compressed air system

Upload: komkit-srimanta

Post on 17-Oct-2015

45 views

Category:

Documents


0 download

DESCRIPTION

-

TRANSCRIPT

  • Compressed air system

  • Introduction

  • (Compressed air system)

    -

    -

  • Air inlet filter

    Dryer Air filter Air receiver

    After cooler and lubricant cooler

    Lubricant/air separator

    Filter, regulator and lubricator

    Pressure/controller

  • Intake air filters Inter-stage coolers After coolers Air dryers Moisture drain traps Receivers

  • Air receiver

    Intercooler

    Air compressor

    Piping

  • 2

    (Positive Displacement)

    (Dynamics)

  • Types of compressor

    Positive displacementDynamics

  • 1) (Reciprocation Compressors)

    2) (Rotary Compressors)

    3) (Centrifugal Compressors)

    3

    => =>

    => =>

    => =>

  • 2 2

    Reciprocating Compressors

  • (Rotary Compressors)

    (Sliding Vane Compressors) (Vane)

  • Liquid Piston Compressors

    Liquid piston

  • Two-Impeller Straight-Lobe

    (Lobe) 2

    straight lobe

  • (Screw Compressor)

    2 (Helical)

  • (Centrifugal Compressors)

  • -

    //

    0.10 0.18 kW/cfm0.15 0.25 kW/cfm0.30 0.45 kW/cfm

    (1 50 bar)

    (1 15 bar)

    (1 100 bar)

  • (Assessment of compressor)

  • (Actual flow: Free Air Delivery, FAD)

    2 1

    o

    P P VQP T= [Nm3/min]

    = Final pressure after filling [kg/cm2 a]= Initial pressure after bleeding [kg/cm2 a]= Atmospheric pressure [kg/cm2 a]= Storage volume [m3] including receiver, after cooler, and delivery piping= Time take to build up pressure P2 [min]

    2P

    1PoP

    VT

    T2 FAD (273+T1)/(273+T2)

  • (Free Air Delivery, FAD)

    P1 () P2

    ()

  • ExampleTheoretical compressor capacity : 14.75 m3/min @ 7 kg/cm2Receiver volume : 7.79 m3Additional hold up volume,Pipe, Water cooler, etc., : 0.4974 m3Total volume : 8.322 m3Initial pressure P1 : 0.5 kg/cm2Final pressure P2 : 7.03 kg/cm2Atmospheric pressure Po : 1.026 kg/cm2 a

    2 1

    o

    P P VQP T=

    Compressor output [m3/min]

    7.03 0.5 8.322 13.171.026 4.021

    = = m3/min

    10.69% less than theoretical capacity

  • (Compressor efficiency)

    Specific power consumption (kW/volume flow rate) Isothermal Volumetric Adiabatic Mechanical

  • (Isothermal efficiency)

    1 1 ln [ ]36.7rIsothermal power P Q kW=

    Isothermal efficiency = Actual measured input powerIsothermal power

    P1 = Absolute intake pressure [kg/cm2]Q1 = Free air delivery [m3/hr]r = Pressure ratio, P2/P1

  • (Volumetric efficiency)

    Volumetric efficiency = Free air delivery [m3/min]Compressor displacement

    2

    4DCompressor displacement L S x n=

    D = Cylinder bore [m]L = Cylinder stroke [m]S = Compressor speed [rpm]x = 1 for single acting and 2 for double acting cylindersn = Number of cylinders

  • (Air leak)

    Energy waste: 20 30% of output Drop in system pressure Shorter equipment life

    -

  • (Leak quantification method)

  • (Leak quantification method)

    [ ] 11 2

    % 100tLeakaget t

    = +t1 = on load time [min]t2 = off load time [min] 5%

    3 1

    1 2

    [ / min] Q tSystem leakage mt t= +

    Q = Free Air Delivery (FAD)

  • ( )1 21 2

    %[ ]

    Leakage xt dt HEnergy waste kWh

    t t= +

    (Leak quantification method)

    t1 = On load time [sec]t2 = Off load time [sec]x = On load power [kW]d = Off load power [kW]H = Operating hour [h]

  • Compressor capacity (m3/minute) = 35 Cut in pressure, kg/cm2 = 6.8Cut out pressure, kg/cm2 = 7.5 Load kW drawn = 188 kWUnload kW drawn = 54 kWAverage Load time = 1.5 minAverage Unload time = 10.5 min

    Example

    1

    1 2

    1.5[%] 100 100 12.5%1.5 10.5

    tLeakaget t

    = = =+ +

    3% 0.125 35 4.375 / minSystem leakage Leakage Q m= = =

  • Example

    ( )1 21 2

    %[ ]

    Leakage xt dt HEnergy waste kWh

    t t= +

    ( )( )

    0.125 188 1.5 60 54 10.5 60 81.5 10.5 60

    70.75 kWh

    + = + =

    Assume operating time = 8 hours

  • ( 7 )

  • [/m3]

    capacity

  • 7.5-5.5 [kW/m3/min] (ANR) 0.13-0.18 [m3/min/kW] (ANR) 7.5 [kW]

    ( )

    ()

  • main source

    (valves) flow meter

    (pneumatic tool)

    ()

  • (pressure drop)

    Meter Pressure (leak)

    ()

  • 35 oc 25 oc 3.3%

    ()

  • 1.

    2.

    3.

  • 9

    9 3 C 1%

    9

    9

  • After Cooler After Cooler

    After Cooler

  • Air Dryer

    Air Dryer

  • 260.6

    5151.5

    1.03.00.3

    15454.5

    10303.0

    Variable speed control [m3/min]

    Constant speed control [m3/min]

    [m3]

  • ()

    Size of pressure tank og o

    A Q PP P = +

    A = factor [min] (usually give A = 1.5 for 6 10 bar)Q = capacity of air compressor [m3/min] (FAD)Pg = pressure gauge [bar]Po = ambient pressure [bar]

  • ()

    Size of pressure tank 3 og o

    Q PP P = +

    A = factor [min] = 3Q = capacity of air compressor [m3/min] (FAD)Pg = pressure gauge [bar]Po = ambient pressure [bar]

  • Example

    25 m3/min 7 bar

    Q = 25 m3/minPo = 1.013 barPg + Po = 7 + 1.013 = 8.013 bar

    Size of pressure tank 3 og o

    Q PP P = +

    33 25 1.013 9.58.013

    m = =

  • ( )o d oP V C tP

    = Size of pressure tank

    ( )( )o d o

    Size of tank Pt

    P V C=

    Vd = [m3/min]t = [min]P = [bar]

  • Example 30 m3/min 6 bar g

    Size of tank = 9.5 m3P = 7 6 bar = 1 barQ = 25 m3/minPo = 1.013 barVd = 30 m3/min

    ( )( )o d o

    Size of tank Pt

    P V C=

    ( )9.5 1 1.9 min

    1.013 30 25t = =

    Overload 5 m3/min 1.9

  • (Power of air compressor in theory)

    T1 = inlet temperature [K]P1 = ambient pressure [bar]P2 = absolute working pressure [bar]k = gas constant for air k = 1.4R = universal gas constant [R = 0.287 kJ/kg.K]

    1

    1 2

    1

    [ / ] 11

    kk

    compkRT PW kJ kgk P

    =

  • 5 %

  • 6

  • 2 6 3

    2 Booster 7 11

  • ()

  • 2.

    1.

  • 3.

    4.

  • 5.

    6.

  • 7.