ( ) Let , , 1 , so that

    . Then

    i i

    n n

    i i i ii i

    a b F i n

    v a u b u

    1

    1 1

    1

    ( ) 0. Hence, for all .

    ( ) Let 0. Since 0 0,

    we have, via the uniqueness of , that =0 for all .

    is l.i

    n

    i i i i ii

    n n

    i i ii i

    i i

    ni i

    a b u a b i

    a u u

    a a i

    u ..

    Remark: 1. .

    2.

    nV F

    .

    Thm1.9

    Thm1.9 Let Span( ), where #( ) .

    Then some subset of is a basis for . Hence has a finite basis.

    Pf. Case (i) or 0 Then 0 and is a basis for .

    Case (ii) contains a n

    V S S

    S V V

    S S V V

    S

    1

    1

    1 2 1 2

    onzero vector .

    Then is a l.i. set. #( ) ,

    , ,..., , - ,

    ( " " ).

    k k

    u

    u S

    u u u u u u S v S v

    S

    , .... ,

  • I

    24

    Claim: is a basis for ( Span( ), Thm1.5-(i,ii)

    Span( ) Span( ) ). Let . If ,then Span( ). If ,

    then Thm1.7 Span( ). Thu

    V S

    S V v S v v v

    v v

    s Span( ).S

    1

    Remark: Constructive proof,

    Step1: Find a finite generating set . That is , span( ) .

    Step2: Select a nonzero vector in .

    S S V

    u S

    1 Step3: Find a "largest" possible l.i. set , where and .

    Such is a finite basis.

    u S

    3

    Ex: (2, -3,5), (8, -12, 20), (1,0 - 2), (0, 2, -1), (7, 2,0) .

    Sol: (2, -3,5), (1,0, -2), (0, 2, -1) is a basis for Span( ).

    ?

    S

    R S

    Thm1.10 ( Re placement Theorem)

    Let Span{ }, where #( ) .

    Let is a subset of with #( ) .

    V G G n

    L l.i. V L m

    (i) . ( span vector space

    ).

    m n G

    G

  • I

    25

    (ii) , #( ) - , s.t. span( ) .

    H G H n m L H V

    Proof: The proof is by mathmatical induction on .

    (i) Let 0 . Then = . 0, (i) and (ii) .

    (ii) 0 (i) (ii) , (i) (ii) 1 .

    m

    m L m n H G m

    m m

    1 1 1

    1 -

    1

    Let ,..., be a l.i. subset of , L = ,..., l.i. induction ,

    ,..., , s.t. #( ) - and span( ) . , ,

    Span( ) . Span( ) is l.d. ( ).

    Hence,

    m m

    n m

    m

    L v v V v v

    H u u G H n m L H V n m H

    L V v L L

    , 1.n m n m

    1

    -

    1 11 1

    -

    1 1 11 21

    (ii) :

    Span ( '),

    0 ( , 1, 2,..., , )

    1WLOG, we may assume that 0, - .

    m

    m n m

    m i i i i i m ii i

    m n m

    m i i i ii i

    v V L H

    v a v b u b v v i m

    b u v a v b ub

    2 - 1,..., , #( ) - -1, span( ). 1-5, span( ) span( ) .

    . span( ) .

    n mH u u H n m u L H

    L H L H V

    L H G L H V

  • I

    26

    ( ) .

    Corollarly: (i) Let span ( ) and # ( ) . If is a l.i. subset of , then #( ).

    (ii) Let be a vector space having a finite basis. Then every basis for contains

    V G G n L G n G

    V V

    the same number of vectors.

    Pf of (i): Let be a l.i. subset of . If #( ) , then a subset of containing 1

    vectors. Moreover, by Thm 1.6, is a l.i. set. By Thm1.

    L G L L L n

    L

    10-(i) #( ) 1,

    a contraction. Thus #( ) . Again, by Thm1.10-(i) #( ) . Pf of (ii): Thm1.10, . Let and be any two finite

    bases for that containin

    n L n

    L L n

    V

    V

    g and vectors, respertively. 1.10

    . .

    n m n m

    m n n m

    Definitions: (i) A vector space, Corollary, well-defined, is called

    finite-dimensional if it has a finite basis.

    (ii) The number of vectors in a basis is called the dimension of and is denoted by dim( ).

    (iii) A vector space that is not finite-dimensional is called infinite-dimentsional.

    Ex7. 0 .

    V V

    V dim( ) 0. ( )V

    Ex8. . dim( ) .

    Ex9. ( ). dim( ) .

    Ex10. ( ). dim( ) 1.

    Ex11. , dim( ) 1 1 .

    Ex12. , dim( ) 2, 1, .

    n

    m n

    n

    V F V n

    V M F V m n

    V P F V n

    F R V R V

    F R V C V i

  • I

    27

    Corollary2. Let dim( ) .

    (a) Let and Span( ) . Then #( ) . Moreover, if # ( ) , then

    is a basis for . ( " " genetating set).

    V n

    G V G V G n G n

    G V

    (b) Let and is . Then #( ) . Moreover, if #( ) , then is

    a basis for . ( " " l.i. set).

    (c) Every l.i. subset of can be extended to a basis for .

    Pf: (a)

    L V L l.i L n L n L

    V

    V V

    Let be a finite basis of .

    1.10-(i) #( ) #( ). 1.9, #( ) . #( ) ,

    .

    (b) Thm1.10-(i). Thm1.10-(ii) .

    (

    V

    n G

    G H H V H n G n

    G H

    c) Thm1.10 .

    Ex: If , , is a basis for a vector space , then , , is also a basis for .

    Pf: By Cor 2(b), it suffies to show that , , is l.i..

    Let ( ) ( ) 0

    u v w V u v w v w w V

    u v w v w w

    a u v w b v w cw au

    ( ) ( ) 0.

    , , is a basis 0, 0, 0 0.

    a b u a b c w

    u v w a a b a b c a b c

    The dimension of subspaces.

    Thm1.11 : a subspace of a vector space , where dim( ) .

    Then

    (i) dim( ) dim( ).

    (ii) If dim( ) dim( ), then .

    W V V

    W V

    W V W V

  • I

    28

    Pr oof:

    (i) Thm1.10-(i) . Let be a finite basis for . Then span( ) . Let be a

    basis for . Then and is l.i.. Hence, #( ) #( ). That is, dim( ) dim( ).

    (

    V V

    W V W V

    ii) Thm1.10-(ii) , where #( ) dim( ) - dim( ), s.t. span( ) .

    #( ) 0 span( ) .

    H H V W H V

    H V W V

    51 2 3 4 5 1 3 5 2 4Ex17. ( , , , , ) : 0, dim( ) 3.Ex18. = The set of diagonal matices dim( ) .

    1Ex19. = The set of symmetric matices dim( ) ( 1).2

    W a a a a a F a a a a a W

    W n n W n

    W n n W n n

    3

    Corollarly: If is a subspace of a finite-dimensional vector space , then any basis for

    can be extended to a basis for .

    Ex. Describe subspaces of that have dimentsion 3,2,1 and 0, representivel

    W V W

    V

    R

    0 1

    0

    y.

    The Lagrange Interpolation Formula.

    Lagrange polynomails associated woth , ,... .

    - ( ) .

    -

    n

    nk

    i ki kk i

    c c c

    x cf x

    c c

    0 1

    0

    0

    0 ( ) .

    1

    Claim: , ,... is a subset of ( ).

    Let 0 ( ) for some scalars , 0,1..., .

    ( ) 0 ( ) 0.

    i j

    n n

    n

    i i ii

    n

    i i j ji

    j if c

    j i

    f f f l.i. P F

    a f a F i n

    a f c c

  • I

    29

    0

    But ( ) for any 0,1,..., .

    Hence, 0. Since dimen( ( )) 1.

    is a basis for ( ).

    Every polynomial in ( ) can be uniquely ecpress as a of .

    n

    i i j ji

    j n

    n

    n

    a f c a j n

    a P F n

    P F

    g P F l.c.

    0

    0

    0

    Let = .

    Then ( ) ( ) .

    So ( ) .

    This representation is called Lagrange interpolation formula.

    ( 1) n n

    1

    n

    i ii

    n

    j i i j ji

    n

    i ii

    g b f

    g c b f c b

    g g c f

    n

    n