chapter 13 analytical applications of nuclear …oregonstate.edu/instruct/ch374/ch418518/chapter 13...

28
Chapter 13 Analytical Applications of Nuclear Reactions As mentioned previously (chapter 4), one of the compelling reasons to use nuclear analytical methods is their high sensitivity. The radiation from the decay or excitation of a single nucleus can be readily detected. Even when one has to have the intervening step of a nuclear reaction to produce or excite the decaying species, the ability to detect very small quantities of material still occurs. This chapter deals with those nuclear analytical methods (activation analysis, particleinduced xray emission (PIXE), Rutherford backscattering (RBS)) in which a nuclear reaction is the necessary first step in the analysis procedure. The techniques to be discussed are known for their sensitivity, the ability to do nondestructive analysis of a large number of samples, sometimes quickly and the ability to analyze the surfaces of materials. All these techniques are elemental analysis techniques and do not, in general, give information about the chemical form of the element, any attached ligands, etc. This lack of speciation information is a drawback of these methods. 13.1 Activation Analysis 13.1.1 Basic description of the method Activation analysis is an analytical technique that allows one to determine the amount of a given element X contained in some material Y. The basic steps in the activation technique are as follows: 1. Irradiate Y with a source of ionizing radiation so that X will change into X*, a radioactive isotope of X.

Upload: hathuy

Post on 24-May-2018

221 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

Chapter  13  Analytical  Applications  of  Nuclear  Reactions  

 As  mentioned  previously  (chapter  4),  one  of  the  compelling  reasons  to  use  nuclear  

analytical  methods  is  their  high  sensitivity.    The  radiation  from  the  decay  or  

excitation  of  a  single  nucleus  can  be  readily  detected.    Even  when  one  has  to  have  

the  intervening  step  of  a  nuclear  reaction  to  produce  or  excite  the  decaying  species,  

the  ability  to  detect  very  small  quantities  of  material  still  occurs.    This  chapter  deals  

with  those  nuclear  analytical  methods  (activation  analysis,  particle-­‐induced  x-­‐ray  

emission  (PIXE),  Rutherford  backscattering  (RBS))  in  which  a  nuclear  reaction  is  the  

necessary  first  step  in  the  analysis  procedure.    The  techniques  to  be  discussed  are  

known  for  their  sensitivity,  the  ability  to  do  non-­‐destructive  analysis  of  a  large  

number  of  samples,  sometimes  quickly  and  the  ability  to  analyze  the  surfaces  of  

materials.    All  these  techniques  are  elemental  analysis  techniques  and  do  not,  in  

general,  give  information  about  the  chemical  form  of  the  element,  any  attached  

ligands,  etc.    This  lack  of  speciation  information  is  a  drawback  of  these  methods.  

13.1  Activation  Analysis  

13.1.1  Basic  description  of  the  method  

Activation  analysis  is  an  analytical  technique  that  allows  one  to  determine  the  

amount  of  a  given  element  X  contained  in  some  material  Y.    The  basic  steps  in  the  

activation  technique  are  as  follows:  

1. Irradiate  Y  with  a  source  of  ionizing  radiation  so  that  X  will  change  into  X*,  a  

radioactive  isotope  of  X.  

Page 2: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

2. Using  chemical  or  instrumental  techniques,  “isolate”  X  and  X*  from  all  other  

elements  in  Y  (not  necessarily  quantitatively)  and  measure  the  activity  of  X*.    

Chemical  “isolation”  of  the  activity  of  interest  is  performed  simply  by  separating  

it  chemically  from  all  other  activities.    Instrumental  “isolation”  of  the  activity  of  

interest  involves  the  detection  of  radiation  that  can  uniquely  identify  the  nuclide  

in  question.  

3. Calculate  the  amount  of  X  present.  

These  basic  steps  are  shown  schematically  for  neutron  activation  analysis  in  Figure  

13-­‐1.  

How  does  one  calculate  the  amount  of  x  present,  knowing  the  activity  of  X*  

produced  in  the  irradiation?    It  can  be  shown  that    

                                                             (13-­‐1)  

where  AX*  is  the  activity  of  X*  present  at  a  time  td  after  the  end  of  the  bombardment,  

NX  is  the  number  of  X  nuclei  present  initially,  σ  is  the  nuclear  reaction  cross  section,  

φ  is  the  flux  of  activating  particles,  ti  is  the  length  of  the  irradiation  and  λX*  is  the  

decay  constant  of  X*.    From  this  equation  one  could  calculate  Nx  from  AX*,  knowing  

all  the  other  variables.    (The  above  equation  for  AX*  is  valid  for  “thin  targets”,  i.e.,  

samples  that  absorb  <  5%  of  the  flux  of  activating  particles).  

  This  method  of  analysis  is  called  absolute  activation  analysis  and  is  done  

rarely.    The  reasons  for  this  are  the  need  for  detailed  knowledge  of  the  flux  and  

energy  of  the  bombarding  particles  in  the  sample,  the  compounding  of  the  

uncertainties  of  our  knowledge  of  cross  sections,  decay  branching  ratios,  etc.  in  the  

Page 3: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

final  results.      A  simpler  technique  is  to  irradiate  and  count  a  known  amount  of  pure  

X  under  the  same  conditions  used  for  the  mixture  of  X  inY.    Then  

                 (13-­‐2)  

  This  is  known  as  the  comparator  technique  and  is  the  most  widely  used  

method  of  activation  analysis.    It  depends  on  irradiating  and  counting  standards  of  

known  amounts  of  pure  material  using  the  same  conditions  as  the  samples  being  

analyzed.      

13.1.2  Advantages  and  Disadvantages  of  Activation  Analysis  

Since  we  know  that  A=ελN  where  A  is  the  measured  radioactivity,  λ  is  the  

decay  constant,  N  is  the  number  of  radioactive  nuclei  present,  and  ε  is  a  constant  

representing  the  detection  efficiency,  we  know  that  just  a  few  radioactive  nuclei  

need  to  be  present  to  give  measurable  activities.    Use  of  activation  analysis  can  lead  

to  measurement  of  elemental  abundances  of  the  order  of  10-­‐6  to  10-­‐12g.    The  actual  

detection  sensitivities  for  activation  analysis  of  various  elements,  as  practiced  by  a  

commercial  activation  analysis  service,  are  shown  in  Figure  13-­‐2.    One  can  detect  µg  

levels  of  over  2/3  of  the  elements  using  activation  analysis.  

Although  the  high  sensitivity  of  activation  analysis  is  perhaps  its  most  

striking  advantage,  there  are  a  number  of  other  favorable  aspects  as  well.    Activation  

analysis  is  basically  a  multielemental  technique.  Many  elements  in  the  sample  will  

become  radioactive  during  the  irradiation;  and  if  each  of  these  elements  can  be  

“isolated”  chemically  or  instrumentally,  their  abundances  may  be  determined  

Page 4: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

simultaneously.    Activation  analysis  can  be  a  nondestructive  method  of  analysis.    

Numerous  tests  have  shown  that  with  careful  experimental  manipulation,  activation  

analysis  is  an  accurate  (~1  %  accuracy)  and  precise  (~  5%  precision)  method  of  

measuring  elemental  concentrations.  

  Activation  analysis  is  not  without  its  drawbacks,  however.    Among  them  are  

the  need  to  use  expensive  equipment  and  irradiation  facilities,  the  inability  to  

determine  the  chemical  state  of  the  elements  in  question,  the  need  to  work  with  

significant    levels  of  radioactivity,  with  their  attendant  radiation  safety  and  legal  

problems,  the  long  times  needed  to  complete  some  analyses,  and  complex  analysis  

sometimes  needed  to  unscramble  the  γ-­‐ray  spectra  in  a  given  experiment.  

  The  ultimate  test  of  the  utility  of  activation  analysis  as  an  analytical  

technique  is  whether  there  are  competitive  technologies  that  have  the  advantages  of  

activation  analysis  with  fewer  drawbacks.    One  candidate  for  this  designation  is  

inductively-­‐coupled-­‐plasma-­‐mass-­‐spectroscopy    (ICP-­‐MS).  

  The  detection  limits  in  ICP-­‐MS  are  shown  in  Figure  13-­‐3  and  are  certainly  

equal  to  those  achieved  by  activation  analysis.    In  addition,  ICP-­‐MS  apparatus  is  

frequently  connected  to  ordinary  chemical  separation  apparatus,  such  as  liquid  

chromatography  (LC)  thus  allowing  a  sensitive  determination  of  both  the  amount  

and  chemical  species  present  for  both  metals  and  non-­‐metals.    (Figure  13-­‐4)  

In  recent  years,  there  has  been  increasing  use  of  ICP-­‐MS  techniques  to  

replace  those  of  activation  analysis  although  there  still  are  a  large  number  of  

applications  of  activation  analysis  each  year,  especially  in  the  geological  sciences.  

Page 5: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

 13.1.3  Practical  Considerations  in  Activation  Analysis  

To  better  understand  the  practical  details  of  how  activation  analysis  may  be  

applied  to  a  given  problem  in  elemental  analysis,  let  us  consider  the  various  aspects  

of  a  typical  activation  analysis  problem.    To  make  our  discussion  more  concrete,  let  

us  consider  a  specific  problem,  the  measurement  of  the  aluminum  content  of  rocks  

and  meteorites  [2].    The  choice  of  this  problem  as  an  example  was  dictated  by  its  

pedagogic  simplicity  and  the  fact  that  conventional  chemical  analyses  of  aluminum  

in  rocks  are  known  to  be  inaccurate  for  low  aluminum  concentrations  and,  in  

general,  not  very  precise.      

The  first  step  in  an  activation  analysis  procedure  is  sample  preparation.    The  

unknown  and  known  samples    (sometimes  referred  to  as  the  unknown  and  standard  

samples)  should  have  the  same  size,  composition,  and  homogeneity  insofar  as  

possible,  to  insure  that  any  attenuation  of  the  incoming  radiation,  or  the  sample  

radiation  before  counting,  or  any  count  rate  dependent  effects  are  exactly  the  same.    

In  practice,  this  step  is  accomplished  by  making  sure  that  the  unknown  sample  and  

known  sample  have  the  same  physical  volume,  are  irradiated  in  a  homogenous  flux,  

and  are  counted  under  exactly  the  same  conditions  (geometry,  detector,  etc.)    Pre-­‐

irradiation  treatment  of  the  sample  should  be  kept  to  a  minimum  so  as  to  lessen  the  

possibility  of  sample  contamination.    The  standards  are  either  aqueous  solutions  of  

the  elements  in  question  or  multi-­‐elemental  standard  reference  materials  whose  

composition  is  certified  by  a  national  or  international  agency  (IAEA,  US  NIST,  etc,).  

The  second  step  in  an  activation  analysis  concerns  the  choice  of  nuclear  

reaction  to  change  X  into  X*,  plus  the  irradiation  facility  in  which  the  reaction  will  be  

Page 6: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

carried  out.    In  addition,  the  length  of  irradiation  and  decay  prior  to  counting  must  

be  chosen  so  the  produced  X*  activity  is  enhanced  relative  to  all  other  activities  

produced.    Most  activation  analysis  is  done  with  thermal  neutrons  produced  in  

nuclear  reactors  for  the  following  reasons:  

1. Many  elements  have  high  cross  sections  for  the  absorption  of  thermal  

neutrons  in  (n,γ)  reactions.  

2. Copious  fluxes  of  thermal  neutrons  (φ~1012  n/cm2/sec)  are  available  in  

nuclear  reactors.  

3. Neutrons  penetrate  matter  easily,  and  therefore  there  are  few  problems  

related  to  attenuation  of  the  neutron  flux  in  the  sample.  

4. The  major  elements,  carbon,  nitrogen,  and  oxygen,  are  scarcely  activated  by  

thermal  neutrons,  making  detection  of  other  elements  easier.  

Although  most  activation  analysis  is  done  with  reactor  thermal  neutrons,  

several  other  nuclear  reactions  and  irradiation  facilities  can  be  used.    Spontaneous  

fission  of  252Cf  furnishes  3.8  neutrons  per  fission,  and  fluxes  of  up  to  109  n/cm2/sec  

are  available  from  252Cf  isotopic  neutron  sources.    Cockroft-­‐Walton  accelerators  can  

be  used  to  accelerate  deuterons  to  energies  of  ~  150  keV,  and  then,  using  the  3H(d,  

n)  reaction,  ~14  MeV  neutrons  can  be  produced  (fast  neutrons).    Typical  neutron  

generators  of  this  type  give  fluxes  of  ~109  n/cm2/sec  of  14  MeV  neutrons.    These  

fast  neutrons  are  useful  for  activating  the  light  elements,  such  as  silicon,  nitrogen,  

fluorine,  and  oxygen,  via  (n,  p)  or  (n,α)  reactions,  leading  to  sensitivities  of  50-­‐200  

ppm  and  thus,  is  complementary  to  slow  neutron  activation  analysis.  

Page 7: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

  Charged  particle  or  photon-­‐induced  reactions  can  also  be  used  for  activation.    

The  typical  charged  particles  used  are  protons,  deuterons,  3He  and  α-­‐particles.    

Charged  particle  activation  analysis  (CPAA)  is  frequently  complementary  to  neutron  

activation  analysis  (NAA).    NAA  has  poor  sensitivity  for  the  lighter  elements  while  

CPAA  has  good  sensitivity.    Because  of  the  limited  penetrating  power  of  charged  

particles  in  matter,  CPAA  either  requires  a  thin  sample  or  is  used  for  surface  

analysis.    This  attenuation  of  the  primary  radiation  by  the  sample  puts  especially  

stringent  requirements  on  sample  preparation.  

  Activation  by  photons  (PAA)  usually  takes  place  via  the  (γ,  n)  reaction  

although  other  reactions  like  (γ,  p),  (γ,α),  etc.  are  possible.    Of  special  interest  is  the  

determination  of  lead  by  PAA  with  a  detection  limit  of  ~0.5  µg.    (Lead  is  very  hard  to  

detect  using  NAA  (Fig.  13-­‐2)).    Photon  sources  are  usually  electron  accelerators,  

which  produce  high  energy  photons  through  the  bremsstrahlung  process  when  the  

electrons  strike  a  heavy  metal  target.    

  For  the  sample  problem  of  determining  the  Al  content  of  rocks,  the  activating  

nuclear  reaction  was  chosen  to  be  27Al  (n,γ)28Al,  with  the  irradiation  source  being  a  

nuclear  reactor.    The  28Al  decays  with  a  2.2  min  half  life  and  emits  a  β-­‐particle  and  a  

high  energy  (1.78  MeV)  γ-­‐ray.  

  Even  if  you  have  chosen  to  irradiate  a  sample  with  thermal  neutrons  from  a  

nuclear  reactor,  you  may  be  surprised  to  learn  that  several  other  neutron  energies  

may  be  present  and  cause  reactions.    For  the  popular  TRIGA  design  of  reactor,  only  

~25%  of  the  neutrons  at  a  typical  irradiation  position  are  ‘thermal”  neutrons  

Page 8: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

(0<En<0.05  eV).    The  rest  of  the  neutrons  have  higher  energies,  with  neutrons  with  

0.05  eV<  En  <  0.1  MeV  being  called  epithermal  neutrons  and  neutrons  with  0.1  <  En  <  

15  MeV  being  called  fast  neutrons.    The  capture  cross  sections  for  epithermal  

neutrons  frequently  involve  resonance  capture  (Chapters  10  and  11)  and  can  

involve  very  large  cross  sections  (>104  barns).    Usually  one  uses  epithermal  

neutrons  as  the  activating  particle  when  one  wants  to  avoid  interfering  activities  in  

the  sample  due  to  thermal  neutron  capture.    For  example,  suppose  a  sample  has  a  

large  content  of  sodium.    Sodium  is  easily  activated  via  the  23Na  (n,γ)  reaction  giving  

rise  to  copious  quantities  of  15  hr  24Na  in  the  sample,  which  may  interfere  with  the  

detection  and  measurement  of  other  activities.    How  do  we  get  rid  of  this  sodium?    

We  can  surround  our  sample  with  a  metallic  cadmium  cover  (~0.1  cm  thick).    

Cadmium  has  a  very  large  capture  cross  section  for  neutrons  in  the  energy  region  

below  1.0  eV  and  effectively  “cuts  off”  or  removes  these  neutrons.    The  resulting  

neutron  flux  in  the  sample  consists  of  the  higher  energy  (epithermal)  neutrons.    

Frequently  one  measures  a  “Cd  ratio”  for  activation  of  a  specific  element  to  get  some  

idea  of  how  much  of  the  produced  activity  is  due  to  epithermal  activation.    This  Cd  

ratio,  R,  is  defined  as    

                                                                                                     (13-­‐3)  

 

Typical  values  of  R  range  from  2-­‐1000  depending  on  the  reactor  

irradiation  position.    Epithermal  activation  is  advantageous  for  Ag,  As,  Au,  

Page 9: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

Ba,  Cs,  Ga,  In,  Mo,  Pt,  Rb,  Sb,  Se,  Sr,  Tb,  Th,  Tm,  U,  W,  Zn,  and  Zr  among  

others.  

  Once  a  nuclear  reaction  and  an  irradiation  facility  have  been  selected,  the  

possibility  of  interfering  reactions  must  be  carefully  considered.    This  term  means  

that  quite  often,  although  X  will  change  to  X*  during  the  irradiation,  some  other  

element  Z  may  also  change  to  X*  during  the  irradiation.    Thus  the  activity  of  X*  is  

proportional  to  the  abundances  of  Z  and  X  in  the  sample,  not  just  X.    This  effect  is  

referred  to  as  an  interfering  reaction  or  interference,  and  a  correction  must  be  made  

for  it.    In  the  case  of  the  aluminum  analysis,  there  is  a  very  important  interference—

namely  the  occurrence  of  the  28Si(n,p)28Al  reaction  whereby  silicon  in  the  rock  is  

converted  into  28Al  by  reactions  involving  fast  neutrons  present  in  any  reactor  

(along  with  the  desired  thermal  neutrons).    Thus  the  measured  28Al  activity  will  be  

due  to  the  activation  of  27Al  and  28Si.    By  irradiating  a  known  amount  of  silicon  and  

counting  it,  and  from  the  well-­‐known  Si  abundances  of  rocks,  a  correction  for  the  

28Al  produced  by  the  28Si(n,p)28Al  reaction  can  be  calculated.    Other  possible  

interferences  are  the  fission  of  any  uranium  in  the  sample,  or  the  occurrence  of  two  

nuclides  that  emit  γ-­‐rays  that  have  similar  energies  that  cannot  be  resolved.  

  The  final  decision  concerning  irradiation  conditions  involves  the  

determination  of  the  flux  and  irradiation  duration.    A  rough  rule  is  that  the  longer  

one  irradiates  the  sample  and  the  longer  one  lets  the  sample  decay  before  counting,  

the  greater  the  activity  of  the  long-­‐lived  species  relative  to  the  short-­‐lived  species.    

One  must  keep  in  mind  the  saturation  properties  of  irradiations  are  such  that  it  

rarely  pays  to  irradiate  any  material  for  a  time  corresponding  to  more  than  two  half-­‐

Page 10: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

lives  of  the  desired  activity.    (In  the  Al  analysis,  a  sample  irradiation  time  of  1.0  min  

and  a  neutron  flux  of  5  x  1010  n/cm2/sec  were  used.)    

  Frequently  multiple  irradiations  of  a  sample  are  made.    The  first  irradiation  

is  short  (minutes)  to  determine  the  short-­‐lived  radioisotopes  (of  Ag,  Al,  Ba,  Br,  Ca,  Cl,  

Co,  Cu,  Dy,  F,  I,  In,  K,  Mg,  Mn,  Na,  Se,  Sb,  Si,  Sr,  Ti,  U,  and  V)  and  the  subsequent  

irradiations  (hours)  are  to  determine  the  intermediate  (As,  Au,  Br,  Cd,  Ga,  Ge,  Hg,  Ho,  

K,  La,  Mo,  Na,  Pd,  Sb,  Sm,  U,  W,  and  Zn)  or  long-­‐lived  (Ag,  Ce,  Cr,  Cs,  Co,  Eu,  Fe,  Hf,  Hg,  

Lu,  Nd,  Ni,  Rb,  Sb,  Sc,  Se,  Sn,  Sr,  Ta,  Tb,  Th,  Tm,  Yb,  Zn,  and  Zr)  radionuclides.    In  the  

long  irradiations,  it  is  common  to  let  the  sample  “decay”  for  several  days  to  get  rid  of  

the  15  hr  24Na.  

  The  next  major  step  in  any  activation  analysis  procedure  is  the  selection  of  a  

method  of  “isolating”  the  activity  of  interest,  X*,  to  measure  it.    Two  methods  of  

“isolating”  X*  are  commonly  used—instrumental  activation  analysis  (IAA)  and  

radiochemical  activation  analysis  (RAA).    In  instrumental  activation  analysis,  the  

characteristic  energies  of  the  γ-­‐rays  emitted  by  the  radionuclides  in  the  activated  

sample  are  used  to  identify  them,  and  the  corresponding  photopeak  areas  give  a  

measure  of  the  activities.    Instrumental  activation  analysis  is  non-­‐destructive,  

allowing  further  use  of  the  sample.    Furthermore,  it  permits  the  use  of  short-­‐lived  

activities  to  identify  various  elements  that  might  not  be  possible  if  a  lengthy  

chemical  separation  would  precede  the  counting.        Also,  instrumental  activation  

analysis  (IAA)  lends  itself  to  automation  and  reduces  the  time  spent  per  sample  in  

the  analysis.    The  use  of  Ge  semiconductor  detectors  with  excellent  energy  

resolution  has  made  IAA  the  preferred  method  of  activation  analysis.  

Page 11: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

  Although  most  investigators  prefer  to  use  IAA,  in  some  situations  

radiochemistry  must  be  done  prior  to  counting  the  sample,  to  isolate  the  activity  of  

interest.    An  example  of  the  need  for  radiochemistry  is  the  determination  of  trace  

elements  in  biological  materials,  such  as  blood,  which  have  a  very  high  sodium  

content.    Large  quantities  of  24Na  are  produced  via  the  23Na(n,γ)24Na  reaction,  and  

they  tend  to  “mask”  the  trace  element  activities  in  the  blood  by  creating  a  large  

Compton  background  in  the  region  where  the  photopeaks  of  other  trace-­‐element  

activities  are  found  (see  the  discussion  in  Chapter  18  on  gamma  ray  detectors).    One  

solution  to  this  problem  is  to  separate  the  sodium  chemically  from  the  irradiated  

blood  (using  ion  exchange  with  hydrated  antimony  pentoxide)  and  then  to  

instrumentally  analyze  the  purified  blood.    This  example  does  illustrate  a  feature  of  

modern  radiochemical  activation  analysis—that  of  not  completely  separating  the  

element  of  interest,  but  of  making  a  group  separation  of  a  relatively  small  number  of  

activities  and  further  resolving  these  activities  by  γ-­‐ray  spectroscopy.  

  All  of  our  discussions  up  to  now  have  focussed  on  detecting  the  γ-­‐rays  from  

the  decaying  activation  products.    There  is  another  approach  that  has  been  used  in  

some  cases.    This  approach  is  called  prompt  gamma  ray  activation  analysis  (PGAA)  

in  which  one  detects  the  prompt  γ-­‐radiation  emitted  during  the  activating  reaction.    

For  neutron  activation  via  the  (n,γ)  reaction,  one  detects  the  γ-­‐rays  emitted  during  

the  neutron  capture.    Such  analyses  must  be  carried  out  with  beams  of  activating  

particles  (such  as  neutrons)  and  usually  involves  detecting  high  energy  (>  5  MeV)  γ-­‐

rays.    Because  of  these  constraints,  this  rapid  analysis  method  is  restricted  usually  to  

the  determination  of  the  major  elemental  constituents  of  the  sample.  

Page 12: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

13.1.4    Applications  of  Activation  Analysis  

The  applications  of  activation  analysis  are  almost  innumerable.    In  the  physical  

sciences,  activation  analysis  is  used  in  trace-­‐element  analysis  of  semiconductor  

materials,  metals,  meteorites,  lunar  samples,  and  terrestrial  rocks.    In  most  cases,  

the  multi-­‐elemental  analysis  feature  of  activation  analysis  is  used  to  measure  the  

concentrations  of  several  trace  elements  simultaneously.    From  these  detailed  

studies  of  trace  element  abundance  patterns,  one  has  been  able  to  deduce  

information  about  the  thermal  and  chemical  history  of  the  earth,  moon,  Mars,    and  

meteorites,  as  well  as    the  source  or  age  of  an  object.  

The  use  of  activation  analysis  in  criminal  investigations  (forensic  activation  

analysis)  is  also  well-­‐established.    The  basic  idea  here  is  to  match  the  trace-­‐element  

distributions  found  in  bullets,  paint,  oil,  and  so  on  found  at  the  scene  of  a  crime  with  

the  trace-­‐element  distributions  in  objects  found  with  criminal  suspects.    Such  

identification  is  rapid  and  nondestructive  (allowing  the  actual  evidence  to  be  

presented  in  court).    Moreover  the  probability  of  its  correctness  can  be  ascertained  

quantitatively.    Other  prominent  examples  of  the  use  of  forensic  activation  analysis  

involve  confirmation  of  the  notion  that  Napoleon  was  poisoned  (by  finding  

significant  amounts  of  arsenic  in  hair  from  his  head)  and  the  finding  that  the  

activation  analysis  of  the  wipe  samples  taken  from  a  suspect’s  hand  can  reveal  not  

only  if  he  or  she  has  fired  a  gun  recently  but  also  the  type  of  gun  and  ammunition  

used.  

Applications  of  activation  analysis  in  the  environmental  sciences  are  routine.    

Determinations  of  the  trace  element  content  of  urban  atmospheres,  lakes,  streams,  

Page 13: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

and  similar  areas  have  been  used  to  trace    the  flow  of  pollutants  in  various  

ecosystems.    In  addition,  a  few  of  the  trace  elements  whose  abundances  have  been  

measured  by  activation  analysis  have  turned  out  to  be  biologically  significant  by  

themselves.    The  classic  example  is  mercury  and  the  significant  mercury  

concentration  in  fish  and  other  foodstuffs  revealed  by  activation  analysis.    A  

particular  combination  of  activation  analysis  and  radiotracer  methods  has  found  

important  applications  in  the  environmental  sciences.    This  combination  involves  

the  use  of  stable  isotopes  instead  of  radioactive  isotopes  as  tracers  in  various  

systems,  with  activation  analysis  of  the  samples  collected  after  tracer  dispersal  

being  used  to  measure  the  tracer  concentrations.    Such  a  technique  avoids  the  need  

to  introduce  radioactive  materials  into  a  system  (such  as  the  environment  with  its  

subsequent  health  and  legal  complications)  and  yet  retains  the  selectivity  and  

sensitivity  of  radiation  measurements.    The  stable  isotopes  are  called  stable  

activable  tracers.    Kruger  has  described  their  use  [1].  

  In  summary,  activation  analysis  is  a  multi-­‐elemental,  non-­‐destructive,  very  

accurate  method  of  analysis.    The  best-­‐case  sensitivities  are  pg/g  with  an  irregular  

variation  from  element  to  element.    It  is  best  suited  for  the  analysis  of  solid  samples  

and  can  be  “tuned”  using  changes  in  irradiation  conditions,  particles,  etc.,  and  post-­‐

irradiation  sample  treatment.    Disadvantages  are  the  long  analysis  times,  the  need  

for  access  to  an  irradiation  facility,  (usually  a  reactor),  the  need  to  handle  

radioactivity,  the  labor-­‐intensive  nature  of  sample  counting,  and  the  inability  to  get  

speciation  information.  

13.2      PIXE  

Page 14: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

Particle-­‐induced  x-­‐ray  emission  (PIXE)  is  an  analytical  technique  based  upon  

observing  fluorescent  x-­‐rays.    As  such,  it  really  is  not  a  nuclear  technique,  since  it  

involves  an  atomic  process,  x-­‐ray  emission.    But  the  atomic  electron  shell  vacancies  

that  are  filled  when  the  x-­‐ray  is  emitted    are  created  using  particle-­‐accelerator  

beams  and  one  uses  typical  semiconductor  radiation  detectors,  Si  (Li)  detectors,  to  

detect  the  x-­‐rays.  

  The  essential  features  of  a  PIXE  setup  are  shown  schematically  in  Figure  13-­‐

5.    A  beam  of  charged  particles  from  an  accelerator,  typically  2-­‐4  MeV  protons,  

impinges  on  a  thin  sample  in  a  vacuum  chamber.    The  protons  collide  with  the  

electrons  in  the  material  and  some  eject  inner  shell  electrons  from  the  atoms  in  the  

sample.    A  Faraday  cup  is  used  to  collect  the  charge  deposited  by  the  incident  

protons  and  this  is  integrated  electronically  to  give  the  beam  current.    The  sample  is  

typically  a  thin,  uniform  deposit  of  the  material  to  be  analyzed  on  a  thin  backing  

material.    The  characteristic  x-­‐rays  from  the  sample  are  detected  with  a  Si  (Li)  

detector.    A  typical  spectrum  is  shown  in  Figure  13-­‐6.      The  spectrum  consists  of  

discrete  x-­‐ray  peaks  superimposed  on  a  continuous  background  of  bremsstrahlung.    

One  can  see  the  Kα  and  Kβ  lines  of  the  lighter  elements  (from  the  filling  of  the  K  shell  

vacancies)  and  the  L  lines  of  the  heaviest  elements.    The  peaks  corresponding  to  a  

given  element  are  integrated  to  give  peak  areas  and  the  amounts  of  that  element  

obtained  either  from  a  knowledge  of  the  absolute  ionization  cross  sections  (~1-­‐104  

barns),  fluorescence  yields  (0.1-­‐0.9),  beam  current  and  geometry  or  by  comparison  

to  the  results  obtained  from  a  thin  elemental  standard.    The  term  fluorescence  yield  

Page 15: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

refers  to  the  fraction  of  the  electron  vacancies  filled  by  x-­‐ray  emission  vs.  the  

ejection  of  Auger  electrons.  

  Typical  detection  limits  for  various  elements  in  a  biological  sample  are  

shown  in  Figure  13-­‐7.    Typically  PIXE  has  sensitivity  at  the  ppm  level  for  many  

elements.    About  25%  of  the  applications  of  PIXE  are  in  biology  and  medicine.    The  

light  element  matrices  lead  to  smaller  continuous  backgrounds  and  many  trace  and  

toxic  elements  are  easily  detected  by  PIXE.    (There  are  no  “holes”  in  detection  limits  

as  there  are  in  activation  analysis  as  all  the  elements  emit  some  x-­‐rays).    

Considerable  attention  has  been  and  must  be  devoted  to  the  preparation  of  thin,  

representative  samples.    Note  that  PIXE  is  only  sensitive  to  the  elemental  

composition  of  the  sample  and  not  to  the  the  isotopic  composition.  

  One  of  the  most  successful  applications  of  PIXE  has  been  in  the  analysis  of  air  

pollution  particulate  matter.    Atmospheric  particulate  matter  is  typically  collected  

by  impaction  on  a  filter  paper,  which  provides  an  ideal  thin  sample  for  PIXE  

analysis.    Another  aspect  of  PIXE  that  is  very  important  for  the  analysis  of  aerosol  

samples  is  the  ability  to  analyze  a  large  number  of  samples  in  a  short  time.    PIXE  

analyses  typically  take  less  than  a  minute  and  the  entire  irradiation,  counting,  

sample  changing  and  analysis  procedure  can  be  automated.  

  An  important  variant  on  PIXE  is  micro-­‐PIXE.    By  using  a  proton  beam  whose  

spatial  dimension  is  ~0.5  µm  (rather  than  the  usual  10  mm),  one  can  determine  the  

trace  element  content  of  a  small  portion  of  the  sample,  giving  one  a  “trace-­‐element  

microscope.”    This  application  is  important  in  probing  samples  of  medical  interest.    

Page 16: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

A  related  technique  is  used  in  the  electron  microprobe  where  the  ionization  is  

caused  by  electron  impact.  

13.3  Rutherford  Backscattering  (RBS)  

 

One  of  the  earliest  experiments  in  nuclear  physics  was  Rutherford’s  

demonstration  of  large  angle  scattering  of  α-­‐particles  by  gold  nuclei.    This  

experiment  established  the  existence  of  a  small  nucleus  within  the  atom  (Chapter  

10).    The  force  acting  in  this  process,  called  Rutherford  scattering,  is  the  repulsive  

Coulomb  force  between  the  positively  charged  nuclei.    A  schematic  diagram  of  the  

phenomena  is  shown  in  Figure  13-­‐8.      

  Rutherford  scattering  is  an  elastic  event,  i.e.,  no  excitation  of  either  the  

projectile  or  target  nuclei  occurs.    However,  due  to  conservation  of  energy  and  

momentum  in  the  interaction,  the  kinetic  energy  of  the  backscattered  ion  is  less  

than  that  of  the  incident  ion.    The  relation  between  these  energies  is  the  kinematic  

factor,  K,  which  is  given  by  the  expression  

                                                     (13-­‐4)  

 

 where  M1  and  M2  are  the  masses  of  the  incident  and  target  atoms,  respectively  and  

θ  is  the  angle  between  the  direction  of  the  incident  and  scattered  ions.    Note  the  

relative  shift  in  energy  in  the  collision  depends  only  on  the  masses  of  the  ions  and  

Page 17: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

the  angle  of  the  detector.    If  one  measures  the  scattering  angle  and  the  energy  shift,  

one  can  calculate  the  mass  (identity)  of  the  scattering  atom.    The  largest  change  in  

energy  occurs  for  θ  =  180°    where  

                                                                                                       (13-­‐5)  

 A  geometry  that  allows  detection  of  the  scattered  α-­‐particles  at  very  large  angles  is    

usually  selected.  

  The  probability  or  cross  section  for  Rutherford  scattering  (Chapter  10)  is  

given  (Segre)  as  

   

                                                                 (13-­‐6)  

where  x  =  M1/M2,  e2  is  the  square  of  the  electronic  charge  and  E  is  the  energy  of  the  

incident  ion.    Note  the  probability  of  scattering  goes  as  (Z1Z2)2  and  as  1/E2.    If  this  

were  all  that  went  into  Rutherford  backscattering,  we  would  expect  a  spectrum  of  

backscattered  particles  that  consisted  of  a  peak  for  each  element  in  the  sample  with  

a  relative  height  (area)  ∝Z2.    The  elemental  abundances  could  be  calculated  using  

the  relation  

Page 18: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

                                                                                                 (13-­‐7)  

where  N  is  the  number  of  target  atoms,  D  is  the  number  of  detected  events    and  F  is  

the  incident  ion  flux.    This  is  the  situation  if  one  has  a  very  thin  film  as  the  target  

material  or  if  one  scatters  particles  from  the  surface  of  a  thick  sample.  

  In  reality,  the  situation  is  usually  more  complicated  because  the  incident  ions  

lose  energy  as  they  penetrate  into  the  sample  thus  continuously  changing  the  

probability  of  scattering  and  the  energies  of  the  scattered  particles.    The  resulting  

spectrum  for  scattering  from  a  single  element  at  varying  depths  is  shown  in  Figure  

13-­‐9,  where  the  incident  ion  energy  is  E0,  the  energy  of  ions  scattered  from  the  

surface  is  KE0  and  the  energy  of  ions  scattered  from  a  depth  x  is  E1.    In  this  situation,  

the  energy  loss  in  traversing  (into  and  back  out  of  )  a  foil  of  thickness  Nx  is  

                                                                                   (13-­‐8)  

                                                                             (13-­‐9)  

 

   where  εin  and  εout  are  the  energy  dependent  stopping  cross  sections  (Ziegler)  on  the  

inward  and  outward  paths  of  the  ion.  

Page 19: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

  Rutherford  backscattering  is  an  important  method  for  determining  the  

composition  and  structure  of  surfaces  and  thin  films.    In  Figure  13-­‐10,  we  show  the  

results  of  a  RBS  measurement  with  2.0  MeV  4He  incident  on  a  Si  surface  with  a  Co  

impurity  that  was  diffused  into  the  bulk  material.    One  can  clearly  detect  the  Co  and  

its  depth  profile.      

  Another  important  application  of  this  technique  has  been  to  determine  the  

elemental  composition  of  the  lunar  and  Martian  surfaces.    Turkevich,  et  al.  [3]  

constructed  a  rugged  device  to  measure  the  backscattering  of  α-­‐particles  from  the  

lunar  surface,  which  flew  on  three  Surveyor  missions  in  1967-­‐68  and  yielded  the  

first  complete  and  accurate  analysis  of  the  lunar  surface.    The  α-­‐particles  came  from  

a  radioactive  source  (242Cm)  that  was  part  of  the  instrument  package.    The  results  of  

these  experiments,  which  showed  an  unexpected  and  comparatively  high  

abundance  of  Ti,  were  confirmed  by  laboratory  analysis  of  lunar  samples  gathered  

in  the  Apollo  missions.    Since  then,  this  technique  has  been  used  to  study  Martian  

rocks  and  soil.  

 References    General  references  about  nuclear  analytical  methods    1. W.D.  Ehmann  and  D.E.  Vance,  Radiochemistry  and  Nuclear  Methods  of  Analysis,  

(Wiley,  New  York,  1991)    One  of  the  best  general  references  on  nuclear  analytical  methods.  

2. D.  Brune,  B.  Forkman  and  B.  Persson,  Nuclear  Analytical  Chemistry  (Chartwell-­‐Bratt,  London,  1984).  

Page 20: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

3. Chemical  Analysis  by  Nuclear  Methods,  Z.B.  Alfassi,  ed.  (Wiley,  Chichester,  1994).    A  series  of  essays  on  various  aspects  of  nuclear  analytical  chemistry.    Most  of  them  are  quite  good.  

 References  about  activation  analysis    1. P.  Kruger,  Principles  of  Activation  Analysis  (Wiley,  New  York,  1971).    The  best  

textbook  approach  to  activation  analysis.  2. D.  de  Soete,  R.  Gijbels,  and  J.  Hoste,  Neutron  activation  analysis  (Wiley,  New  

York,  1974)    An  encyclopedic  work.  3. D.J.  Hughes,  Pile  neutron  research  (Addison-­‐Wesley,  Cambridge,  1953)    The  

bible  (old  testament)  of  reactor  neutron  physics.    References  about  PIXE    1. S.A.E.  Johansson  and  J.L.  Campbell,  PIXE:A  Novel  Technique  for  Elemental  

Analysis  (Wiley,  Chicester,  1988)  2. S.A.  E.  Johansson,  J.L.  Campbell  and  K.-­‐G.  Malmqvist,  PIXE,  (Wiley,  New  York,  

1995).    References  about  RBS    1.    Ion  Beam  Analysis,  J.F.  Ziegler,  P.J.  Scanlon,  W.A.  Lanford,  and  J.L.  Duggan,  eds.,  (North-­‐Holland,  Amsterdam,  1990).        Specific  references    1. W.R.  Corliss,  Neutron  Activation  Analysis  (USAEC,  1963).  2.    W.  Loveland.,  R.A.  Schmitt,  and  D.E.  Fisher,  Geochim.  et    Cosmochim.  Acta  33,  375  (1969).      3.    A.  Turkevich,  E.F.  Franzgrote,  and  J.H.  Patterson,  Science  165,  277  (1969).  4.    Anal.  Chem.  5.    S.A.E.  Johansson  and  T.B.  Johansson,  Nucl.  Instr.  Meth.  137,  473  (1976).  6.    K.  Ishii  and  S.  Morita,  Int.  J.  PIXE  1,1  (1990).  7.    E.  Rauhala,  in    Chemical  Analysis  by  Nuclear  Methods,  Z.B.  Alfassi,  ed.  (Wiley,  Chichester,  1994).      8.    J.  Saarilahti  and  E.  Rauhala,  Nucl.  Instr.  Meth.  Phys.  Res.  B,  B64,  734  (1992).  

Page 21: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

   Problems    1. For  each  of  the  following  analyses,  indicate  what  role,  if  any,  activation  analysis  

could  or  should  play.    Be  sure  to  clearly  state  the  reasons  for  your  choice.  (a) determination  of  the  oxygen  content  of  steel    (b)    verification  of  the  

authenticity  of  ancient  paintings    (c)    determination  of  the  radionuclides  present  in  fallout  from  nuclear  weapons  testing.    (d)    determination  of  the  extent  to  which  radionuclides  leaking  from  nuclear  waste  storage  facilities  contaminate  the  water  of  nearby  streams.    (e)    determination  of  lithium  impurities  in  thin  films  of  GaAs.  

2. (a)    Calculate  the  activity  (in  microcuries)  of  49Ca  produced  when  2.7  grams  of  CaO  are  irradiated  in  a  flux  of  3  x  1012  n/cm2-­‐sec  for  10  minutes.    (b)    Repeat  this  calculation  for  the  situation  when  the  bombarding  particle  is  21  MeV  deuterons,  and  the  deuteron  beam  current  is  10  microamperes.    Assume  the  (d,p)  cross  section  is  50  mb.  

3. Using  the  Chart  of  the  Nuclides  as  a  guide,  estimate  the  sensitivity  (minimum  quantity  that  can  be  detected)  of  neutron  activation  analysis  for  europium  using  a  thermal  neutron  flux  of  3  x  1012  n/cm2-­‐sec.    Assume  no  irradiation  may  last  more  than  1  hour  and  the  minimum  detectable  activity  is  10  dpm.  

4. For  the  following  analyses,  indicate  whether  radiochemical  neutron  activation  analysis  would  be  preferred  to  instrumental  neutron  activation  analysis.    If  radiochemistry  is  indicated,  briefly  sketch  the  separation  procedures  to  be  used.    (a)    the  determination  of  ppm  levels  of  Mo  in  flathead  minnows.    (b)    the  determination  of  the  trace  element  content  of  agricultural  field-­‐burning  particulate  matter.  (c)  the  use  of  stable  activable  tracers  to  determine  flow  patterns  in  an  ocean  estuary.    (d)  the  determination  of  Dy  in  pine  needles.  

5. Consider  you  want  to  trace  the  deposition  of  particulate  matter  using  the  stable  activable  tracer  In.    The  dilution  factor  between  the  point  of  release  and  the  point  of  sampling  is  106.    Assume  the  samples  that  are  collected  are  activated  in  a  thermal  neutron  flux  of  3  x  1012  n/cm2-­‐sec  for  10  min.    Further  assume  a  1%  efficiency  for  detecting  the  emitted  photons.    Determine  the  minimum  amount  of  In  that  must  be  released  to  insure  the  uncertainty  in  the  measured  sample  concentrations  is  5%.  

6. Consider  the  following  results  obtained  by  neutron  activation  analysis  of  lake  water  samples  for  their  Mn  content.    Assume  the  sample  volumes  are  1  liter.  

Sample  #     EOB  Activity  (cp5m)            1                                                                            1204            2                                                                            1275            3                                                                                940            4                                                                            1350  

Page 22: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

                     10  mg  Mn  standard                                                      5000            What  is  the  Mn  content  of  the  lake  water  and  its  uncertainty?  7. Two  thin  1  mg  samples  of  dysprosium  are  irradiated  and  counted  in  a  similar  

manner,  except  for  the  use  of  a  Cd  cover  foil  on  one  sample.    A  Cd  ratio  of  7  is  measured,  with  the  bare  foil  saturation  activity  of  1  x  104  dpm.    Calculate  the  thermal  neutron  flux  at  the  irradiation  position  in  the  reactor.  

8. Devise  an  activation  analysis  scheme  for  determining  the  concentration  of  nitrogen  in  a  sample  of  plant  material.    Assume  the  analysis  must  be  non-­‐destructive  and  rapid.    Suggest  an  appropriate  reaction,  irradiation  and  counting  conditions  and  indicate  possible  interferences  in  your  analysis.  

9. Compute  the  “advantage  factor”  for  using  a  reactor  pulse  to  produce  20  s  46Scm  compared  to  the  activity  produced  by  steady  state  irradiation.    Assume  the  reactor  is  of  the  TRIGA  type  and  produces  a  15  ms  3000  MW  pulse  with  a  peak  instantaneous  flux  of  21  x  1015  n/cm2-­‐sec.    Assume  steady  state  operation  is  at  1  MW.  

10. Imagine  you  wish  to  detect  ppm  levels  of  Al  in  a  matrix  containing  iron,  calcium  and  silicon.    Assume  you  have  access  to  a  modern  nuclear  reactor.    Describe  an  activation  analysis  procedure  to  do  this  analysis.    Be  sure  to  describe  the  irradiation  conditions,  any  pre-­‐  or  post-­‐irradiation  chemistry  and  the  counting  strategy.    Indicate  how  you  would  deal  with  any  interferences  in  the  analysis.  

Page 23: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

Figure  Captions  

 

Figure  1.    A  schematic  representation  of  activation  analysis.    From  Corliss  

[1].  

Page 24: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

 

 

Figure  2.    Table  of  activation  analysis  sensitivities  as  offered  by  General  Atomic  

Company,  San  Diego,  California.  

 

 

Figure  3.    Detection  limits  with  ICP-­‐MS.    ppt≡parts  per  trillion.    Reproduced  by  

permission  of  VG  Elemental.  

Page 25: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

 

Figure  4.    Detection  of  the  metallic  species  of  As  and  Se  by  LC-­‐ICP-­‐MS.    From  [4].  

 

 

Figure  5.    A  schematic  diagram  of  a  PIXE  setup.    Reproduced  from  Ehmann  and  

Vance.  

Page 26: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

 

 

Figure  6.    PIXE  spectrum  of  a  rainwater  sample.    From  [5].  

 

Page 27: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

 

Figure  7.    Detection  limits  in  a  PIXE  analysis  of  a  biological  sample.    From  [6].  

 

 

Figure  8.    A  schematic  diagram  of  Rutherford  backscattering.    From  [7].  

 

 

Figure  9.    Energy  depth  scale  in  Rutherford  backscattering.    From  [7].  

 

Page 28: Chapter 13 Analytical Applications of Nuclear …oregonstate.edu/instruct/ch374/ch418518/Chapter 13 Analytical...carried!out.!!In!addition,!the!length!of!irradiation!and!decay!prior!to!counting!must!

 

Figure  10.    Rutherford  backscattering  for  2.0  MeV  4He  ions  incident  on  a  Si  (Co)  

sample.    The  dots  represent  the  experimental  data  while  the  solid  line  is  a  simulated  

spectrum.    Scattering  angle  Θ  =  170°,  with  θ1=θ2=5°.    From  [8].