chapter 8 radiation hydrodynamics

71
Chapter 8 Radiation Hydrodynamics 1

Upload: bailey

Post on 23-Feb-2016

61 views

Category:

Documents


1 download

DESCRIPTION

Chapter 8 Radiation Hydrodynamics. 8.1 Radiation Transport. Integrated form. (1) Plane geometry. (2) Spherical Geometry. Emissivity and Opacity. Coupling term with electron fluid. Angular moment equation. Radiation energy density Radiation heat flux Radiation pressure. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 8 Radiation Hydrodynamics

Chapter 8

Radiation Hydrodynamics

1

Page 2: Chapter 8 Radiation Hydrodynamics

),,(),(),(),,(),,(1

rtrtrtrtrttc

III

III

xtc1

IIII

rrtc)1(1 2

SII

dd

dxd

8.1 Radiation Transport

/S

2

Page 3: Chapter 8 Radiation Hydrodynamics

)(

)()(

)(),()(

0 )(),0()(

d

xdx

xx

dee

deex

x

x

SI

SII

x

dx0

1

d

xdx

1

II r

]),([),(0

debRebr SII

Integrated form

(2) Spherical Geometry

(1) Plane geometry

Rr

r drrb 22

)(

1

Rr

rrb

r drrb

drrb 22

)(22

)(

112

3

Page 4: Chapter 8 Radiation Hydrodynamics

, Te ,Te

ff fb bb

ff bf bb

Sr d d I

Emissivity and Opacity

Coupling term with electron fluid

4

Page 5: Chapter 8 Radiation Hydrodynamics

EFE ct

4

4

1 dcIE

4dIF

FPF tc 2

1

dc

IP :1

Angular moment equation

Radiation energy densityRadiation heat fluxRadiation pressure

5

Page 6: Chapter 8 Radiation Hydrodynamics

kik

i xPP

)( dc ikki

IP 1

),()(),( 0 xxx II

4

4 ),( dx 21

1 d

0

4 IEc

1

12 dc EF

6

Radiation pressure tensor (1)

Page 7: Chapter 8 Radiation Hydrodynamics

PEPE

PP

P

300030000

21

000000

P

1

1

2

21 dEP

EFE cxt

4

FPFcxtc

2

1

7

Radiation pressure tensor (2)

Equation to Radiation Energy Density (Plane Geometry)

Page 8: Chapter 8 Radiation Hydrodynamics

EFE crrrt

4)(1 2

2

FEPPFcrrtc

31

2

EP f

1

1

2

21 df

131f

)1(21

8

Equation to Radiation Energy Density (Plane Geometry)

Page 9: Chapter 8 Radiation Hydrodynamics

9

Example of Angular Distribution in case of plane gold foil

Page 10: Chapter 8 Radiation Hydrodynamics

EEFE cuxdt

d

4)()(

FFPF

)()(cuc

xdtd

c

EEFE currrdt

d

4)]([1)( 22

FEPFPF

r

ccur

rrc

rdtd

c3)(1)()( 2

2

10

Equation of Radiation in Fluid Frame

Plane Geometry

Spherical Geometry

Page 11: Chapter 8 Radiation Hydrodynamics

0)(

u

xt

rmmu

xu

tSP

)()( 2

re

m uux

ut

SP

)]

2([)

2(

22

0)()( 22

R

R

uxc

ut

PPF

0])2

([)2

(2

2

RR uu

xu

tFPE

11

8.2 Radiation Hydrodynamics

Total Energy and Momentum Conservation Relations

Page 12: Chapter 8 Radiation Hydrodynamics

0

1 dc

rm FS

0

)4( dcre ES

)1(~~ 22 cuo

uu

RR

PE

)(~ 2

2

2 cuo

uc

R

F

cos)(1 x

EF3c

EP31

EF

xc

3

12

The coupling term with matter

Page 13: Chapter 8 Radiation Hydrodynamics

EEE cxx

clxt

4)

3(

1

l

118

3

3

kThec

h

B

4

0

4)( TBEEc

RP

R

13

Multi-group Diffusion Approximation

Page 14: Chapter 8 Radiation Hydrodynamics

RPP

RRP

RRP c

xcl

xtEEE

4

3

duuld

T

dT

ll RR )(

0

0

0

GB

B

duud

dPP )(

0

0

0

GB

B

2

4

4 )1(415

u

u

R eeu

G

115 3

4 uP e

u

G

14

Near LTE Approximation (Gray Approximation)

Rosseland mean-free-path

Planck opacity

Page 15: Chapter 8 Radiation Hydrodynamics

RP

RR

xcl

EF

3

1j

j

id

EE GG NiNj 1,0

iiiii

i cx

cltt

EEE

4)

3(

1

1

j

j

j

ji

dT

dT

ll

B

B

1

1

j

j

j

ji

d

d

B

B

15

Multi-group gray diffusion approximation

Page 16: Chapter 8 Radiation Hydrodynamics

ii

i

xcl

EF

3 ii cfs

EF

gni

i

ii c SE

RRF

1

i

i

ii

xl

EE

R

1

31

coscoth1)(

RRR

16

Eddington coefficient (How to model angular distribution)

Page 17: Chapter 8 Radiation Hydrodynamics

Ex

cR

4

RcERF )(

)1(coth1)(R

RR

R

211

211

02625.05953.012694.001932.0

31

RRRR

f

211 2

32131

RR

f

131

310

1

1

R

R

17

Variable Edington Factor

Page 18: Chapter 8 Radiation Hydrodynamics

18

8.3 Computer Simulation of Gold Foil

Page 19: Chapter 8 Radiation Hydrodynamics

19

Spectrum from Gold Foil irradiated by Lasers (Experiment VS Simulation)

Page 20: Chapter 8 Radiation Hydrodynamics

20

X-ray Conversion Rate ( Experiment VS Simulation)

Page 21: Chapter 8 Radiation Hydrodynamics

21

CRE model is essential for Gold PlasmaCRE: Collisional Radiative Equilibrium

Page 22: Chapter 8 Radiation Hydrodynamics

22

X-ray confinement with a variety of gold cavities

Page 23: Chapter 8 Radiation Hydrodynamics

23

Radiation Temperature from Gold Cavity

Page 24: Chapter 8 Radiation Hydrodynamics

24

8.4 Radiation Hydrodynamics in the Universe

Planetary Nebulae (HST)

Page 25: Chapter 8 Radiation Hydrodynamics

25

Page 26: Chapter 8 Radiation Hydrodynamics

26

Radiation Hydrodynamics Model of Planetary Nebulae

Page 27: Chapter 8 Radiation Hydrodynamics

27

Eagle Nebulaby HST

Page 28: Chapter 8 Radiation Hydrodynamics

28

Page 29: Chapter 8 Radiation Hydrodynamics

29

Page 30: Chapter 8 Radiation Hydrodynamics

30

Page 31: Chapter 8 Radiation Hydrodynamics

31

Super-Massive BH of C of G(Image by HST)400 ly88,000 ly

Photo-ionization by X-rays from BH

Accretion Disk and Black Hole

Page 32: Chapter 8 Radiation Hydrodynamics

32

Page 33: Chapter 8 Radiation Hydrodynamics

33

多くの銀河の中心には、質量が太陽の一千万倍を超える巨大ブラックホールがあると考えられていますが、確実な証拠はこれまでつかむことができませんでした。このたび VLBI 観測によって中心天体のまわりの小さな領域で高速に回転するガスや星のすがたがとらえられました。この回転が太陽系の惑星のようなケプラー運動なら、中心天体の質量は簡単に算出できます。 NGC4258(M106) という銀河系の中心近くのガス回転運動の様子を VLBI 観測等によって調べたところ、半径 0.13 パーセクより小さい領域に太陽の 3600 万倍の質量が存在することがわかりました。平均密度はこれまでブラックホールの候補と考えられてきた天体の 40 倍と大きく、 NGC4258 の中心にブラックホールが存在する有力な証拠と考えられています。                              <三好 真>

Page 34: Chapter 8 Radiation Hydrodynamics

34

Figure 1: NRAO Very Large Array image of the radio galaxy 3C 403 at a wavelength of 3.6 cm. The intensity range of the colors (in Jansky, Jy, units) is indicated at the right hand side. The red arrow points at the galaxy's nucleus. The spectrum shown in the upper left hand inset was taken with the Effelsberg 100m telescope. The y-axis is flux density in Jy, while the x-axis gives the recession velocity (in km/s), i.e. the speed which with 3C 403 and the Milky Way are moving apart. The green arrow points at the systemic radial velocity of the whole galaxy. Image: National Radio Astronomy Observatory/Rick Perley (NRAO/AUI/NSF)

Page 35: Chapter 8 Radiation Hydrodynamics

35

Eta-Carina

Page 36: Chapter 8 Radiation Hydrodynamics

36

Page 37: Chapter 8 Radiation Hydrodynamics

37

Photo-ionized plasma in binary system

Page 38: Chapter 8 Radiation Hydrodynamics

38

Page 39: Chapter 8 Radiation Hydrodynamics

39

Page 40: Chapter 8 Radiation Hydrodynamics

40

Ionization Parameter x

Page 41: Chapter 8 Radiation Hydrodynamics

41

8.5 Photo-ionized Plasma Experiment

Page 42: Chapter 8 Radiation Hydrodynamics

42

Page 43: Chapter 8 Radiation Hydrodynamics

43

Page 44: Chapter 8 Radiation Hydrodynamics

44

Experimental setup

• Everything shown is completely destroyed during the experiment!

Page 45: Chapter 8 Radiation Hydrodynamics

45

Spectral characterization

300 11.5 m tungsten wires20 MA current100 ns rise time8 ns FWHM peak120 TW peak powerx 25 erg cm/s at the peak165 eV near-BB radiationSynchrotron high energy tail

Page 46: Chapter 8 Radiation Hydrodynamics

46

Page 47: Chapter 8 Radiation Hydrodynamics

47

Page 48: Chapter 8 Radiation Hydrodynamics

48

Cloudy models

Page 49: Chapter 8 Radiation Hydrodynamics

49

Super-Massive BH of C of G(Image by HST)400 ly88,000 ly

Photo-ionization by X-rays from BH

8.6 Photo-ionization in X-ray Binary System

Page 50: Chapter 8 Radiation Hydrodynamics

At Institute of Physics, Beijing, China, Summer 2006

Japan-China Joint Research funded by JSPS and NSFC (2005-2007) still on going.

PI(project): H. Takabe (Japan) and J. Zhang(China)PI(experiment): H. Nishimura (Japan) and Y. Li (China)Staff: S. Fujioka, N. Yamamoto, W. Feilu, D. Salzman etc.

50

Page 51: Chapter 8 Radiation Hydrodynamics

Two Type of Experiments have been done with GXII and

Shengang II

1. H. G. Wei et al., Opacity studies of silicon in radiatively heated plasmaAstrophysical J. Lett. 683, Page 577–583, (2008)

2. Fei-lu Wang et al., Experimental evidence and theoretical analysis of photo-ionized plasma under x-ray radiation produced by intense laserPhys. Plasmas 15, 073108 (2008)

Japan-China Joint Research by JSPS and NSFC (2005-2007)

51

Page 52: Chapter 8 Radiation Hydrodynamics

We are carrying out the second step.

Radiation Temperature Tr = 0.5 keV

Final Purpose is the Prediction of Candidate of X-ray Laser Object near Compact Object in

Universe.

52

Page 53: Chapter 8 Radiation Hydrodynamics

H. Takabe1, S. Fujioka1, N. Yamamoto1, F. L. Wang2, D. Saltzmann3, Y. T. Li4, Q.L. Dong4, S.J. Wang4, Y. Zhang4, Yong-

Woo Lee5, Yong-Joo Rhee5, Jae Min Han5, M. Tanabe1, T. Fujiwara1, Y. Nakabayashi1, J. Zhang4, H. Nishimura1,

1Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka, 565-0871,Japan.

2National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China.

3Department of Plasma Physics, Soreq Nuclear Research Center, Yavne, Israel.

4Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing

100080, China.5Quantum Optics Center, Korea Atomic Energy Research

Institute, 1045 Daedeok Street Yuseonggu, Daejon 305-353, Korea. 53

Page 54: Chapter 8 Radiation Hydrodynamics

54

Photo-ionization of X-ray Binary System (VELA X-1)

Page 55: Chapter 8 Radiation Hydrodynamics

S. Watanabe et al., ApJ 651; 421, 200655

Page 56: Chapter 8 Radiation Hydrodynamics

He-like Silicon Line Emissions from VELA X-1

N. R. Schultz et al., ApJ 564; L21, 200256

Page 57: Chapter 8 Radiation Hydrodynamics

X-ray from Companion Compact Star (Image)

57

Page 58: Chapter 8 Radiation Hydrodynamics

X-ray from Companion Star of Cyg X-3

58F. Paerels, et al., Astrophys. J. 533, L135 (2000).Photo-ionization by X-rays from BH candidate (Chandra)

Page 59: Chapter 8 Radiation Hydrodynamics

Experiment has been done

59

Page 60: Chapter 8 Radiation Hydrodynamics

Spectrum from Imploded CH Core Plasma

60

Page 61: Chapter 8 Radiation Hydrodynamics

Experimental Data

61

Page 62: Chapter 8 Radiation Hydrodynamics

Experimental Spectrum

62

Page 63: Chapter 8 Radiation Hydrodynamics

63

Page 64: Chapter 8 Radiation Hydrodynamics

1S

1S3S

3P1P

wz

1/43/4

Courtesy by Prof. Kuni Masai

Az=10-6Aw

Case (1) in AstrophysicsEn

ergy

64

Page 65: Chapter 8 Radiation Hydrodynamics

1S

1S3S

3P

wz

1/43/4

Courtesy by Prof. Kuni Masai

Case (2) in Astrophysics

1P

Ener

gy

65

Page 66: Chapter 8 Radiation Hydrodynamics

K

Satellite Lines from Be-like Si

Ener

gy

L

Photon from Radiation Source

Photo-ionized electron

Satellite Line

66

Page 67: Chapter 8 Radiation Hydrodynamics

Details of Theoretical Spectrum

67

Page 68: Chapter 8 Radiation Hydrodynamics

Chandra X-ray Data from VELA

X-1

N. R. Schultz et al., ApJ 564; L21, 2002

68

0.0120.0080.0040.000In

tens

ity (a

.u.)

1.881.861.841.821.80Photon energy (keV)4.00

2.00

0.00Cou

nt/s

/keV

1.881.861.841.821.80Energy (keV)

実験室

ブラックホール

68

Black HoleUniverse

Experiment

Joint Exp. Japan-China-Korea

This is accepted for publication in the Nature-Physics (2009)

Page 69: Chapter 8 Radiation Hydrodynamics

69

Poem by Edward Teller:

A fact without a theoryis like a ship without a rail,is like a boat without a rudder,is like a kite without a tail.

A fact without a theoryis like an inconclusive act.But if there’s one thing worse,in this confusing universe,it’s a theory without a fact

Edward Teller(Nuclear Physicist and Founder of LLNL)

Page 70: Chapter 8 Radiation Hydrodynamics

70

Example of Atomic Process Rates

Page 71: Chapter 8 Radiation Hydrodynamics

71