chewma1506-14 ch5

Upload: minh-tieu

Post on 02-Jun-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 ChewMA1506-14 Ch5

    1/118

    MA1506

    Mathematics II

    Chapter 5

    Matrices and their uses

    Chew T S MA1506-14 Chapter 5 1

    This chapter consists of two parts

  • 8/11/2019 ChewMA1506-14 Ch5

    2/118

    In part one, we shall study

    Chew T S MA1506-14 Chapter 5 2

    Matrix operations

    Some special matrices

    Inverse matrix and unique solution of AX=B

    Determinant and inverse matrix

    Leontief Input-Output model

    PART ONE

  • 8/11/2019 ChewMA1506-14 Ch5

    3/118

    5.1 What is a Matrix?

    Chew T S MA1506-14 Chapter 5 3

    rewritten as

    2x1 matrix2x2 Matrix

    2 7 3x y+ =

    4 8 11x y+ =

    2 7 3

    4 8 11

    x

    y

    =

  • 8/11/2019 ChewMA1506-14 Ch5

    4/118

    3x3 Matrix

    m x n Matrix: m rows, n columns

    Entry at i-th row j-th column

    5.1 What is a Matrix?

    Chew T S MA1506-14 Chapter 5 4

    11 1

    1

    n

    m mn

    a a

    a a

    We may write

    11 12 13

    21 22 23

    31 32 33

    a a a

    a a aa a a

    ( )ijA a=

  • 8/11/2019 ChewMA1506-14 Ch5

    5/118

    5.2 Matrix operations

    Chew T S MA1506-14 Chapter 5 5

    Matrix addition

    Scalar multiplication

    Matrix multiplication

    Matrix transposition

  • 8/11/2019 ChewMA1506-14 Ch5

    6/118

    Matrix Addition

    Chew T S MA1506-14 Chapter 5 6

    m x nmatrices

    Term by term addition

    5.2 Matrix operations

    ( )ijA a=( )ijB b=

    ( )ij ijA B a b+ = +

    1 2 7 3 8 5

    4 8 6 9 10 17

    + =

  • 8/11/2019 ChewMA1506-14 Ch5

    7/118

    Scalar multiplication

    Chew T S MA1506-14 Chapter 5 7

    m x nmatrix

    Term by term multiplication

    real or complex number

    5.2 Matrix operations

    ( )ijA a=c

    ( )ijcA ca=1 2 3 6

    34 8 12 24

    =

  • 8/11/2019 ChewMA1506-14 Ch5

    8/118

    Matrix Multiplication

    Chew T S MA1506-14 Chapter 5 8

    Not term by term but row to column

    m x nmatrix n x pmatrix

    5.2 Matrix operations

    ( )ijA a= ( )ijB b=

    m x pmatrixAB C=( )ijC c=

    1 1 2 2ij i j i j in njc a b a b a b= + + +

  • 8/11/2019 ChewMA1506-14 Ch5

    9/118

    Example

    Chew T S MA1506-14 Chapter 5 9

    21

    32

    11

    654

    321

    ++++

    ++++=

    )2(63514)1(62514

    )2(33211)1(32211

    = 78

    12

    5.2 Matrix operations

    Animation slide

  • 8/11/2019 ChewMA1506-14 Ch5

    10/118

    Chew T S MA1506-14 Chapter 5 10

    In general

    Non commutative

    5.2 Matrix operations

    AB BA

    2 7 1 3 16 14 8 2 1 20 4

    AB = =

    1 3 2 7 14 312 1 4 8 0 6

    BA = =

  • 8/11/2019 ChewMA1506-14 Ch5

    11/118

    Matrix transposition

    Chew T S MA1506-14 Chapter 5 11

    m x nmatrixswap rows with columns

    5.2 Matrix operations

    ( )ijA a=

    ( )T jiA a= n x mmatrix

    1 2 4

    6 8 9

    T

    =

    1 6

    2 8

    4 9

    1 7 9

    6 8 2

    4 10 12

    T =

    1 6 4

    7 8 10

    9 2 12

  • 8/11/2019 ChewMA1506-14 Ch5

    12/118

    Chew T S MA1506-14 Chapter 5 12

    5.2 Matrix operations

    ( )T

    TA A=

    ( )T T TA B A B+ = +

    ( )T TcA cA=

    ( )T T TAB B A=

  • 8/11/2019 ChewMA1506-14 Ch5

    13/118

    Symmetric matrix

    Chew T S MA1506-14 Chapter 5 13

    An n x nmatrix is symmetricif

    5.3 Special matrices

    TA A=

    1 7 9

    7 8 2

    9 2 12

    0 0 4

    0 8 0

    4 0 1

    1 0

    0 1

  • 8/11/2019 ChewMA1506-14 Ch5

    14/118

    Anti-Symmetric matrix

    Chew T S MA1506-14 Chapter 5 14

    An n x nmatrix is anti-symmetricor skewsymmetricif

    5.3 Special matrices

    TA A=

    0 7 9

    7 0 2

    9 2 0

    0 22 0

  • 8/11/2019 ChewMA1506-14 Ch5

    15/118

    Properties of Symmetric matrices

    Chew T S MA1506-14 Chapter 5 15

    IfA is symmetricand Bis any square matrix

    T

    B B+

    TBAB

    is symmetric

    is symmetric

    The above property will be used in T8 Q4

    5.3 Special matrices

    ( ) ( )T T T T T T B B B B B B+ = + = +

    Hence

    ( ) ( )T T T T T T T BAB B A B BAB= =

    Hence

  • 8/11/2019 ChewMA1506-14 Ch5

    16/118

    Properties of anti-Symmetric matrices

    Chew T S MA1506-14 Chapter 5 16

    IfA is anti-symmetricand Bis any square matrix

    TBAB

    TB B is anti-symmetric

    is anti-symmetric

    The above property will be used in T8 Q4

    5.3 Special matrices

    ( ) ( ) ( )T T T T T T B B B B B B = =

    Hence

    Hence

    ( ) ( )T T T T T T T BAB B A B BAB= =

  • 8/11/2019 ChewMA1506-14 Ch5

    17/118

    Identity matrix

    Chew T S MA1506-14 Chapter 5 17

    n x nidentity matrix

    sometimes denoted by

    In

    5.3 Special matrices

    1 0 00 1 0

    0 0 0 1

    I=

    AI IA A= =

  • 8/11/2019 ChewMA1506-14 Ch5

    18/118

    Vectors as special matrices

    Matrices containing only one column are often

    called column vectors or vectors

    Matrices containing only one row are often

    called row vectors or vectors

    Chew T S MA1506-14 Chapter 5 18

    1

    2

    1

    2

    3

    [ ]1 2 [ ]1 2 3

    5.3 Special matrices

  • 8/11/2019 ChewMA1506-14 Ch5

    19/118

    Vectors

    Chew T S MA1506-14 Chapter 5 19

    =1

    0

    0

    1

    =

    1

    0

    0

    0

    1

    0

    0

    0

    1

    == =

    (0,1)

    (1,0)

    (1,0,0) (0,1,0)

    (0,0,1)

    5.3 Special matrices

  • 8/11/2019 ChewMA1506-14 Ch5

    20/118

    Chew T S MA1506-14 Chapter 5 20

    a

    b

    1 0

    0 1a b

    = +

    1 0 0

    0 1 0

    0 0 1

    a

    b a b c

    c

    = + +

    =

    =

    5.3 Special matrices

    ai bj+

    ai bj ck + +

  • 8/11/2019 ChewMA1506-14 Ch5

    21/118

    Rotation

    Chew T S MA1506-14 Chapter 5 21

    Rotation (anti-clockwise)

    through angle

    Let

    5.3 Special matrices

    cos sin( )

    sin cosR

    =

    cos sinRi i j = +

    sin cosRj i j = +

  • 8/11/2019 ChewMA1506-14 Ch5

    22/118

    Rotation

    Chew T S MA1506-14 Chapter 5 22

    Rotation (anti-clockwise)

    through angle

    R transforms

    5.3 Special matrices

    cos sinRi i j = +

    sin cosRj i j = + sin cosi j +

    cos sini j +

  • 8/11/2019 ChewMA1506-14 Ch5

    23/118

    Chew T S MA1506-14 Chapter 5 23

    cos sin( )

    sin cos

    R

    =

    [ ]

    15061506 cos sin

    ( ) sin cos

    cos(1506 ) sin(1506 )

    sin(1506 ) cos(1506 )

    R

    =

    =

    5.3 Special matrices

  • 8/11/2019 ChewMA1506-14 Ch5

    24/118

    Orthogonal matrix

    Chew T S MA1506-14 Chapter 5 24

    Ann x nmatrix, Bis orthogonal if

    is orthogonal

    TBB I=

    cos sin

    sin cos

    cos sin cos sin

    sin cos sin cos

    2 2

    2 2

    cos sin 0

    0 sin cosI

    += =

    +

    5.3 Special matrices

    Check

  • 8/11/2019 ChewMA1506-14 Ch5

    25/118

    Chew T S MA1506-14 Chapter 5 25

    cos sin

    sin cos

    ( )cos ,sin

    ( )sin ,cos

    ( )cos , sin

    ( )sin , cos

    An nn matrix A isorthogonal iff its columns

    are perpendicular unitvectors.

    An nn matrix A isorthogonal iff its rows areperpendicular unitvectors.

  • 8/11/2019 ChewMA1506-14 Ch5

    26/118

    Chew T S MA1506-14 Chapter 5 26

    Involutory matrix ( a matrix that is its own inverse)

    AA I=21

    a b

    A aab

    =

    Example

    Then

    AA I=

    = 1 2

    or

  • 8/11/2019 ChewMA1506-14 Ch5

    27/118

    Shear angle and parallel to x-axis

    Chew T S MA1506-14 Chapter 5 27

    Let S=

    1 tan 1

    0 1 0

    Si

    =

    1

    0

    i

    = =

    1 tan 0

    0 1 1Sj

    =

    5.3 Special matrices

    Then

    So

    tan tan

    1

    i j

    = = +

    1 tan

    0 1

    Si i= tansj i j= +

  • 8/11/2019 ChewMA1506-14 Ch5

    28/118

    Chew T S MA1506-14 Chapter 5 28

    5.3 Special matrices

    Si i= tansj i j= +

    tan i j +

    multiplication multiplication

    j becomes ,turn angle clockwise,measurefrom

    tan i j +

    j

  • 8/11/2019 ChewMA1506-14 Ch5

    29/118

    Chew T S MA1506-14 Chapter 5 29

    (S transforms)

    5.3 Special matrices

    Si i= tansj i j= +

    tan i j +

    S maps

    We may say that S maps i ito

    mapsj to

    tan i j +

  • 8/11/2019 ChewMA1506-14 Ch5

    30/118

    Si =1

    0

    Sj=1 tan0 1

    S

    =

    tan

    1

    1 tan1 2

    0 1

    = +

    1 2 tan

    1 0 2 1

    + = +

    1 2tan

    2

    + =

    1

    2

    1 2tan

    2

    +

    or 1 1 tan 1 1 2tan

    2 0 1 2 2S

    + = =

    1 (1 2 ) 1 22

    S S i j Si Sj = + = +

    30Chew T S MA1506-14 Chapter 5

    5.3 Special matrices

  • 8/11/2019 ChewMA1506-14 Ch5

    31/118

    Si =1

    0

    Sj=1 tan0 1

    S

    =

    tan

    1

    1 tan( 1) 2

    0 1

    = +

    1 2 tan

    ( 1) 0 2 1

    + = +

    1 2 tan

    2

    + =

    1

    2

    1 2 tan

    2

    +

    or 1 1 tan 1 1 2 tan

    2 0 1 2 2S

    + = =

    1 (( 1) 2 ) ( 1) 22

    S S i j Si Sj = + = +

    31Chew T S MA1506-14 Chapter 5

    5.3 Special matrices

  • 8/11/2019 ChewMA1506-14 Ch5

    32/118

    Question 7 (a) [5 marks] (2007 Exam )In two dimensions, we perform a shear

    [shearing angle 45 degrees] by means offorces parallel to an axis which makes anangle of 30 degrees with respect to thepositive x-axis. Find the final location of

    the point which was originally at (x, y)coordinates (0, 1).

    (0,1)

    3045

    Rotate 30

    Shear45

    Rotate 30

    parallel to x axis

  • 8/11/2019 ChewMA1506-14 Ch5

    33/118

    cos sin( )

    sin cosR

    =

  • 8/11/2019 ChewMA1506-14 Ch5

    34/118

    Chew T S MA1506-14 Chapter 5 34

    Summary We have learnt

    symmetric matrix A

    anti symmetric matrix A

    identity matrix

    orthogonal matrix B

    shear matrix

    vector

    rotation matrix

    TA A=

    TA A= I

    TBB I=

    1

    2

    [ ]1 21 tan

    ( ) 0 1S

    = cos sin

    ( )sin cos

    R

    =

    5.3 Special matrices

    Involutory matrix A 2A I=

  • 8/11/2019 ChewMA1506-14 Ch5

    35/118

  • 8/11/2019 ChewMA1506-14 Ch5

    36/118

    The inverse matrix of A is denoted by1

    A

    WARNING: We only define inverse for

    n n matrices, i.e. square matrices.

    Let A=11 1

    1

    n

    n nn

    a a

    a a

    be an n n matrix

    5.4 Inverse matrix and unique solution

    Chew T S MA1506-14 Chapter 5 36

  • 8/11/2019 ChewMA1506-14 Ch5

    37/118

    B=

    1

    2

    n

    b

    b

    b

    X=

    1

    2

    n

    x

    x

    x

    Consider a linear system AX=B

    11 1

    1

    n

    n nn

    a a

    a a

    1

    2

    n

    x

    x

    x

    1

    2

    n

    b

    b

    b

    i.e., =

    Chew T S MA1506-14 Chapter 5 37

    5.4 Inverse matrix and unique solution

  • 8/11/2019 ChewMA1506-14 Ch5

    38/118

    which is equivalent to

    11 1 12 2 1 1... n na x a x a x b+ + + =

    21 1 22 2 2 2... n na x a x a x b+ + + =..............................................

    1 1 2 2 ...n n nn n na x a x a x b+ + + =

    Chew T S MA1506-14 Chapter 5 38

    5.4 Inverse matrix and unique solution

  • 8/11/2019 ChewMA1506-14 Ch5

    39/118

    Theorem 1The linear system of equations AX=B

    has a unique solution if and only if A has an

    inverse 1A

    How to find 1A if1

    A

    exists?

    We can perform elementary rowoperations to A to get 1A

    Chew T S MA1506-14 Chapter 5 39

    Remark: B can be any n-dim vector

    Proof omitted

    5.4 Inverse matrix and unique solution

    See Appendix

  • 8/11/2019 ChewMA1506-14 Ch5

    40/118

    5.5 Determinants and inverse

    Chew T S MA1506-14 Chapter 5 40

    In this section, we introduce determinants,

    which help us to determine whether ann n matrix has an inverse or not.

    Consider11 12

    21 22

    a aa a

    1

    2

    x

    x

    1

    2

    b

    b

    =

    Then

    11 1 12 2 1

    a x a x b+ =

    21 1 22 2 2a x a x b+ =

    (1)

    (2)

    5 5 D t i t d i

  • 8/11/2019 ChewMA1506-14 Ch5

    41/118

    Hence 22 12(1) (2)a a get

    11 22 12 21 1 1 22 12 2( )a a a a x b a a b = Similarly

    21 12 22 11 2 1 21 11 2( )a a a a x b a a b =

    Therefore the linear system of equations

    has unique solution if and only if

    5.5 Determinants and inverse

    Chew T S MA1506-14 Chapter 5 41

    11 22 12 21 0a a a a

    5 5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    42/118

    We define the determinant of

    11 12

    21 22

    a aa a

    to be 11 22 12 21a a a a

    We write

    det11 12

    21 22

    a a

    a a

    11 22 12 21a a a a

    or 11 1221 22

    a aa a

    11 22 12 21a a a a

    =

    =

    5.5 Determinants and inverse

    Chew T S MA1506-14 Chapter 5 42

    5 5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    43/118

    Let A=11 12 13

    21 22 23

    31 32 33

    a a a

    a a a

    a a a

    Then we define the determinant of A,

    (denoted by det(A) or )A

    to bedet(A)

    11a2322

    32 33

    aa

    a a

    12a2321

    31 33

    aa

    a a

    13a+ 21 22

    31 32

    a a

    a a

    =

    How to get this? see next slide

    5.5 Determinants and inverse

    Chew T S MA1506-14 Chapter 5 43

    5 5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    44/118

    called cofactorexpansion

    det A

    5.5 Determinants and inverse

    Chew T S MA1506-14 Chapter 5 44

    cofactorcofactorcofactor

    Animation slide

    5 5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    45/118

    Cofactor expansion can be done about any

    row or column

    5.5 Determinants and inverse

    Chew T S MA1506-14 Chapter 5 45

    2x2 matrix

    5 5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    46/118

    Examples

    Chew T S MA1506-14 Chapter 5 46

    5.5 Determinants and inverse

    Animation slide

    5 5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    47/118

    Cofactor expansion can be used for any

    n x ndeterminant

    5.5 Determinants and inverse

    Chew T S MA1506-14 Chapter 5 47

  • 8/11/2019 ChewMA1506-14 Ch5

    48/118

    2ndmethod (cofactor expansion) finding Inverse

    Chew T S MA1506-14 Chapter 5 48

    Work out the matrix of cofactor of each entry

    Take transpose

    Divide by determinant

    5.5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    49/118

    Chew T S MA1506-14 Chapter 5 49

    5.5 Determinants and inverse

    5.5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    50/118

    Chew T S MA1506-14 Chapter 5 50

    =

    1

    =

    1

    =

    1

    det

    =1

    Let

    Then

    5.5 Determinants and inverse

    Inverse of 2x2 matrix

    5.5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    51/118

    Important Properties of Determinants

    Chew T S MA1506-14 Chapter 5 51

    size of M

    det( ) (det )(det ) det( )ST S T TS = =

    det detT

    M M=

    det( ) detn

    cM c M =

    5.5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    52/118

    If A is upper (lower) triangular, thendet(A)=product of all diagonal entries of A

    1 2 4

    0 3 5 1 3 6 18

    0 0 6

    = =

    4 0 0

    1 5 0 4 5 6 1202 3 6

    = =

    Chew T S MA1506-14 Chapter 5 52

    5.5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    53/118

    Theorem 2

    Chew T S MA1506-14 Chapter 5 53

    An nxn matrix A has an inverse if and only if det(A)0

    Proof omitted

    1 1 1

    0 2 3

    0 0 3

    A

    =

    1 1 1

    0 0 30 0 2

    B

    =

    det 1 2 3 6A= =

    det 1 0 2 0B= =

    A has an inverse

    B does not have aninverse

    5.5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    54/118

    Theorem3

    Chew T S MA1506-14 Chapter 5 54

    Let A be an nxn matrix. Then AX=B has a unique solution

    if and only if det(A)0Proof omitted

    1

    2

    3

    1 1 1 4

    0 2 3 5

    0 0 3 6

    x

    x

    x

    =

    has a unique solution

    1 1 1

    det 0 2 3 1 2 3 6 0

    0 0 3

    = =

    since

    Remark: B can be any n-dim vector

    5.5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    55/118

    Theorem 4

    Chew T S MA1506-14 Chapter 5 55

    Let A be nxn matrix. Then AX=0

    has nontrivial (nonzero) solutionsif and only if det(A)= 0.

    Proof omitted

    Note that A0=0.Hence zero vector 0= is always a solution of AX=0

    0

    0

    0

    Zero vector

    5.5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    56/118

    1

    2

    3

    1 1 1 0

    0 2 3 0

    0 0 3 0

    x

    x

    x

    =

    has a unique solution

    Then the unique solution should be1

    2

    3

    0

    0

    0

    x

    x

    x

    =

    Chew T S MA1506-14 Chapter 5 56

  • 8/11/2019 ChewMA1506-14 Ch5

    57/118

    5.5 Determinants and inverse

  • 8/11/2019 ChewMA1506-14 Ch5

    58/118

    Remark 2:AX=0 has either unique solution

    (detA0)or infinitely many solutions

    (detA=0)

    Remark 3:If detA =0 , then AX=B, where B 0,

    has two cases: infinitely many solns or no

    solns

    Chew T S MA1506-14 Chapter 5 58

    5 6 L i f I O M d l

  • 8/11/2019 ChewMA1506-14 Ch5

    59/118

    5.6 Leontief Input-Output Model

    Chew T S MA1506-14 Chapter 5 59

    we use this model to analyze economics of

    interdependent sectors

    Example ---Oil and Transportation industries

    (1) Total output $y of Transportation industry requires

    (i) $0.50y gasoline from the oil industry

    (ii) $0.20y transportation of equipment from thetransportationindustry

    5.6 Leontief Input-Output Model

  • 8/11/2019 ChewMA1506-14 Ch5

    60/118

    We will look at a single oil company and a single

    transportation company as a closed system

    Chew T S MA1506-14 Chapter 5 60

    (2) The total output $x of Oil industry requires

    (i) $0.12x transportation of gasoline from thetransportationindustry

    (ii) $0.32x oil-based fuels for processing fromthe oil industry

    5.6 Leontief Input-Output Model

  • 8/11/2019 ChewMA1506-14 Ch5

    61/118

    Chew T S MA1506-14 Chapter 5 61

    (3)Suppose that the demand from the outsidesector of the economy (all consumers outsideof oil and transportation) is:

    $15 billion for oil

    $1.2 billion for transportation

    5.6 Leontief Input-Output Model

  • 8/11/2019 ChewMA1506-14 Ch5

    62/118

    $x b = the total output from oil company=oil demand

    $y b = the total output from transportation company

    =transportation demand

    Chew T S MA1506-14 Chapter 5 62

    Internal demand External

    demandFrom oilcompany Fromtransportationcompany

    Oil demand

    x0.32x 0.50y d1= $15b

    Transportation

    demand y0.12x 0.20y d2= $1.2b

    .

    5.6 Leontief Input-Output Model

  • 8/11/2019 ChewMA1506-14 Ch5

    63/118

    Setting up the demand equations

    The total output of each company will equal thesum of the internal and external demands:

    Expressed as a matrix equation:

    Chew T S MA1506-14 Chapter 5 63

    X MX D= +

    1

    2

    0.32 0.50

    0.12 0.20

    x x y d

    y x y d

    = + +

    = + +

    1

    20.32 0.500.12 0.20

    dx xdy y

    = +

    5.6 Leontief Input-Output Model

  • 8/11/2019 ChewMA1506-14 Ch5

    64/118

    Solving the demand equations

    Solve forX

    :

    In our example:

    Chew T S MA1506-14 Chapter 5 64

    IX MX D =

    called technologymatrix

    X MX D= +1( )X I M D=

    1

    2

    0.32 0.50

    0.12 0.20

    dx x

    dy y

    = +

    ( )I M X D =

    0.32 0.50

    0.12 0.20M

    =

    5.6 Leontief Input-Output Model

  • 8/11/2019 ChewMA1506-14 Ch5

    65/118

    Chew T S MA1506-14 Chapter 5 65

    ( ) 1 1.65 1.03

    0.25 1.40I M

    =

    0.68 0.50

    0.12 0.80I M =

    5.6 Leontief Input-Output Model

  • 8/11/2019 ChewMA1506-14 Ch5

    66/118

    The solution

    Putting it all together:

    In order to meet the demand the companies need

    to produce$26.0 billion of oil

    $5.4 billion of transportation

    Chew T S MA1506-14 Chapter 5 66

    1

    2

    151.2

    dDd = =

    ( )1 1.65 1.03 15 26.0

    0.25 1.40 1.2 5.4X I M D

    = = =

    5.6 Leontief Input-Output Model

  • 8/11/2019 ChewMA1506-14 Ch5

    67/118

    Chew T S MA1506-14 Chapter 5 67

    0.32 0.50 15

    0.12 0.20 1.2

    x x y

    y x y

    = + +

    = + +Can you solve the above without using matrices ?

    Sure, you can

    However if it involves many variables, then solving

    it by matrices is easier.

    End of part I

  • 8/11/2019 ChewMA1506-14 Ch5

    68/118

    Chapter 5

    PART TWO

    Chew T S MA1506-14 Chapter 5 68

  • 8/11/2019 ChewMA1506-14 Ch5

    69/118

    In part II, we shall study

    Eigenvalues and eigenvectors---very important

    concepts

    Chew T S MA1506-14 Chapter 5 69

    Diagonalization of matrix

    Weather forecasting model

    Trace of a matrix

    5 7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    70/118

    parallel

    =

    =

    Vectors are in differentdirections

    Vectors are in samedirection

    Consider

    5.7 Eigenvalues and eigenvectors

    Vectors are in different

    directions

    Chew T S MA1506-14 Chapter 5 70

    Rewrite5.7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    71/118

    Let T=

    T

    Then

    = =T

    So we are interested in the last case

    2 221 1

    =

    T multiplying21

    by

    is the same as multiplying2

    1

    by 2

    Rewrite

    Chew T S MA1506-14 Chapter 5 71

    Eigenvector T i t i5.7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    72/118

    Eigenvector

    Chew T S MA1506-14 Chapter 5 72

    After multiplication (transformation),

    does not change the direction

    eigenvalue eigenvector

    u

    Tu

    u

    Matrix multiplication

    is the same as scalar multiplication

    which is much easier

    T is nxn matrix

    suppose We may use

    u uorTu u=

    5.7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    73/118

    How to find Eigenvalues and Eigenvectors

    Chew T S MA1506-14 Chapter 5 73

    We want to find nonzero eigenvectors

    Tu u= How to find eigenvalue and eigenvector u

    First note that 0 0T =Hence zero vector 0 is always an eigenvector

    5.7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    74/118

    Chew T S MA1506-14 Chapter 5 74

    we want nonzero vector

    By Thm 4 in section 5.5, we have

    Hence we can find nonzero eigenvaluesusing above equation

    T-isnot meaningful

    How to find nonzeroeigenvectors

    First note that

    Tu u Iu = =

    ( ) 0T I u =

    det( ) 0T I =

    Example5.7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    75/118

    Example

    Chew T S MA1506-14 Chapter 5 75

    Find eigenvalues of

    Cont.5.7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    76/118

    Cont.

    Chew T S MA1506-14 Chapter 5 76

    ( ) 0T I u =

    Now we shall find eigenvectorassociated to eigenvalue =2 u

    =

    Tu u=

    1 2 2 0( 2 ) 2 2 2 0T I

    = =

    1 2

    2 2T

    =

    2, 3=

    5.7 Eigenvalues and eigenvectors

    Cont.

  • 8/11/2019 ChewMA1506-14 Ch5

    77/118

    Chew T S MA1506-14 Chapter 5 77

    two equations same

    1 equation 2 unknowns

    They are many solutions, i.e. many eiqenvectors

    Cont.

    5.7 Eigenvalues and eigenvectors

    Cont.

  • 8/11/2019 ChewMA1506-14 Ch5

    78/118

    Chew T S MA1506-14 Chapter 5 78

    choose

    Eigenvectors associated to eigenvalue 2 are ofthe form

    1

    12 2

    =

    0

    get eigenvector

    need only to choose one

    =

    All eigenvectors are

    parallel i.e. all arelinearly dependent

    Cont.

    1=

    1

    12

    5.7 Eigenvalues and eigenvectors

    Cont.

  • 8/11/2019 ChewMA1506-14 Ch5

    79/118

    Chew T S MA1506-14 Chapter 5 79

    eigenvector associated to = -3

    two eqs same

    Now find

    1 3 2 0( ( 3) )

    2 2 3 0

    T I

    + = =

    +

    Cont.

    5.7 Eigenvalues and eigenvectors

    Cont.

  • 8/11/2019 ChewMA1506-14 Ch5

    80/118

    Chew T S MA1506-14 Chapter 5 80

    choose get eigenvector

    1

    2 2

    =

    eigenvectors associated to =-3 is of the form

    0

    need only to choose one

    2 0 + =

    =

    Cont.

    1=1

    2

    Example5.7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    81/118

    Example

    Chew T S MA1506-14 Chapter 5 81

    1

    01

    i

    i

    =

    0i =

    0i = Two eqs same

    ( ) 0T I

    =

    det( ) 0T I =T=

    consider i=

    Cont5.7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    82/118

    Cont.

    Chew T S MA1506-14 Chapter 5 82

    eigenvector

    0i =0i =

    Two eqs same

    1

    i i

    =

    1i

    get complex eigenvectorchoose 1=

    use 0i =

    cont.5.7 Eigenvalues and eigenvectors

  • 8/11/2019 ChewMA1506-14 Ch5

    83/118

    cont.

    Chew T S MA1506-14 Chapter 5 83

    get eigenvector

    10

    1

    i

    i

    =

    0i =

    0i + = Two eqs same

    1

    i i

    =

    choose get complexeigenvector

    Now consider second eigenvalue

    get

    use 0i + =

    i=

    1

    i

    i=

    5.7 Eigenvalues and eigenvectors

    Recallcont.cos sin

    ( )R

  • 8/11/2019 ChewMA1506-14 Ch5

    84/118

    Chew T S MA1506-14 Chapter 5 84

    When rotating through 90 degrees, everyrealvector should change direction,so

    has NO real eigenvector

    1

    i

    represents rotation through 90 degrees

    are its eigenvectors which are complex

    Recall

    So the matrix we just mentioned

    cont. ( )sin cos

    R

    =

    1

    i

    5.8 Diagonalization

    5.8 Diagonalization

  • 8/11/2019 ChewMA1506-14 Ch5

    85/118

    We say a matrix A is diagonalizable if

    Matrix of eigenvectorsDiagonal matrix ofeigenvalues

    ANS:If A is nxn matrix , and it has n non paralleleigenvectors, then A can be diagonalized.

    Chew T S MA1506-14 Chapter 5 85

    1A PDP

    =

    5.8 Diagonalization

    When a given matrix A can be diagonalized ?

    Example

    5.8 Diagonalization

  • 8/11/2019 ChewMA1506-14 Ch5

    86/118

    Example

    Chew T S MA1506-14 Chapter 5 86

    has eigenvalues 2 and -3and corresponding eigenvectors

    From the first example in section 5.7, we know

    Then2 0

    0 3

    1e

    2e

    = =

    1 2

    2 2

    1

    12

    1

    2

    = =

    1 1

    12

    2

    5.8 Diagonalization

  • 8/11/2019 ChewMA1506-14 Ch5

    87/118

    Next we can verify that

    Chew T S MA1506-14 Chapter 587

    1 2

    2 2

    P

    2 0

    0 3

    1P

    =

    Example

    5.8 Diagonalization

  • 8/11/2019 ChewMA1506-14 Ch5

    88/118

    p

    Chew T S MA1506-14 Chapter 5 88

    has only one eigenvalue since

    It has only one eigenvector

    Not possible to diagonalize

    1 tan

    0 1

    21 tandet (1 ) 00 1

    = =

    1

    0

    1 tan

    0 1

    Findingn

    M5.8 Diagonalization

  • 8/11/2019 ChewMA1506-14 Ch5

    89/118

    11 1

    2

    0

    0

    n

    n n

    nM PD P P P

    = =

    Finding M

    Chew T S MA1506-14 Chapter 5 89

    S

    5.8 Diagonalization

  • 8/11/2019 ChewMA1506-14 Ch5

    90/118

    Chew T S MA1506-14 Chapter 5 90

    [ ]

    1506

    1506cos sin

    ( )sin cos

    cos(1506 ) sin(1506 )

    sin(1506 ) cos(1506 )

    R

    =

    =

    Some special cases Notused this method

    Involutory matrix A 2A I=

    (1)

    (2)

    Then

    =

    5 9 Model weather forecasting

  • 8/11/2019 ChewMA1506-14 Ch5

    91/118

    5.9 Model weather forecasting

    Today Tomorrow ProbabilityRainy Rainy

    Sunny

    Sunny Rainy

    Sunny

    Chew T S MA1506-14 Chapter 5 91

    60%

    70%

    30%

    40%

    We can write the above information inthe following matrix form

    5..9 Model weather forecasting

  • 8/11/2019 ChewMA1506-14 Ch5

    92/118

    Current : R S Next:R

    columns add to 1

    Chew T S MA1506-14 Chapter 5 92

    called transit ion matrix

    0.6 0.3

    0.4 0.7

    R R S RM

    R S S S

    = = S

    5..9 Model weather forecasting

  • 8/11/2019 ChewMA1506-14 Ch5

    93/118

    Today is sunny, will it be rainy 2 days later?

    S

    S

    R

    S

    R

    S

    R

    0.7

    0.7

    0.3

    0.3 0.4

    0.6

    0.39

    0.610.12

    0.18

    0.49

    0.21

    Chew T S MA1506-14 Chapter 5 93

    0.6 0.3

    0.4 0.7

    R R S RM

    R S S S

    = =

    Observe that

    5..9 Model weather forecasting

  • 8/11/2019 ChewMA1506-14 Ch5

    94/118

    Chew T S MA1506-14 Chapter 5 94

    In fact

    2 0.6 0.3 0.6 0.3

    0.4 0.7 0.4 0.7

    M =

    0.6 0.6 0.3 0.4 0.3 0.7 0.6 0.3

    0.4 0.6 0.7 0.4 0.7 0.7 0.4 0.3

    + + = + +

    Observe that

    2 22

    2 2

    R R S RM

    R S S S

    =

    2

    2

    0.48 0.39

    0.52 0.61

    S R

    S S

    = =

    Summary of the previous slide5..9 Model weather forecasting

  • 8/11/2019 ChewMA1506-14 Ch5

    95/118

    Today is sunny, will it besunny 2 days later?

    Chew T S MA1506-14 Chapter 5 95

    0.6 0.3

    0.4 0.7

    R R S RM

    R S S S

    = =

    Today is rainy, will it besunny 2 days later?

    Probability=0.52 Probability=0.61

    2 22

    2 2

    0.48 0.39

    0.52 0.61

    R R S RM

    R S S S

    = =

    Today is rainy, will it berainy 2 days later?

    Probability=0.48

    Today is sunny, will it berainy 2 days later?

    Probability=0.39

  • 8/11/2019 ChewMA1506-14 Ch5

    96/118

    T d i R i il l i t b i 30 d l t ?

    5..9 Model weather forecasting

  • 8/11/2019 ChewMA1506-14 Ch5

    97/118

    Eigenvaluesof

    Chew T S MA1506-14 Chapter 5 97

    0.6 0.3

    0.4 0.7M

    =

    are

    Corresponding eigenvectors are

    1 0.3 = 2 1 =

    1

    1

    1

    4

    3

    Today is Rainy, will i t be rainy 30 days later?

    Find

    30

    M Should use30 30 1

    M PD P

    =

    1 1

    4 3

    7 7

    5..9 Model weather forecasting

  • 8/11/2019 ChewMA1506-14 Ch5

    98/118

    Chew T S MA1506-14 Chapter 5 98

    When use this method?suggest: n>4

    41

    3

    P =

    1 7 7

    3 3

    7 7

    P

    =

    30 630 0.3 0 2 10 0

    0 1 0 1D

    =

    630 30 1

    4 31 1

    2 10 0 7 74

    3 31 0 13 7 7

    M PD P

    =

    3 3

    7 7

    4 4

    7 7

    =

    5.10 Trace of a Matrix

  • 8/11/2019 ChewMA1506-14 Ch5

    99/118

    Chew T S MA1506-14 Chapter 5 99

    Let Mbe a square matrix.

    The trace of M, denoted Tr (M),is the sum of thediagonal entries

    ( ) ( )Tr MN Tr NM=5.10 Trace of a Matrix

  • 8/11/2019 ChewMA1506-14 Ch5

    100/118

    ( ) ( )Tr MN Tr NM =

    1

    ( ) ( ) ( )Tr M Tr PDP Tr D

    = =Given matrix

    Chew T S MA1506-14 Chapter 5 100

    For a diagonalizable matrix M,Tr(M)= Tr(D)=sum of its eigenvalues.

    Example 1

    5.10 Trace of a Matrix

  • 8/11/2019 ChewMA1506-14 Ch5

    101/118

    Use this to check your calculations ofeigenvalues and to find the remainingeigenvalue

    Chew T S MA1506-14 Chapter 5 101

    0.6 0.3

    0.4 0.7M

    =

    eigenvalue 1 0.3 =

    Tr(M)=0.6+0.7=1.3

    Hence the 2ndeigenvalue is2 1 =

    a p e

    Tr(M)= Tr(D)=sum of its eigenvalues.

    Example 25.10 Trace of a Matrix

    4 4 matrixA = entries= {1 2 3 16}

  • 8/11/2019 ChewMA1506-14 Ch5

    102/118

    Chew T S MA1506-14 Chapter 5 102

    entries= {1,2,3...16}

    All rows, all columns,all diagonalshave the same sum

    T A BExample 3

    5.10 Trace of a Matrix

  • 8/11/2019 ChewMA1506-14 Ch5

    103/118

    Chew T S MA1506-14 Chapter 5 103

    ( ) ( )( ) ( )

    Tr T Tr A BTr A Tr B

    = += +

    T A B = +Suppose that

    Find1 2 5 6 A=3 4 7 8

    T =

    [ ] [ ]1 1( ) ( ) ( ) 5 13Tr B Tr T Tr A

    = =

    ( )Tr B

    Solution Tr is linear

    We need thisproperty inTutorial 9 Q3

    R k

    5.10 Trace of a Matrix

  • 8/11/2019 ChewMA1506-14 Ch5

    104/118

    Chew T S MA1506-14 Chapter 5 104

    Remark:

    det = det(1

    )= det(1) = det

    = product of eigenvalues

    0.6 0.3

    0.4 0.7M

    =

    1 0.3 = 2 1 =eigenvalues

    EndChapter 5

    DetM=(0.3)(1)=0.3

  • 8/11/2019 ChewMA1506-14 Ch5

    105/118

    cont. cossin ( sin )

    d d

    dt dt

    = =

    Appendix

  • 8/11/2019 ChewMA1506-14 Ch5

    106/118

    Chew T S MA1506-14 Chapter 5 106

    ( )dt dt

    is constant

    Composing two shears Appendix

  • 8/11/2019 ChewMA1506-14 Ch5

    107/118

    Chew T S MA1506-14 Chapter 5 107

    S:shear degrees parallel to x axis

    S: shear degrees parallel to x axis

    Still a shear but note that

    Rotation in 3D Appendix

  • 8/11/2019 ChewMA1506-14 Ch5

    108/118

    Chew T S MA1506-14 Chapter 5 108

    Rotate 90 degrees (anticlockwise) about z-axisRotate 90 degrees (anticlockwise) about x-axis

    About z-axis About x-axis

    Cont. Appendix

  • 8/11/2019 ChewMA1506-14 Ch5

    109/118

    Chew T S MA1506-14 Chapter 5 109

    Rotate 90 degrees

    (anticlockwise) about z-axis

    Rotate 90 degrees

    (anticlockwise) about x-axis

    D t i t f O th l M t i M

    Appendix

  • 8/11/2019 ChewMA1506-14 Ch5

    110/118

    Determinant of Orthogonal Matrix

    Chew T S MA1506-14 Chapter 5 110

    M

    Examples

    1P

    Appendix

    P P exits

  • 8/11/2019 ChewMA1506-14 Ch5

    111/118

    are parallel iff

    11 22 12 21det P P P P P=

    11 22 12 21det 0P P P P P= =

    11 21

    12 22

    P P

    P P= =iff

    11

    21

    P

    u P

    =

    12

    22

    Pv

    P

    =

    12

    22

    Pv

    P

    = =

    det 0P=

    not parallel iff det 0P

    So if not parallel then1

    P

    exits

    Chew T S MA1506-14 Chapter 5 111

    Hence

    11 12

    21 22

    P PP

    P P

    =

    ,u v

    ,u v

    ,u v

    Row operations to find inverse

    Appendix

  • 8/11/2019 ChewMA1506-14 Ch5

    112/118

    Row operations to find inverse

    Chew T S MA1506-14 Chapter 5 112

    Refer to Textbook Section 3.3 for more details

    Remark: 2

    nd

    method finding inverse see slide 46

    Three row operations on a matrix

    multiply a constant to a row

    switch two rows add a multiple of another row

    (see example)

    AppendixCont.

  • 8/11/2019 ChewMA1506-14 Ch5

    113/118

    Example

    Let A=

    1 4 2

    2 8 3

    0 1 1

    Suppose that we know that A has an inverse.

    Now we shall do the following to get 1A

    Chew T S MA1506-14 Chapter 5 113

    First writeAppendixCont.

  • 8/11/2019 ChewMA1506-14 Ch5

    114/118

    1 4 2 1 0 0

    2 8 3 0 1 00 1 1 0 0 1

    Try to get zero as many as possible

    for the lower triangular part.

    1 22R R+

    1 4 2 1 0 0

    0 0 7 2 1 00 1 1 0 0 1

    Chew T S MA1506-14 Chapter 5 114

  • 8/11/2019 ChewMA1506-14 Ch5

    115/118

    1 4 0 3 7 2 7 0

    AppendixCont.

  • 8/11/2019 ChewMA1506-14 Ch5

    116/118

    3 12R R +1 4 0 3 7 2 7 0

    0 1 0 2 7 1 7 1

    0 0 1 2 7 1 7 0

    2 14R R +1 0 0 11 7 2 7 4

    0 1 0 2 7 1 7 10 0 1 2 7 1 7 0

    When we reach this step,we get

    Chew T S MA1506-14 Chapter 5 116

    1A 11 7 2 7 4

    2 7 1 7 1

    2 7 1 7 0

    =

    Consider linear system AX=B where

    AppendixCont.

  • 8/11/2019 ChewMA1506-14 Ch5

    117/118

    Consider linear system AX B where

    1 4 2

    2 8 3

    0 1 1

    A= X=1

    2

    3

    x

    x

    x

    B= 232

    1

    Now the inverse of A exists. Hence we have

    Chew T S MA1506-14 Chapter 5 117

    AX B=1 1A AX A B =

    1IX A B

    =1X A B=

    Therefore

    AppendixCont.

  • 8/11/2019 ChewMA1506-14 Ch5

    118/118

    Therefore

    1

    2

    3

    x

    x

    x

    11 7 2 7 42 7 1 7 1

    2 7 1 7 0

    232

    1

    =

    2

    3

    4

    =

    (11/ 7)( 2) (2 / 7)(32) ( 4)(1) 2 + + =

    ( 2 / 7)( 2) ( 1/ 7)(32) (1)(1) 3 + + =

    (2 /7)( 2) (1/ 7)(32) (0)(1) 4 + + =

    Endof