用于原子核基本性质测量的激光核谱技术 -...

46
杨晓菲 [email protected] 北京大学物理学院 核物理与核技术国家重点实验室 用于原子核基本性质测量的激光核谱技术

Upload: others

Post on 21-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • 杨晓菲[email protected]

    北京大学物理学院核物理与核技术国家重点实验室

    用于原子核基本性质测量的激光核谱技术

  • 2

    Contents

    General physics motivation

    Laser spectroscopy technique and recent highlights

    Hyperfine structure andnuclear properties

    Development of Laser spectroscopy

  • 3

    Nuclear structure of exotic isotopes

    • How does the nuclear chart emerge from underlying interactions?

    • How does nuclear structure evolve across the nuclear landscape?

    • What shape can nuclei adopt?• What are the limits of existence of nuclei?• …....... 《NuPECC LRP 2017》

  • 4

    Nuclear structure of exotic isotopes Exotic phenomena near dripline Nuclear astrophysics Super heavy element

    Radioactive ion beam Experimental investigation Theoretical development

    Experiments: Reactions, αβγ decay, basic properties measurement……

  • Nuclear properties of (exotic) nuclei

    5

    test for state-of-the-art nuclear theories input for nuclear astrophysics models insight into the nuclear structure study of the nucleon-nucleon interaction

    • Mass and Lifetime• Spin and Parity• Nuclear Magnetic dipole and

    Electric quadrupole moments• Charge Radii and matter radii

    核天体

    Can be measured with one technique: laser spectroscopy

  • 6

    Halo nuclei,He, Li, Be

    IOI, Na, Mg, Al

    32,34Ca, N=32,34

    68,78Ni, N=40 ,50

    Deformation N=60

    100, 132Sn

    Shapes (Pb)

    Heavier mass

    Deformed 1/2+ intruder g.s in 31Mg

    Deformed 1/2+ intruderisomer in 79Zn

    New isomers in 101In--coming soon

    ISOLDE, IGISOL,GSI, TRIUMF,ATLAS,GANIL,NSCL, RIKEN,…….

    • Exotic phenomenon (halo,shell evolution,deformation…)*Radioactive molecules* Nature, (2020)

    Achievements until now

  • 7

    Contents

    General physics motivation

    Laser spectroscopy technique and recent highlights

    Hyperfine structure andnuclear properties

    Development of Laser spectroscopy

  • 8

    From Atoms to Nuclei

    Electronic energy level structure

    3S

    3P

    2P1/2

    2P3/2

    2S1/2

    THz eV~508 2.1 ~500 ~10-3

    GHz eV MHz eV

    ~200 ~10-6

    𝑙𝑙 𝐽𝐽 = 𝑙𝑙 + 𝑠𝑠 𝐹𝐹 = 𝐽𝐽 + 𝐼𝐼 𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠

    Only in HFS precision level,nuclear information are involved

    --Spectroscopy of electronic transitions of atoms/ions

  • 3S1

    3P2// ν

    1/2

    I = 3/2

    3/2

    5/2

    1/23/25/2

    7/2

    -2.5A+1.25B

    -A+B

    1.5A+0.25B

    Atomic hyperfine structure△E= A・K/2 + B・{3K(K+1)/4 –I(I+1)J(J+1)}/{2(2I-1)(2J-1)IJ}, K=F(F+1)-I(I+1)-J(J+1)

    Fine structure𝐽𝐽 = 𝑙𝑙 + 𝑠𝑠 𝐹𝐹 = 𝐽𝐽 + 𝐼𝐼 𝑛𝑛𝑛𝑛𝑛𝑛𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠

    Hyperfine structure

    All quantities are deduced (nuclear) model-independently

    I µ Qs 1/2

    IJBA JIµ=

    zzeQVB =

    • Magnetic dipole HF parameter

    • Electric quadrupole HF parameter

    • Centroid ν0 => Isotopes shift

    Atomic parameters

    I, µ

    Qs

    δν𝑨𝑨𝑨𝑨′ = 𝑀𝑀𝐴𝐴′−𝐴𝐴𝐴𝐴𝐴𝐴′

    +𝐹𝐹 δ𝑨𝑨𝑨𝑨′

    9

    Chart1

    0

    1500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    2500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    3500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    4500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    5500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    6500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    7500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    8500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    9500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    10500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    Sheet1

    plotcenter 3000point

    55000397.2448755397.244875

    55000-622.4494254377.550575

    55000843.51555843.5155

    55000-176.17884823.8212

    55000-1875.66933124.3307

    55000550.19315550.1931

    55000-1149.29743850.7026

    55000-168.94314831.0569

    GsIJorderdetal Ecenter

    1.520.51302.2456250.530004302.245625

    1.521.5855.9750.530003855.975

    1.522.5129.6031250.530003129.603125

    1.523.5-850.751250.530002149.24875

    0.5

    EsIJorder0.5

    1.510.51699.49050.580009699.4905

    1.511.5679.79620.580008679.7962

    1.512.5-1019.69430.580006980.3057

    gs-esrela. energyenergy

    0.5->0.5397.244875c+397.244875

    0.5->1.5-622.449425c-622.449425

    1.5->0.5843.5155c+843.5155

    1.5->1.5-176.1788c-176.1788

    1.5->2.5-1875.6693c-1875.6693

    2.5->1.5550.193075c-550.1931

    2.5->2.5-1149.297425c-1149.2974

    3.5->2.5-168.94305c-168.9431

    73ZnI =1.54p2 A=-285.325 B=+69.655s1 A=-679.7962 B=0?

    Sheet1

    Sheet2

    plot

    1500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    2500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    3500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    4500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    5500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    6500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    7500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    8500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    9500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    10500010002302.2461855.9751129.6031149.2496699.4915679.79623980.31

    Sheet2

    Sheet3

  • Observables from laser spectroscopy---and its link to nuclear information

    SpinParity

    MagneticMoment

    Shell evolution/Magicity

    Correlations/deformation

    Providing complementary nuclear information!

    PRL110(2013)172503, PRL 203(2009)142501

    Input for nuclear theories Nat. Phys. 12(2016)596; Nat. Phys.15(2019)432

    PRL 116(2016)032501, Nat. Phys. 14(2018)1163

    QuadrupoleMoments

    Charge Radii

    Halo, astrophysics…PRL 112, 162502 (2014);PRL 119(2017)122502

    10

  • 11

    Contents

    General physics motivation

    Laser spectroscopy techniques and recent highlights

    Hyperfine structure andnuclear properties

    Development of Laser spectroscopy

  • Production of radioactive beams

    • ISOLDE@CERN• GANIL-SPIRA@GANIL• ISAC@TRIUMF• EUROSOL@EU (planned)• BISOL @CIAE/PKU(Planned)

    • FAIR@GSI• FRIB@MSU• BigRIPS, RIPIS@RIKEN• HIAF@IMP (Funded)

    High energyLow energy

    Phys. Scr. T152 (2013) 014023 (24pp)

    e.g. Ca,Zn,Kr,U

    e.g. 1H,2H

    Phys. Scr. T152 (2013) 014023 (24pp)

  • Laser spectroscopy methods

    Ion detectionPhoton detection

    Single laser beam Multiple laser beams

    -Laser spectroscopy of trapped atoms………

    -In source spectroscopy-In gas cell/ gas-jet spectroscopy………

    J. Phys. G: Nucl. Part. Phys. 37 (2010) 113101 ; Prog. Part. Nucl. Phys. 86, 127 (2016).

    GS

    Ex

    GS

    Ex

    IP

    -Collinear laser spectroscopy -Collinear resonant ionization

    13

  • Collinear laser spectroscopy

    In source spectroscopy

    Ion/atom trap(e.g MOT )

    In-gas-cell/Jet

    =>polarized beam=>decay/β-NMR

    => Laser ion source

    Laser spectroscopy techniques

    GS

    Ex

    GS

    Ex=>decay/application

    GS

    Ex

    IP

    GS

    Ex

    IP

    => Laser ion source

    J. Phys. G: Nucl. Part. Phys. 37 (2010) 113101 (38pp)Prog. Part. Nucl. Phys. 86, 127 (2016).

  • Ion/atom trap(e.g MOT )

    In-gas-cell/Jet

  • Ion/atom trap(e.g MOT )

    In-gas-cell/Jet

    200 MHz< 10 ions/sI, u,

    Laser spectroscopy techniques

    Collinear laser spectroscopy

    In source spectroscopy

  • CERN-ISOLDE(COLLAPS/CRIS)

    Collinear laser spectroscopy

    Collinear resonantionization spectroscopy

    Polarized RI beamusing laser techniques

    RI beams producedusing laser ion sources

    http://isolde.web.cern.ch

    http://isolde.web.cern.ch/

  • 18

    Collinear laser spectroscopy (COLLAPS)

    Collinear : High resolution Photon detec.: Sensitivity 103 pps

    http://collaps.web.cern.ch/

    GS

    Ex

    5 μs

    RFQ 211

    transition laserβν νβ

    −=

    −2 40

    2 20

    1( )

    M cUq M c

    β = −+

  • 19

    Collinear ionization laser spectroscopy(CRIS)

    Collinear: High resolution Ion detection: Higher sensitivity

    http://isolde-cris.web.cern.ch/isolde-cris/

    GS

    Ex

    IP

    R.P. De Groote et al.,PRL. 115 (2015) 132501

    2014: 20 MHz Fr 2016: 20 ions/s 78Cu

    R.P. De Groote et al.,PRL C96(2017)041302(R)

    http://dx.doi.org/10.1103/PhysRevLett.115.132501

  • 20

    48,52,54Ca: K, Sc, Ca

    68,78Ni : Ni, Cu, Zn, Ga, Ge…Ni: PRL124(2020)132502;Cu: Nat.Phy16(2020)620;Zn: PLB797(2019)134805;Cu: PRC96(2017)041302(R);Zn: PRC97(2019)044324Zn: PLB771(2017) 385;Zn: PRL116(2016)182502 ;

    Ca: NP12(2016) 594;Ca: PPC750(2015)041304(R); K: PRC100(2019)034304;

    Nat.Phy.12(2016) 594

    The 52Ca Might Have Just Lost Its 'Magic' Status

    Sn:PRL122(2019)192502Cd:PRL121 (2018)102501In: PRX8(2018)041005Cd:PRL116(2016) 032501

    • http://collaps.web.cern.ch/people• http://isolde-cris.web.cern.ch/isolde-cris/• With strong collaboration with theoretical collages

    Research interests (COLLAPS/CRIS)*Radioactive molecules* Nature581(2020)396

    100,132Sn : In, Sn, Sb…

  • 21

    100,132Sn : In, Sn, Sb…

    48,52,54Ca: K, Sc, Ca

    68,78Ni : Ni, Cu, Zn, Ga, Ge…𝟏𝟏𝟏𝟏𝟓𝟓𝟓𝟓K𝟑𝟑𝟑𝟑

    (Z=32)K: A.Koszorus, X.Yang* et al., PRC100(2019)034304A.Koszorus, X.Yang* et al., (in preparation)A.Koszorus*, X.Yang* et al., (Submitted to Nat.Phys)(Z=21) Sc: S.W. Bai, X. Yang* et al (In preparation)

    62-80Zn:-X.Yang* et al., PRL116 (2016) 182502

    (Editor’s suggestion)-C. Wraith, X.Yang* et al., PLB 771(2017)385-X.Yang* et al., PRC. 97 (2018) 044324-L. Xie, X.Yang* et al, PLB 797(2019)124805(Z=32)Ge: A. Kanellakopoulos, X.Yang* et al.,(in preparation)

    Research interests (COLLAPS/CRIS)

  • 22

    “New magic numbers” (N = 32, N = 34)!!

    Wienholtz et al, Nature, 2013 Rosenbusch et al., PRL, 2015

    K, Ca (Z = 19,21): S2n

    Steppenbeck et al, Nature 2013 (RIKEN)

    Ca (Z = 20) : E(2+)

    PRL 114, 252501 (2015)

    Ar (Z = 18) : E(2+)

    Theory N=32 (Ca) N=34 (Ca) Ref.

    Shell model GXPF1A, KB3GE(2+), S2n

    GXPF1BrE(2+)

    PRC 65, 061301(R) (2002) JPS Conf. Proc. 6 (2015) 010007Nature 498,346(2013)

    Shell modelChiral EFT (3N)

    MBPTE(2+), S2n

    MBPTE(2+)

    Annu. Rev. Nucl. Part. Sci. 2015. 65

    Ab initioChiral EFT (3N)

    CCE(2+), S2n

    CCE(2+)

    Annu. Rev. Nucl. Part. Sci. 2015. 65

    Beyond MF E(2+) PRL 99, 062501 (2007)

  • 23

    “New magic numbers” (N = 32, N = 34)!!??

  • 24

    Garcia Ruiz et al, PRC 91 041304 (2015)

    Garcia Ruiz et al, Nature Physics 2016, Kreim et al, PLB 2014

    “New magic numbers” (N = 32, N = 34) ??

    ?

    Theoretical challenges

  • A.Koszorus, X.F. Yang* et al., PRC100, 034304 (2019): Reaching higher precision of ~1 MHz for light mass isotopes. 25

    Charge radius of 52K (N=32 magic?) δν𝑨𝑨𝑨𝑨′ = 𝑀𝑀𝐴𝐴

    ′−𝐴𝐴𝐴𝐴𝐴𝐴′

    +𝐹𝐹 δ𝑨𝑨𝑨𝑨′

  • 26

    Charge radius of 52K (N=32 magic?)

    • CRIS for 47-51K< 2 hours

    • CRIS for 52K

  • 27

    Charge radius of 52K (N=32 magic?)

    • CRIS for 52K

  • 28

    Charge radius of 52K (N=32 magic?)

    Cross N = 32 for the first time!!

    • New F, M largely reduced the systematic errors

    • The increased radii at N =32 has similar trend for open-shell e.g. Mn

    • No sign of magicity atN=32

    New Journal of Physics 22, 012001(2020)

  • 29

    Charge radius of 52K (N=32 magic?)

    R.F. Garcia Ruiz et al., Nat.Phys.12(2016) 594

    Ab initio CC (NNLOsat)Fitting to the data of binding energies and radii of selected nuclei up to mass number A = 25.

    SRG1 and SRG2Fitting only to properties of A≤4

    Newly developed ΔNNLOgo• Fitting only to properties of A≤4

    and nuclear saturation properties• Includes pion-physics and effects of

    the (1232) isobar.

    Improved CC method• start from a symmetry-breaking

    reference state• Allow to calculate the radii of whole

    K chain

    2016

    2020

    http://dx.doi.org/10.1038/nphys3645

  • 30

    Contents

    General physics motivation

    Laser spectroscopy techniques and recent highlights

    Hyperfine structure andnuclear properties

    Development of Laser spectroscopy

  • 31

    World-wide RI beam facilities

  • 32

    TRIUMF FRIBATLAS

    GANIL

    GSICERN BRIF-BISOL

    HAIFRIKEN

    RAON

    ALTO

    CFBS

    LaSpec

    CARIBU

    LUMIERE

    HELIOS

    BECOLA

    CRIS COLLAPS

    RILIS

    VITO

    RILIS

    IGISOL

    RILIS

    CLS/RILIS

    SLOWRI

    OROCHIHIRFL

    HIAF-CLS

    operation under construction/test planned

    Nuclear properties Laser ion source Application

    World-wide laser spectroscopy

    BISOL-CLS

    Development of laser spectroscopy

  • 33

    First application:BRIF@CIAE (北京放射性离子装置)

    First online measurement!!

    Available beams

    BRIF

    平面图

    • 100 MeV proton beam (200uA) +Target

    • kW ISOL Target +online separator

  • 34

    Light detection

    CEC

    laser

    RIbeam

    First application:BRIF@CIAE (北京放射性离子装置)

    Ion beam

    Layout around BRIF

    Photon detectionGS

    Ex

  • 35

    beam

    Ion optics

    Coupling of laser and ion

    Layout of laser spectroscopy at BRIF

    First application:BRIF@CIAE (北京放射性离子装置)

    Supported by NFSC Nuclear Technology Innovation Joint Fund!!

  • “Exotic structure”

    “New observables”

    104 103 102 101FWHM(MHz)

    Sens

    itivi

    ty(

    pps)

    103

    102

    101

    100

    ⁄𝝁𝝁 𝜹𝜹 r𝟓𝟓 𝑰𝑰,𝑸𝑸𝒔𝒔, r𝟓𝟓𝟏𝟏/𝟓𝟓

    In-source

    Collinear

    FWHM:

  • Sub-atomic Particle Detection Laboratory

  • 38

    DetectorRoom

    Laser lab

    Col

    linea

    r la

    ser

    spec

    tros

    copy

    Offline laser spectroscopy lab

    SKLSub-atomic Particle Detection Laboratory

  • 3939

    Offline laser spectroscopy lab

  • 40

    Final goal: To be applied at the new facilities at theirearly stage

    “HIAF”

    Under construction

    “BISOL”

    Planned

    High-Intensity Heavy Ion Accelerator Facility

    Beijing Isotope-Separation-On-Line

  • 41

    Summary and outlook!!

    • Laser spectroscopy is a powerful tool to access multiple nuclear properties of exotic isotopes.

    • For the exotic nuclear structure study in different mass region of nuclear chart.

    • Continues efforts are still on going toward a higher resolution and higher sensitivity.

    • Important benchmark for the test and development of state-of-art nuclear theory.

    Potentially have many aspects of applications using RI beams

  • 42

    “An atomic nucleus is an elephant”Prof. Jacek Dobaczewski

    Joint efforts!!

  • 43

    https://collaps.web.cern.ch

    http://isolde-cris.web.cern.ch/isolde-cris/

    J. Billowes, C. Binnersley, T.E. Cocolios, G. Farooq-Smith, K.T. Flanagan, W. Gins, K.M. Lynch,S. Franchoo, M. Bissell, R.P. De Groote, R.F. Garcia Ruiz, A. KoszorusG. Neyens, C. Ricketts, H.H. Stroke, A. Vernon, K. Wendt, S. Wilkins, X.F Yang

    M. Bissell, K. Blaum, B. Cheal, R.F. Garcia Rniz, C. Gorges, H. Heyle ,S. Kanfma , M. Kowalska, S. Malbrunot-Ettenauer, R. Nengart, G. Neyens,W. Nortershanser, L. Vazqnez-Rodrignez, X.F. Yang, D. Yordanov

  • 44

    Experimental Nuclear Physics Group

    http://genp.pku.edu.cn/News.html

    Sep. 22th, 2019

  • 45

    http://genp.pku.edu.cn/LPNP/research.html

    Laser Spectroscopy and Nuclear properties

  • 46

    Thanks for your attention!

    幻灯片编号 1幻灯片编号 2幻灯片编号 3幻灯片编号 4幻灯片编号 5幻灯片编号 6幻灯片编号 7幻灯片编号 8幻灯片编号 9幻灯片编号 10幻灯片编号 11幻灯片编号 12幻灯片编号 13幻灯片编号 14幻灯片编号 15幻灯片编号 16幻灯片编号 17幻灯片编号 18幻灯片编号 19幻灯片编号 20幻灯片编号 21幻灯片编号 22幻灯片编号 23幻灯片编号 24幻灯片编号 25幻灯片编号 26幻灯片编号 27幻灯片编号 28幻灯片编号 29幻灯片编号 30幻灯片编号 31幻灯片编号 32幻灯片编号 33幻灯片编号 34幻灯片编号 35幻灯片编号 36幻灯片编号 37幻灯片编号 38幻灯片编号 39幻灯片编号 40幻灯片编号 41幻灯片编号 42幻灯片编号 43幻灯片编号 44幻灯片编号 45幻灯片编号 46