daftar pustaka - institut teknologi...

57
xvi Daftar Pustaka 1. Bai, Yong. 2001. “Pipelines and Risers”. Amsterdam: Elsevier Science. 2. Dalrymple, Dean. 1991. “Water Wave Mechanics for Engineers and Scientist”. New Jersey: World Scientific. 3. Ellenberger, Philip. 2005. “Piping Systems & Pipeline”. McGrawHill Profesional Engineering. 4. Guo, Boyun. 2005. “Offshore Pipelines”. Massachussets: Elsevier Inc. 5. Heryanto, Julius. 2008. “Desain dan Analisis Struktur Pipa Bawah Laut”. Institut Teknologi Bandung. 6. McAllister, E.W.. 2002. “Pipeline Rules of Thumb Handbook”. Gulf Profesional Publishing. 7. Mouselli, A.H. 1985. “Offshore Pipelines Design, Analysis, and Method”. Oklahoma: Penn Well Books. 8. Nakazawa, Kazuto. 1980. “Soil Mechanic and Foundation Engineering”. Pradnya Paramitha. 9. Palmer, Andrew C. and King, Roger A. 2004. “Subsea Pipeline Engineering”. PennWell Corporation. 10. Sam Kannappan, P.E. 1985. “Pipe Stress Analysis”. John Wiley & Sons. 11. Veritas Offshore Technology and Services A/S. April 1981. “DNV 1981 Rules for Submarine Pipelines Systems”. Norway: DNV Publisher. 12. Veritas Offshore Technology and Services A/S. March 2002. “DNV RP F105 Free Spanning Pipelines”. Norway: DNV Publisher. 13. Veritas Offshore Technology and Services A/S. August 2005. “DNV RP E305 OnBottom Stability Design of Submarine Pipelines ”. Norway: DNV Publisher.

Upload: buinhan

Post on 26-Apr-2018

215 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

xvi  

Daftar Pustaka  

 

1. Bai, Yong. 2001. “Pipelines and Risers”. Amsterdam: Elsevier Science. 

2. Dalrymple, Dean. 1991. “Water Wave Mechanics  for Engineers and Scientist”. New  Jersey: World 

Scientific. 

3. Ellenberger, Philip. 2005. “Piping Systems & Pipeline”. McGraw‐Hill Profesional Engineering. 

4. Guo, Boyun. 2005. “Offshore Pipelines”. Massachussets: Elsevier Inc. 

5. Heryanto, Julius. 2008. “Desain dan Analisis Struktur Pipa Bawah Laut”. Institut Teknologi Bandung. 

6. McAllister, E.W.. 2002. “Pipeline Rules of Thumb Handbook”. Gulf Profesional Publishing. 

7. Mouselli,  A.H.  1985.  “Offshore  Pipelines  Design,  Analysis,  and Method”.  Oklahoma:  Penn Well 

Books. 

8. Nakazawa, Kazuto. 1980. “Soil Mechanic and Foundation Engineering”. Pradnya Paramitha. 

9. Palmer, Andrew C. and King, Roger A. 2004. “Subsea Pipeline Engineering”. PennWell Corporation. 

10. Sam Kannappan, P.E. 1985. “Pipe Stress Analysis”. John Wiley & Sons. 

11. Veritas Offshore Technology and Services A/S. April 1981. “DNV 1981 Rules for Submarine Pipelines 

Systems”. Norway: DNV Publisher. 

12. Veritas Offshore Technology and Services A/S. March 2002. “DNV RP F105 Free Spanning Pipelines”. 

Norway: DNV Publisher. 

13. Veritas Offshore  Technology  and  Services A/S. August  2005.  “DNV  RP  E305 On‐Bottom  Stability 

Design of Submarine Pipelines ”. Norway: DNV Publisher. 

 

   

Page 2: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

DESIGN DATA

Pipe OD , d = inches= mm

Concrete grade = kg/cm2

Tensile strength of steel , fy = kg/cm2

Density of concrete = kg/m3

Density of soil , γ = kg/m3

Angle of friction , φ = 0 Backfill materialφ 0 = 0 original soil

Cohession of soil, Ca = kg/m2 original soil

Fx = kgFy = kgFz = kgMx = kgmMy = kgmM

0

30.0

32.00812.8

2400

1754200

1800

200

radians0.520.61=35.0

= radians

2.150

00

20

4957

PERENCANAAN PIPA DAN EXPANSION SPOOL PADA PIPA PENYALUR SPM

ANCHOR BLOCK CALCULATION

Mz = kgm= m H2 = m

Assumed length of concrete block , L1 = m L2 = m= m

Depth of pipe from top of concrete , db = mDepth of pipe from top of soil , hp = m

Hence volume of concrete block = m3

Volume due to pipe = m3

Hence effective volume of concrete block = -= m3

PLAN

SECTION X-X SETION Z-Z

2.7

L1

H1

0.41

Assumed total height of concrete block , H1

0.41

hp

1.00

0.800.80

centre line of pipe - X

1.102.40

0

H2centre line of pipe

B

Assumed total width of concrete block , B

B

2.00

2.72

0.40

2.31

L2

Z

db

L2

H1

Page 3: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

PERENCANAAN PIPA DAN EXPANSION SPOOL PADA PIPA PENYALUR SPM

ANCHOR BLOCK CALCULATION

Total block weight , W = m3 x kg/m3

W = kg

Total soil weight above the block , Ws = (( B x L ) x ( hp - db ) + (L2-L1) x ( hp - db + H1 )) x γ

Ws = kg

CHECK FOR UPLIFT

Vertical uplift force from pipe, Fv = ( Fy + sqrt (( Mx/B)2 + (Mz/L)2))

= kg

Factor of safety against uplift = /

= > Hence OK

PASSIVE EARTH PRESSURE

Pp = γ x H x Kp

553.2278

10.00

5760

2400

5532

0 2

2.0

10.00

55322.305

where , Kp = ( 1 - sin φ ) / ( 1 + sin φ ) =

Pp = γ x (hp-db+H2) x Kp

= kg/cm2

Fp = 0.5 x Pp x (B x H2 - 0.25 x pi x OD^2)= kg

CHECK FOR SLIDING

Coefficient of friction , μ 0 = tan ( φ0 ) =

Resistance to sliding = ( 0.7 x Ca x ( L2 x B ) + ( μ0 x ( W + Ws - Fy ))

= ( x x ( x x )

= kg

Factor of safety against sliding = ( Resistance to sliding ) / {(sqrt ( Fx2 + Fz

2 )) - Fp }

= /

= > Hence OK

CHECK FOR OVERTUNING

Height of centre of pipe from base , Hm = m

Overtuning moment due to pipe load = ( sqrt (Fx2 + Fz

2 ) x Hm ) + My

= kgm

Stabilizing moment due to block weight & passive pressure is given as= ((W - Fy ) x (L2 - x) )

= kgm

Factor of safety against overtuning = /

= > Hence OK

20

13550.73

6586.8

4259.98

697

6586.80

1.546

9.311

1.5

0.7

829

11292.32.40 2.00 ) + (

0.58

0.58

0.27

1455.375

2.0

13550.73

0.29

1455

Page 4: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

PERENCANAAN PIPA DAN EXPANSION SPOOL PADA PIPA PENYALUR SPM

ANCHOR BLOCK CALCULATION

x

I

0.80

1.11

m

1.10

0.90

0.41

0.221.20

X V *X

y

V*Y

0.80

=

0.70 1.5361.728

2 21.11

x1 y1 =3.2642 2

= 1.20 m=

2.40

1.44 1.20 0.15

x1

2.72

1.28V Y

3.264

y1

CHECK FOR BEARING CAPACITY

Ultimate Bearing capacity = t/m2

Actual bearing pressure = ( W - Fy ) / ( area of bottom anchor block )

= t/m2 < Ultimate Bearing capacity

REINFORCEMENT

Reinforcement Data :fy = t/m2 Dia. of bar = = cm2

fc' = t/m2 fy rebar = t/m2

Shear Check :

Effect. thickness of conc. block t = m

Shear Force Vu = tVu

Vc = 0.85 x 0.53 x fc'0.5 x B x d = t Vu < Vc OK !

- Concrete block rebar :

Ld = ( L1 - .075 ) = m

= of gross section area

b' = m (analysis per 1 m width)

= 0.15% * Ld * b' = cm2/m

Rebar : D16mm - mm

m0.412.72

x1 y12.72

1.20 m

0.725

L1

4.957

27.33

10.88

0.15% L2

150

Amin

Amin

Hence OK

0.73

3.46

2.4 D16mm 1.986

1

hf

H1

1750 42000

15

Page 5: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

PERENCANAAN PIPA DAN EXPANSION SPOOL PADA PIPA PENYALUR SPM

ANCHOR BLOCK CALCULATION

- Punching Shear :

Vc = bo * d * [ φ * ( 0.34 ) * sqrt( fc' ) ]

bo = 2 * [(a + d) + b ] = m

d = hf - cover = m

Vc = MN Vu = V = MN

Thickness of footing slab is OK

- Flexture Rebar for footing slab :

fmax = t/m2

s1 = (L2-L1)/2 = m

Mu = 1/2 * fmax * s12

= t.m

b' = m (analysis per 1 m width)

hf

6.05

==

fmax

s1

L2

0 0028

L1 + d

15.000

1.629

* [ 1 sqrt( 1 2 * R / ( 0 85 * f ' ) ) ]

0.030

L1

0.8

>

0.225

= 111 5470.85 * fc't/ 2

1

R =Mu

4.800

ρuse = As = ρuse * d * b' = cm2/m

Rebar : D16mm - mm

== 0.0028* [ 1 - sqrt( 1 - 2 Ru / ( 0.85 fc ) ) ]

0.013fy (MN/m2) fy 600 + fy

( β ) * 600 =0.75 *0.85 * fc' *

1.4=

= 111.547φ * b' * d2 fy

0.003401 7.653

200

ρmin = 0.003401 ρmax =

ct/m2 ρRu =

Page 6: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

BUCKLING AND COLLAPSEDURING INSTALLATION

Condition : Installation stage is assumed as the most critical time that buckling andcollapse could occur. At installation stage, there is no internal pressure tocounteract hydrostatic head. Pressure design is assumed as zero pressure, socalculation will produce a conservative result.

K = C

INPUT DATA:

Maximum Water Depth dmax 81.2ft:=

Minimum Water Depth dmin 0ft:= *

Seawater Density ρsw 64lb

ft3

:=

Maximum External Pressure Pe_max ρsw g⋅ dmax⋅:=

Pe_max 36.089 psi=

Minimum External Pressure Pe_min ρsw g⋅ dmin⋅:= *Pe_min 0=

Outside Diameter D 32in:=

Wall Thickness t 0.45in:=

Internal Diameter ID D 2t−:= *ID 31.1 in=

Material Grade : API 5L X‐52

Spesified Minimum Yield Stress SMYS 52000psi:=

Steel Density ρs 490.1lb

ft3

:=

Poissons Ratio υ 0.3:=

Modulus Elasticity E 3.01 107psi⋅:= *

Coefficient of Thermal Expansion α 1.17 105−

⋅ C1−

:= *Permissible Usage Factor ηxp 0.96:=

Permissible Usage Factor ηyp 0.82:=

Operating Data :

Design Pressure Pd 0psi:= *Contain Density ρcont 0lb ft

3−⋅:= *

Max. Operating Temp Ti 82.222C:=

Installation temp Tins 25C:=

Page 7: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

CALCULATIONS:

Axial Stress 

Axial Stress Due To End Effect σend Pd

π

4ID2

π D2ID2−( )⋅

4

⋅:= *

σend 0=

Axial Stress Due To Poisson Effect σpoissons υ−Pd ID⋅ Pe_min D⋅−

2t⎛⎜⎝

⎞⎟⎠

⋅:= *

σpoissons 0=

Longitudinal / axial strain byinternal pressure σp σend σpoissons+:= *

σp 0=

Thermal stress

σt E α⋅ Ti Tins−( )⋅:= * σt 2.015 104

× psi=

Total Axial Stress σtot σp σt+:= *σtot 2.015 10

4× psi=

Buckling Check :

Longitudinal StressDue To Axial Component σx_N σtot:=

σx_N 2.015 104

× psi=Longitudinal StressDue To Moment σx_M 0psi:= *Longitudinal Stress σx σx_N σx_M+:= *

σx 2.015 104

× psi=

Critical Longitudinal Stress (N Act Alone)

σxcrn_N SMYSD

t20<if

SMYS 1 0.001D

t20−⎛⎜

⎝⎞⎟⎠

−⎡⎢⎣

⎤⎥⎦

⋅ 20D

t< 100<if

:= *

σxcrn_N 4.934 104

× psi=

σxcr_M SMYS 1.35 0.0045D

t⋅−⎛⎜

⎝⎞⎟⎠

⋅:= * σxcr_M 5.356 104

× psi=

Critical Longitudinal Stress

σxcrσx_N

σxσxcrn_N⋅

σx_M

σxσxcr_M⋅+:= *

σxcr 4.934 104

× psi=

Hoop Stress σyPd Pe_max−

2 t⋅D⋅:=

σy 1.283− 103

× psi=

Page 8: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Hoop Stress Elastic σyE Et

D t−⎛⎜⎝

⎞⎟⎠

2⋅:= *

σyE 6.123 103

× psi=Critical Hoop Stress

σycr σyE σyE2

3SMYS⋅≤if

SMYS 11

3

2SMYS

3 σyE⋅⎛⎜⎝

⎞⎟⎠

2⋅−

⎡⎢⎣

⎤⎥⎦

⋅2

3

σyE

SMYS<if

:= *

σycr 6.123 103

× psi=

α 1300

D

t

σy

σycr⋅⎛

⎜⎜⎝

⎞⎟⎟⎠

+:= α 0.116=

ifσx

ηxp σxcr⋅⎛⎜⎝

⎞⎟⎠

ασy

ηyp σycr⋅+

⎡⎢⎣

⎤⎥⎦

1≤ "OK", "Need More Thickness",⎡⎢⎣

⎤⎥⎦

"OK"=

σx

ηxp σxcr⋅⎛⎜⎝

⎞⎟⎠

ασy

ηyp σycr⋅+

⎡⎢⎣

⎤⎥⎦

0.65= "OK, karena ratio nya < 1"

Propagation Buckling Check :

Ppr π1.15SMYSt

D t−⎛⎜⎝

⎞⎟⎠

2⋅:= * Ppr 38.219 psi=

Pe_max 36.089 psi= "OK, karena Ppr > Pe_max"

kPe_max

1.15πSMYS:= k 0.014=

Minimum Wall Thickness Due To Propagating Pressure

tnomk D⋅

1 k+:= tnom 0.437 in=

Collapse Pressure Check :

Cit

D⎛⎜⎝

⎞⎟⎠

32 E⋅

1 υ2

⎛⎜⎝

⎞⎟⎠

⋅:= * Ci 183.968 psi=

Constant of the quadratic equation are:

a 1:=

b 2SMYSt

D⋅ 1 0.03

D

t⋅+⎛⎜

⎝⎞⎟⎠Ci+⎡⎢

⎣⎤⎥⎦

−:= * b 2.039− 103

× psi=

c 2SMYSt

D⋅ Ci⋅:= * c 5.775 10

12×

lb2

ft2s4

⋅=

Det b2

4 a⋅ c⋅−:= Det 1.755 103

× psi=

Page 9: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

x1b− Det+

2 a⋅:= x1 1.897 10

3× psi=

x2b− Det−

2a:= x2 141.823 psi=

Critical Collapse Pressure Is The Least Positif Root, Therefore

Pcr x1 x1 x2<if

x2 otherwise

:=Pcr 141.823 psi=

Pe_max 36.089 psi=

if Pcr Pe_max≤ "more thickness", "OK",( ) "OK"=

Safety Factor AgainstPressure Collapse SF

Pcr

Pe_max:=

SF 3.93= "OK, karena safety yangdidapatkan sangat besar"

"Digunakan wall thickness setebal 0.45 inch. Hal ini dikarenakan, saat memakai wallthickness sebesar 0.336 inch (hasil dari perhitungan akibat pressure containment),struktur pipa tidak kuat terhadap buckling."

Page 10: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

FREE SPAN CALCULATIONDURING HYDROTEST PHASE

Equivalent ConditionPhase : HydrotestWave & Current Data : 1 year return period wave and current

pcflb

ft3

:=

INPUT DATA :

Pipeline Properties :

Outer Diameter

Wall Thickness

Corrosion Coating Thickness

Corrosion Coating Density

Concrete Coating Density

Content Density

Steel Density

Concrete Coating Thickness

Design Pressure

Structural Damping

Modulus Elasticity

SMYS

D 32in:=

t 0.45in:=

tcorr 0.125in:=

ρcorr 87.4pcf:=

ρcc 189.8pcf:=

ρcont 64pcf:=

ρst 490.1pcf:=

tcc 3in:=

Po 403.75psi:=

δ 0.126:=

E 3 107psi⋅:=

SMYS 52000psi:=

Environmental Parameter :

Hs 2.1m:=Significant Wave Height

Tp 11.01sec:=Spectral Peak Period

d 20m:=Water Depth

Ur 0.62ft sec1−

⋅:=Seabed Steady Current Velocity

Zr 2m:=

Page 11: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Seawater Density ρsw 64pcf:=

Kinematic Viscosity of Seawater ν 1.03 105−

⋅ ft2sec

1−⋅:=

Angle Between Wave Direction And Pipeline Direction  φwave 90deg:=

Angle Between Current Direction And Pipeline Direction φcurr 90deg:=

CALCULATION :

Effective Weight :

This section calculates provided weight by pipeline properties section

Total Outside Diameter Dcc D 2tcorr+ 2tcc+:=

Dcc 38.25in=

Internal Diameter ID D 2t−:=

ID 31.1 in=

Corrosion Coating Diameter Dcorr D 2tcorr+:=

Dcorr 32.25in=

Steel Weight Wst 0.25π D2

ID2

−( )⋅ ρst⋅:=

Wst 151.804lb

ft=

Corrosion Coating Weight Wcorr 0.25π Dcorr2

D2

−( )⋅ ρcorr⋅:=

Wcorr 7.657lb

ft=

Concrete Coating Weight Wcc 0.25π Dcc2

Dcorr2

−( )⋅ ρcc⋅:=

Wcc 437.889lb

ft=

Content Weight Wcont 0.25π ID2

⋅ ρcont⋅:=

Wcont 337.62lb

ft=

Buoyancy B 0.25π Dcc2

⋅ ρsw⋅:=

B 510.705lb

ft=

Page 12: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Effective Weight Weff Wst Wcorr+ Wcc+ Wcont+ B+:=

Weff 1.446 103

×lb

ft=

External Pressure Pe ρsw g⋅ d⋅:=

Pe 29.163 psi=

Pressure Difference ΔP Po Pe−:=

ΔP 374.587 psi=

Elastic Modulus EI Eπ64

D4

ID4

−( )⋅⎡⎢⎣

⎤⎥⎦

⋅:=

EI 3.721 1010

×lb ft

3⋅

s2

=

Inertia Iπ64

D4

ID4

−( )⋅⎡⎢⎣

⎤⎥⎦

:=

I 0.268 ft4

=

Hydrodynamic Force Acting On Pipeline :

Minimum Required Submerged Weight Calculation According To DNV RP E305

Natural Period Parameter AccordingTo DNV RP E305 Figure 2.2   Tn

d

g:=

Tn 1.428 s=

Tn

Tp0.13= φ

Tp

Hs:= φ 7.598

s

m0.5

=

Peakness Parameter γ 5 φ 3.6s

m0.5

≤if

1 φ 5s

m0.5

≥if

3.3 otherwise

:=

γ 1=

Page 13: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Assuming There's No Reduction For Directional And Spreading Factor R = 1, Us* = Us

Wave Induced Current Velocity Perpendicular To The Pipe According To DNV RP E305Figure 2.1

Us0.01 Hs⋅

Tn:= Us 0.015

m

s=

Zero Up Crossing Period According To DNV RP E305 Figure 2.2

Tu 1.35 Tp⋅:= Tu 14.864 s=

From The Soil Parameter Data

Roughness Zo 5.21 106−

⋅ m:=

A1Dcc

Zo:= A1 1.865 10

5×=

B1Zo

Dcc:= B1 5.363 10

6−×=

Average Velocity To Reference Velocity Ratio

Ud1

lnZr

Zo1+⎛⎜

⎝⎞⎟⎠

1 B1+( ) ln A1 1+( )⋅ 1−⎡⎣ ⎤⎦⋅⎡⎢⎢⎣

⎤⎥⎥⎦

Ur⋅:=

Ud 0.164m

s=

Significant Acceleration As 2πUs

Tu:=

As 6.216 103−

×m

s2

=

Using Simplified Static Stability Method According To DNV RP E305

Current To Wave Velocity Ratio MUd

Us:= M 11.13=

Keulegan Carpenter Number KCUs Tu⋅Dcc

:= KC 0.225=

REUd Us+( ) Dcc⋅

ν:= RE 1.811 10

5×=

Page 14: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Hidrodynamic Force Coefficients

Drag Coefficient CD 1.2 RE 3 105−

⋅< M 0.8≥∧if

0.7 otherwise

:=

CD 0.7=

Lift Coefficient CL 0.9:=

Inertia Coefficient CM 3.29:=

Hydrodynamic Forces

Phase Angle Range i 0 90..:=

θi i deg⋅:=

Drag Force FD θ( ) 0.5ρswg

Dcc⋅ CD⋅ Us cos θ( )⋅ Ud+( ) 2⋅:=

Inertia Force FI θ( ) 0.25ρswg

π⋅ Dcc2

⋅ CM⋅ As⋅ sin θ( )⋅:=

Fw max FD θ( ) FI θ( )+( ):= Fw 1.711lb

ft= Fh Fw

2:=

0 20 40 60 80 1001

1.5

2

2.5

3

FD θ( ) FI θ( )+

θdeg

Page 15: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Dynamic Free Span :

Stability Number Ks2 Weff⋅ δ⋅

ρsw Dcc2

⋅:=

Ks 0.56=

Weff value can be changed depend on operation/installation phase (full/empty) + addedmass

In Line Analysis

Reduced Velocity According To DNV 1981 Graphic A.3 Vr 1.85:=

Note:

Con1 "In Line Oscillation":=

Con2 "Cross Flow Oscillation":=

Type of Oscillation Otype Con1 1 Vr< 3.5< Ks 1.8<∧if

Con2 otherwise

:=

Otype "In Line Oscillation"=

Strouhal Number According To DNV 1981 Graphic A.2 St 0.2:=

Vortex Shedding Frequency fvSt Ud Us+( )⋅

Dcc:=

fv 0.037Hz=

Condition At Both Ends of Span (Pinned To Pinned) C1 9.87:=

Critical Pipe Span Length LcrC1

EI

Weff⋅ Dcc⋅

Vr

Us Ud+⋅:=

Lcr 86.372m=

Cross Flow Analysis

Reduced Velocity (Onset) According To DNV 1981 Graphic A.5 VrC1 4.9:=

LcrC1C1

EI

Weff⋅ Dcc⋅

VrC1

Us Ud+⋅:=

LcrC1 140.568m=

Page 16: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Reduced Velocity (Peak) According To DNV 1981 Graphic A.5 VrC2 5.8:=

LcrC2C1

EI

Weff⋅ Dcc⋅

VrC2

Us Ud+⋅:=

LcrC2 152.934m=

Static Free Span :

C2 8:=

Hoop Stress σhPo Pe− D⋅

2 t⋅:=

σh 1.332 104

× psi=

Yield Requirement

j 1 100..:= Lj j m⋅:=

Longitudinal Stress (End Cap Effect) σepσh2

:=

σep 6.659 103

× psi=

Total Longitudinal Stress

σx L( ) Weff B−( ) 2 Fh+⎡⎣

⎤⎦ L

2⋅ D⋅ g⋅

2 C2⋅ I⋅

⎡⎢⎣

⎤⎥⎦

σep+⎡⎢⎣

⎤⎥⎦

:=

0 20 40 60 80 1000

1 .105

2 .105

3 .105

4 .105

5 .105

σx L( )

psi

L

m

Page 17: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Allowable Stress (%)

Limiting Longitudinal Stress σxa L( ) 0.8SMYS:=

σxa L( ) 4.16 104

× psi=

Lcrit L( ) L 1m←

Lcrit L 1m−←

L L 1m+←

σx L 1m−( ) σxa L( )<while

Lcrit

:=

Lcrit L( ) 28m=

von Mises σe σx Lcrit L( )( ) 2 σh2

+:=

σe 4.289 104

× psi=

Limiting Equivalent Stress σxe L( ) 0.9SMYS:=

σxe L( ) 4.68 104

× psi=

if σe σxe L( )≤ "OK!", "Reduce The Length of Allowable Free Span",( ) "OK!"=

SUMMARY :

Critical Pipe Span Due To VIV In‐Line (Dynamic) Lcr 86.372m=

Critical Pipe Span Due To Cross‐Flow (Dynamic) LcrC1 140.568m=

Critical Pipe Span Due To Static Analysis Lcrit L( ) 28m=

Page 18: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

FREE SPAN CALCULATIONDURING INSTALLATION PHASE

Equivalent ConditionPhase : InstallationWave & Current Data : 1 year return period wave and current

pcflb

ft3

:=

INPUT DATA :

Pipeline Properties :

Outer Diameter

Wall Thickness

Corrosion Coating Thickness

Corrosion Coating Density

Concrete Coating Density

Content Density

Steel Density

Concrete Coating Thickness

Design Pressure

Structural Damping

Modulus Elasticity

SMYS

D 32in:=

t 0.45in:=

tcorr 0.125in:=

ρcorr 87.4pcf:=

ρcc 189.8pcf:=

ρcont 0pcf:=

ρst 490.1pcf:=

tcc 3in:=

Po 0psi:=

δ 0.126:=

E 3 107psi⋅:=

SMYS 52000psi:=

Environmental Parameter :

Hs 2.1m:=Significant Wave Height

Tp 11.01sec:=Spectral Peak Period

d 20m:=Water Depth

Ur 0.62ft sec1−

⋅:=Seabed Steady Current Velocity

Zr 2m:=

Page 19: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Seawater Density ρsw 64pcf:=

Kinematic Viscosity of Seawater ν 1.03 105−

⋅ ft2sec

1−⋅:=

Angle Between Wave Direction And Pipeline Direction  φwave 90deg:=

Angle Between Current Direction And Pipeline Direction φcurr 90deg:=

CALCULATION :

Effective Weight :

This section calculates provided weight by pipeline properties section

Total Outside Diameter Dcc D 2tcorr+ 2tcc+:=

Dcc 38.25in=

Internal Diameter ID D 2t−:=

ID 31.1 in=

Corrosion Coating Diameter Dcorr D 2tcorr+:=

Dcorr 32.25in=

Steel Weight Wst 0.25π D2

ID2

−( )⋅ ρst⋅:=

Wst 151.804lb

ft=

Corrosion Coating Weight Wcorr 0.25π Dcorr2

D2

−( )⋅ ρcorr⋅:=

Wcorr 7.657lb

ft=

Concrete Coating Weight Wcc 0.25π Dcc2

Dcorr2

−( )⋅ ρcc⋅:=

Wcc 437.889lb

ft=

Content Weight Wcont 0.25π ID2

⋅ ρcont⋅:=

Wcont 0=

Buoyancy B 0.25π Dcc2

⋅ ρsw⋅:=

B 510.705lb

ft=

Page 20: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Effective Weight Weff Wst Wcorr+ Wcc+ Wcont+ B+:=

Weff 1.108 103

×lb

ft=

External Pressure Pe ρsw g⋅ d⋅:=

Pe 29.163 psi=

Pressure Difference ΔP Po Pe−:=

ΔP 29.163 psi=

Elastic Modulus EI Eπ64

D4

ID4

−( )⋅⎡⎢⎣

⎤⎥⎦

⋅:=

EI 3.721 1010

×lb ft

3⋅

s2

=

Inertia Iπ64

D4

ID4

−( )⋅⎡⎢⎣

⎤⎥⎦

:=

I 0.268 ft4

=

Hydrodynamic Force Acting On Pipeline :

Minimum Required Submerged Weight Calculation According To DNV RP E305

Natural Period Parameter AccordingTo DNV RP E305 Figure 2.2   Tn

d

g:=

Tn 1.428 s=

Tn

Tp0.13= φ

Tp

Hs:= φ 7.598

s

m0.5

=

Peakness Parameter γ 5 φ 3.6s

m0.5

≤if

1 φ 5s

m0.5

≥if

3.3 otherwise

:=

γ 1=

Page 21: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Assuming There's No Reduction For Directional And Spreading Factor R = 1, Us* = Us

Wave Induced Current Velocity Perpendicular To The Pipe According To DNV RP E305Figure 2.1

Us0.01 Hs⋅

Tn:= Us 0.015

m

s=

Zero Up Crossing Period According To DNV RP E305 Figure 2.2

Tu 1.35 Tp⋅:= Tu 14.864 s=

From The Soil Parameter Data

Roughness Zo 5.21 106−

⋅ m:=

A1Dcc

Zo:= A1 1.865 10

5×=

B1Zo

Dcc:= B1 5.363 10

6−×=

Average Velocity To Reference Velocity Ratio

Ud1

lnZr

Zo1+⎛⎜

⎝⎞⎟⎠

1 B1+( ) ln A1 1+( )⋅ 1−⎡⎣ ⎤⎦⋅⎡⎢⎢⎣

⎤⎥⎥⎦

Ur⋅:=

Ud 0.164m

s=

Significant Acceleration As 2πUs

Tu:=

As 6.216 103−

×m

s2

=

Using Simplified Static Stability Method According To DNV RP E305

Current To Wave Velocity Ratio MUd

Us:= M 11.13=

Keulegan Carpenter Number KCUs Tu⋅Dcc

:= KC 0.225=

REUd Us+( ) Dcc⋅

ν:= RE 1.811 10

5×=

Page 22: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Hidrodynamic Force Coefficients

Drag Coefficient CD 1.2 RE 3 105−

⋅< M 0.8≥∧if

0.7 otherwise

:=

CD 0.7=

Lift Coefficient CL 0.9:=

Inertia Coefficient CM 3.29:=

Hydrodynamic Forces

Phase Angle Range i 0 90..:=

θi i deg⋅:=

Drag Force FD θ( ) 0.5ρswg

Dcc⋅ CD⋅ Us cos θ( )⋅ Ud+( ) 2⋅:=

Inertia Force FI θ( ) 0.25ρswg

π⋅ Dcc2

⋅ CM⋅ As⋅ sin θ( )⋅:=

Fw max FD θ( ) FI θ( )+( ):= Fw 1.711lb

ft= Fh Fw

2:=

0 20 40 60 80 1001

1.5

2

2.5

3

FD θ( ) FI θ( )+kg

m

θdeg

Page 23: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Dynamic Free Span :

Stability Number Ks2 Weff⋅ δ⋅

ρsw Dcc2

⋅:=

Ks 0.429=

Weff value can be changed depend on operation/installation phase (full/empty) + addedmass

In Line Analysis

Reduced Velocity According To DNV 1981 Graphic A.3 Vr 1.7:=

Note:

Con1 "In Line Oscillation":=

Con2 "Cross Flow Oscillation":=

Type of Oscillation Otype Con1 1 Vr< 3.5< Ks 1.8<∧if

Con2 otherwise

:=

Otype "In Line Oscillation"=

Strouhal Number According To DNV 1981 Graphic A.2 St 0.2:=

Vortex Shedding Frequency fvSt Ud Us+( )⋅

Dcc:=

fv 0.037Hz=

Condition At Both Ends of Span (Pinned To Pinned) C1 9.87:=

Critical Pipe Span Length LcrC1

EI

Weff⋅ Dcc⋅

Vr

Us Ud+⋅:=

Lcr 88.489m=

Cross Flow Analysis

Reduced Velocity (Onset) According To DNV 1981 Graphic A.5 VrC1 4.9:=

LcrC1C1

EI

Weff⋅ Dcc⋅

VrC1

Us Ud+⋅:=

LcrC1 150.233m=

Page 24: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Reduced Velocity (Peak) According To DNV 1981 Graphic A.5 VrC2 5.8:=

LcrC2C1

EI

Weff⋅ Dcc⋅

VrC2

Us Ud+⋅:=

LcrC2 163.448m=

Static Free Span :

C2 8:=

Hoop Stress σhPo Pe− D⋅

2 t⋅:=

σh 1.037 103

× psi=

Yield Requirement

j 1 100..:= Lj j m⋅:=

Longitudinal Stress (End Cap Effect) σepσh2

:=

σep 518.454 psi=

Total Longitudinal Stress

σx L( ) Weff B−( ) 2 Fh+⎡⎣

⎤⎦ L

2⋅ D⋅ g⋅

2 C2⋅ I⋅

⎡⎢⎣

⎤⎥⎦

σep+⎡⎢⎣

⎤⎥⎦

:=

0 20 40 60 80 1000

5.5 .104

1.1 .105

1.65 .105

2.2 .105

2.75 .105

σx L( )

psi

L

m

Page 25: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Allowable Stress (%)

Limiting Longitudinal Stress σxa L( ) 0.8SMYS:=

σxa L( ) 4.16 104

× psi=

Lcrit L( ) L 1m←

Lcrit L 1m−←

L L 1m+←

σx L 1m−( ) σxa L( )<while

Lcrit

:=

Lcrit L( ) 38m=

von Mises σe σx Lcrit L( )( ) 2 σh2

+:=

σe 4.068 104

× psi=

Limiting Equivalent Stress σxe L( ) 0.9SMYS:=

σxe L( ) 4.68 104

× psi=

if σe σxe L( )≤ "OK!", "Reduce The Length of Allowable Free Span",( ) "OK!"=

SUMMARY :

Critical Pipe Span Due To VIV In‐Line (Dynamic) Lcr 88.489m=

Critical Pipe Span Due To Cross‐Flow (Dynamic) LcrC1 150.233m=

Critical Pipe Span Due To Static Analysis Lcrit L( ) 38m=

Page 26: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

FREE SPAN CALCULATIONDURING OPERATION PHASE

Equivalent ConditionPhase : OperationWave & Current Data : 100 year return period wave and current

pcflb

ft3

:=

INPUT DATA :

Pipeline Properties :

Outer Diameter

Wall Thickness

Corrosion Coating Thickness

Corrosion Coating Density

Concrete Coating Density

Content Density

Steel Density

Concrete Coating Thickness

Design Pressure

Structural Damping

Modulus Elasticity

SMYS

D 32in:=

t 0.45in:=

tcorr 0.125in:=

ρcorr 87.4pcf:=

ρcc 189.8pcf:=

ρcont 54pcf:=

ρst 490.1pcf:=

tcc 3in:=

Po 323psi:=

δ 0.126:=

E 3 107psi⋅:=

SMYS 52000psi:=

Environmental Parameter :

Hs 11.2m:=Significant Wave Height

Tp 15.2sec:=Spectral Peak Period

d 20m:=Water Depth

Ur 1.27ft sec1−

⋅:=Seabed Steady Current Velocity

Zr 2m:=

Page 27: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Seawater Density ρsw 64pcf:=

Kinematic Viscosity of Seawater ν 1.03 105−

⋅ ft2sec

1−⋅:=

Angle Between Wave Direction And Pipeline Direction  φwave 90deg:=

Angle Between Current Direction And Pipeline Direction φcurr 90deg:=

CALCULATION :

Effective Weight :

This section calculates provided weight by pipeline properties section

Total Outside Diameter Dcc D 2tcorr+ 2tcc+:=

Dcc 38.25in=

Internal Diameter ID D 2t−:=

ID 31.1 in=

Corrosion Coating Diameter Dcorr D 2tcorr+:=

Dcorr 32.25in=

Steel Weight Wst 0.25π D2

ID2

−( )⋅ ρst⋅:=

Wst 151.804lb

ft=

Corrosion Coating Weight Wcorr 0.25π Dcorr2

D2

−( )⋅ ρcorr⋅:=

Wcorr 7.657lb

ft=

Concrete Coating Weight Wcc 0.25π Dcc2

Dcorr2

−( )⋅ ρcc⋅:=

Wcc 437.889lb

ft=

Content Weight Wcont 0.25π ID2

⋅ ρcont⋅:=

Wcont 284.867lb

ft=

Buoyancy B 0.25π Dcc2

⋅ ρsw⋅:=

B 510.705lb

ft=

Effective Weight Weff Wst Wcorr+ Wcc+ Wcont+ B+:=

Weff 1.393 103

×lb

ft=

Page 28: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

External Pressure Pe ρsw g⋅ d⋅:=

Pe 29.163 psi=

Pressure Difference ΔP Po Pe−:=

ΔP 293.837 psi=

Elastic Modulus EI Eπ64

D4

ID4

−( )⋅⎡⎢⎣

⎤⎥⎦

⋅:=

EI 3.721 1010

×lb ft

3⋅

s2

=

Inertia Iπ64

D4

ID4

−( )⋅⎡⎢⎣

⎤⎥⎦

:=

I 0.268 ft4

=Hydrodynamic Force Acting On Pipeline :

Minimum Required Submerged Weight Calculation According To DNV RP E305

Natural Period Parameter AccordingTo DNV RP E305 Figure 2.2   Tn

d

g:=

Tn 1.428 s=

Tn

Tp0.094= φ

Tp

Hs:= φ 4.542

s

m0.5

=

Peakness Parameter γ 5 φ 3.6s

m0.5

≤if

1 φ 5s

m0.5

≥if

3.3 otherwise

:=

γ 3.3=

Assuming There's No Reduction For Directional And Spreading Factor R = 1, Us* = Us

Wave Induced Current Velocity Perpendicular To The Pipe According To DNV RP E305Figure 2.1

Us0.02 Hs⋅

Tn:= Us 0.157

m

s=

Page 29: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Zero Up Crossing Period According To DNV RP E305 Figure 2.2

Tu 1.25 Tp⋅:= Tu 19 s=

From The Soil Parameter Data

Roughness Zo 5.21 106−

⋅ m:=

A1Dcc

Zo:= A1 1.865 10

5×=

B1Zo

Dcc:= B1 5.363 10

6−×=

Average Velocity To Reference Velocity Ratio

Ud1

lnZr

Zo1+⎛⎜

⎝⎞⎟⎠

1 B1+( ) ln A1 1+( )⋅ 1−⎡⎣ ⎤⎦⋅⎡⎢⎢⎣

⎤⎥⎥⎦

Ur⋅:=

Ud 0.335m

s=

Significant Acceleration As 2πUs

Tu:=

As 0.052m

s2

=

Using Simplified Static Stability Method According To DNV RP E305

Current To Wave Velocity Ratio MUd

Us:= M 2.137=

Keulegan Carpenter Number KCUs Tu⋅Dcc

:= KC 3.067=

REUd Us+( ) Dcc⋅

ν:= RE 4.996 10

5×=

Hidrodynamic Force Coefficients

Drag Coefficient CD 1.2 RE 3 105−

⋅< M 0.8≥∧if

0.7 otherwise

:=

CD 0.7=

Lift Coefficient CL 0.9:=

Inertia Coefficient CM 3.29:=

Page 30: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Hydrodynamic Forces

Phase Angle Range i 0 90..:=

θi i deg⋅:=

Drag Force FD θ( ) 0.5ρswg

Dcc⋅ CD⋅ Us cos θ( )⋅ Ud+( ) 2⋅:=

Inertia Force FI θ( ) 0.25ρswg

π⋅ Dcc2

⋅ CM⋅ As⋅ sin θ( )⋅:=

Fw max FD θ( ) FI θ( )+( ):= Fw 11.97lb

ft= Fh Fw

2:=

0 20 40 60 80 1005

10

15

20

FD θ( ) FI θ( )+

θdeg

Dynamic Free Span :

Stability Number Ks2 Weff⋅ δ⋅

ρsw Dcc2

⋅:=

Ks 0.54=

Weff value can be changed depend on operation/installation phase (full/empty) + addedmass

Page 31: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

In Line Analysis

Reduced Velocity According To DNV 1981 Graphic A.3 Vr 1.7:=

Note:

Con1 "In Line Oscillation":=

Con2 "Cross Flow Oscillation":=

Type of Oscillation Otype Con1 1 Vr< 3.5< Ks 1.8<∧if

Con2 otherwise

:=

Otype "In Line Oscillation"=

Strouhal Number According To DNV 1981 Graphic A.2 St 0.225:=

Vortex Shedding Frequency fvSt Ud Us+( )⋅

Dcc:=

fv 0.114Hz=

Condition At Both Ends of Span (Pinned To Pinned) C1 9.87:=

Critical Pipe Span Length LcrC1

EI

Weff⋅ Dcc⋅

Vr

Us Ud+⋅:=

Lcr 50.313m=

Cross Flow Analysis

Reduced Velocity (Onset) According To DNV 1981 Graphic A.5 VrC1 4.7:=

LcrC1C1

EI

Weff⋅ Dcc⋅

VrC1

Us Ud+⋅:=

LcrC1 83.658m=

Reduced Velocity (Peak) According To DNV 1981 Graphic A.5 VrC2 5.75:=

LcrC2C1

EI

Weff⋅ Dcc⋅

VrC2

Us Ud+⋅:=

LcrC2 92.532m=

Page 32: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Static Free Span :

C2 8:=

Hoop Stress σhPo Pe− D⋅

2 t⋅:=

σh 1.045 104

× psi=

Yield Requirement

j 1 100..:= Lj j m⋅:=

Longitudinal Stress (End Cap Effect) σepσh2

:=

σep 5.224 103

× psi=

Total Longitudinal Stress

σx L( ) Weff B−( ) 2 Fh+⎡⎣

⎤⎦ L

2⋅ D⋅ g⋅

2 C2⋅ I⋅

⎡⎢⎣

⎤⎥⎦

σep+⎡⎢⎣

⎤⎥⎦

:=

0 20 40 60 80 1000

1 .109

2 .109

3 .109

σx L( )

L

m

Allowable Stress (%)

Limiting Longitudinal Stress σxa L( ) 0.8SMYS:=

σxa L( ) 4.16 104

× psi=

Page 33: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Lcrit L( ) L 1m←

Lcrit L 1m−←

L L 1m+←

σx L 1m−( ) σxa L( )<while

Lcrit

:=

Lcrit L( ) 29m=

von Mises σe σx Lcrit L( )( ) 2 σh2

+:=

σe 4.111 104

× psi=

Limiting Equivalent Stress σxe L( ) 0.9SMYS:=

σxe L( ) 4.68 104

× psi=

if σe σxe L( )≤ "OK!", "Reduce The Length of Allowable Free Span",( ) "OK!"=

SUMMARY :

Critical Pipe Span Due To VIV In‐Line (Dynamic) Lcr 50.313m=

Critical Pipe Span Due To Cross‐Flow (Dynamic) LcrC1 83.658m=

Critical Pipe Span Due To Static Analysis Lcrit L( ) 29m=

Page 34: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

ON-BOTTOM STABILITY CALCULATIONDURING INSTALLATION PHASE

Equivalent ConditionPhase : InstallationWave & Current Data : 1 year return period wave and current

pcflb

ft3

:=

INPUT DATA :

Pipeline Properties :

Outer Diameter

Wall Thickness

Corrosion Coating Thickness

Corrosion Coating Density

Concrete Coating Density

Content Density

Steel Density

Concrete Coating Thickness

D 32in:=

t 0.45in:=

tcorr 0.125in:=

ρcorr 87.4pcf:=

ρcc 189.8pcf:=

ρcont 0pcf:=

ρst 490.1pcf:=

tcc 3in:=

Environmental Parameter :Hs 2.2m:=Significant Wave HeightTp 11.01sec:=Spectral Peak Periodd 20m:=Water DepthUr 0.62ft sec

1−⋅:=Seabed Steady Current Velocity

Zr 2m:=

Seawater Density ρsw 64pcf:=

Kinematic Viscosity of Seawater ν 1.03 10 5−⋅ ft

2sec

1−⋅:=

Angle Between Wave Direction And Pipeline Direction  φwave 90deg:=

Angle Between Current Direction And Pipeline Direction φcurr 90deg:=

Page 35: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

CALCULATIONS :

Submerged Weight :

This section calculates provided weight by pipeline properties section

Total Outside Diameter Dcc D 2tcorr+ 2tcc+:=

Dcc 38.25 in=

Internal Diameter ID D 2t−:=

ID 31.1 in=

Corrosion Coating Diameter Dcorr D 2tcorr+:=

Dcorr 32.25 in=

Steel Weight Wst 0.25π D2

ID2

−( )⋅ ρst⋅:=

Wst 225.91kg

m=

Corrosion Coating Weight Wcorr 0.25π Dcorr2

D2

−( )⋅ ρcorr⋅:=

Wcorr 11.395kg

m=

Concrete Coating Weight Wcc 0.25π Dcc2

Dcorr2

−( )⋅ ρcc⋅:=

Wcc 651.651kg

m=

Content Weight Wcont 0.25π ID2

⋅ ρcont⋅:=

Wcont 0=

Buoyancy B 0.25π Dcc2

⋅ ρsw⋅:=

B 760.013kg

m=

Submerged Weight Wsub Wst Wcorr+ Wcc+ Wcont+ B−:=

Wsub 128.942kg

m=

Vertical Stability :

Specific Gravity VSWsub B+

B:= VS 1.1≥

VS 1.17=

if VS 1.1< "Need More Thickness", "OK!",( ) "OK!"=

Page 36: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Hydrodynamic Force Acting On Pipeline :

Minimum Required Submerged Weight Calculation According To DNV RP E305

Natural Period Parameter AccordingTo DNV RP E305 Figure 2.2   Tn

d

g:=

Tn 1.428 s=

Tn

Tp0.13= φ

Tp

Hs:= φ 7.423

s

m0.5

=

Peakness Parameter γ 5 φ 3.6s

m0.5

≤if

1 φ 5s

m0.5

≥if

3.3 otherwise

:=

γ 1=

Assuming There's No Reduction For Directional And Spreading Factor R = 1, Us* = Us

Wave Induced Current Velocity Perpendicular To The Pipe According To DNV RP E305 Figure 2.1

Us0.01 Hs⋅

Tn:= Us 0.015

m

s=

Zero Up Crossing Period According To DNV RP E305 Figure 2.2

Tu 1.35 Tp⋅:= Tu 14.864 s=

From The Soil Parameter Data

Roughness Zo 5.21 10 6−⋅ m:=

A1Dcc

Zo:= A1 1.865 105

×=

B1Zo

Dcc:= B1 5.363 10 6−

×=

Average Velocity To Reference Velocity Ratio

Ud1

lnZr

Zo1+⎛⎜

⎝⎞⎟⎠

1 B1+( ) ln A1 1+( )⋅ 1−⎡⎣ ⎤⎦⋅⎡⎢⎢⎣

⎤⎥⎥⎦

Ur⋅:=

Ud 0.164m

s=

Significant Acceleration As 2πUs

Tu:=

Page 37: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

As 6.512 10 3−×

m

s2

=

Using Simplified Static Stability Method According To DNV RP E305

Current To Wave Velocity Ratio MUd

Us:= M 10.624=

Keulegan Carpenter Number KCUs Tu⋅

Dcc:= KC 0.236=

REUd Us+( ) Dcc⋅

ν:= RE 1.818 105

×=

Hidrodynamic Force Coefficients

Drag Coefficient CD 1.2 RE 3 10 5−⋅< M 0.8≥∧if

0.7 otherwise

:=

CD 0.7=

Lift Coefficient CL 0.9:=

Inertia Coefficient CM 3.29:=

Soil Friction Coefficient

Soil Type: Sand

μ 0.7:=

Calibration Factor According To DNV RP E305 Figure 5.12

M 10.624=

KC 0.236=

Fw 1:=

Hydrodynamic Forces vs Required Submerged Weight :

Phase Angle Range i 0 90..:=

θ i i deg⋅:=

Lift Force FL θ( ) 0.5ρsw

gDcc⋅ CL⋅ Us cos θ( )⋅ Ud+( )2⋅:=

Drag Force FD θ( ) 0.5ρsw

gDcc⋅ CD⋅ Us cos θ( )⋅ Ud+( )2⋅:=

Inertia Force FI θ( ) 0.25ρsw

gπ⋅ Dcc

2⋅ CM⋅ As⋅ sin θ( )⋅:=

Required Submerged Weight Ws θ( ) FwFD θ( ) FI θ( )+ μ FL θ( )⋅+

μ⎛⎜⎝

⎞⎟⎠

⋅:=

Page 38: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

0 20 40 60 80 1002

2.5

3

3.5

Ws θ( )lb

ft

θdeg

Wreq max Ws θ( )( ):=

Wreq 5.007kg

m= Wsub 128.942

kg

m=

if Wsub Wreq≤ "Need More Thickness", "OK!",( ) "OK!"=

Safety Factor For Submerged Weight Due To Requirement Weight

SFwWsub

Wreq:= SFw 25.752=

Page 39: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

ON-BOTTOM STABILITY CALCULATIONDURING OPERATION CORRODED PHASE

Equivalent ConditionPhase : Operation CorrodedWave & Current Data : 100 year return period wave and current

pcflb

ft3

:=

INPUT DATA :

Pipeline Properties :

Outer Diameter

Wall Thickness

Corrosion Coating Thickness

Corrosion Coating Density

Concrete Coating Density

Content Density

Steel Density

Concrete Coating Thickness

Corrosion Allowance

D 32in:=

t 0.45in:=

tcorr 0.125in:=

ρcorr 87.4pcf:=

ρcc 189.8pcf:=

ρcont 54pcf:=

ρst 490.1pcf:=

tcc 3in:=

ca 0.125in:=

CA 0.7 ca⋅:=

Environmental Parameter :Hs 11.2m:=Significant Wave HeightTp 15.2sec:=Spectral Peak Periodd 20m:=Water Depth

Seabed Steady Current Velocity Ur 1.27ft sec1−

⋅:=

Zr 2m:=

Seawater Density ρsw 64pcf:=

Kinematic Viscosity of Seawater ν 1.03 10 5−⋅ ft

2sec

1−⋅:=

Angle Between Wave Direction And Pipeline Direction  φwave 90deg:=

Angle Between Current Direction And Pipeline Direction φcurr 90deg:=

Page 40: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

CALCULATION :

Submerged Weight :

This section calculates provided weight by pipeline properties section

Total Outside Diameter Dcc D 2tcorr+ 2tcc+:=Dcc 38.25 in=

Internal Diameter ID D 2t− 2 CA⋅+:=ID 31.275 in=

Corrosion Coating Diameter Dcorr D 2tcorr+:=Dcorr 32.25 in=

Steel Weight Wst 0.25π D2

ID2

−( )⋅ ρst⋅:=

Wst 182.487kg

m=

Corrosion Coating Weight Wcorr 0.25π Dcorr2

D2

−( )⋅ ρcorr⋅:=

Wcorr 11.395kg

m=

Concrete Coating Weight Wcc 0.25π Dcc2

Dcorr2

−( )⋅ ρcc⋅:=

Wcc 651.651kg

m=

Content Weight Wcont 0.25π ID2

⋅ ρcont⋅:=

Wcont 428.713kg

m=

Buoyancy B 0.25π Dcc2

⋅ ρsw⋅:=

B 760.013kg

m=

Submerged Weight Wsub Wst Wcorr+ Wcc+ Wcont+ B−:=

Wsub 514.233kg

m=

Vertical Stability :

Specific Gravity VSWsub B+

B:= VS 1.1≥

VS 1.677=

if VS 1.1< "Need More Thickness", "OK!",( ) "OK!"=

Page 41: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Hydrodynamic Force Acting On Pipeline :

Minimum Required Submerged Weight Calculation According To DNV RP E305

Natural Period Parameter AccordingTo DNV RP E305 Figure 2.2 Tn

d

g:=

Tn 1.428 s=

Tn

Tp0.094= φ

Tp

Hs:= φ 4.542

s

m0.5

=

Peakness Parameter γ 5 φ 3.6s

m0.5

≤if

1 φ 5s

m0.5

≥if

3.3 otherwise

:=

γ 3.3=

Assuming There's No Reduction For Directional And Spreading Factor R = 1, Us* = Us

Wave Induced Current Velocity Perpendicular To The Pipe According To DNV RP E305 Figure 2.1

Us0.02 Hs⋅

Tn:= Us 0.157

m

s=

Zero Up Crossing Period According To DNV RP E305 Figure 2.2

Tu 1.25 Tp⋅:= Tu 19 s=

From The Soil Parameter Data

Roughness Zo 5.21 10 6−⋅ m:=

A1Dcc

Zo:= A1 1.865 105

×=

B1Zo

Dcc:= B1 5.363 10 6−

×=

Average Velocity To Reference Velocity Ratio

Ud1

lnZr

Zo1+⎛⎜

⎝⎞⎟⎠

1 B1+( ) ln A1 1+( )⋅ 1−⎡⎣ ⎤⎦⋅⎡⎢⎢⎣

⎤⎥⎥⎦

Ur⋅:=

Ud 0.335m

s=

Page 42: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Significant Acceleration As 2πUs

Tu:=

As 0.052m

s2

=

Using Simplified Static Stability Method According To DNV RP E305

Current To Wave Velocity Ratio MUd

Us:= M 2.137=

Keulegan Carpenter Number KCUs Tu⋅

Dcc:= KC 3.067=

REUd Us+( ) Dcc⋅

ν:= RE 4.996 105

×=

Hidrodynamic Force Coefficients

Drag Coefficient CD 1.2 RE 3 10 5−⋅< M 0.8≥∧if

0.7 otherwise

:=

CD 0.7=

Lift Coefficient CL 0.9:=

Inertia Coefficient CM 3.29:=

Soil Friction Coefficient According To Soil Properties Data

Soil Type: Sand

μ 0.7:=

Calibration Factor According To DNV RP E305 Figure 5.12

M 2.137=

KC 3.067=

Fw 1:=

Hydrodynamic Forces And Required Submerged Weight

Phase Angle Range i 0 90..:=

θ i i deg⋅:=

Lift Force FL θ( ) 0.5ρsw

gDcc⋅ CL⋅ Us cos θ( )⋅ Ud+( )2⋅:=

Drag Force FD θ( ) 0.5ρsw

gDcc⋅ CD⋅ Us cos θ( )⋅ Ud+( )2⋅:=

Inertia Force FI θ( ) 0.25ρsw

gπ⋅ Dcc

2⋅ CM⋅ As⋅ sin θ( )⋅:=

Page 43: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Required Submerged Weight Ws θ( ) FwFD θ( ) FI θ( )+ μ FL θ( )⋅+

μ⎛⎜⎝

⎞⎟⎠

⋅:=

Plot Submerged Weight vs Phase Angle

0 20 40 60 80 10014

16

18

20

22

24

Ws θ( )lb

ft

θdeg

Wreq max Ws θ( )( ):=

Wreq 32.925kg

m= Wsub 514.233

kg

m=

if Wsub Wreq≤ "Need More Thickness", "OK!",( ) "OK!"=

Safety Factor For Submerged Weight Due To Requirement Weight

SFwWsub

Wreq:= SFw 15.618=

Page 44: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

ON-BOTTOM STABILITY CALCULATIONDURING OPERATION PHASE

Equivalent ConditionPhase : OperationWave & Current Data : 100 year return period wave and current

pcflb

ft3

:=

INPUT DATA :

Pipeline Properties :

Outer Diameter

Wall Thickness

Corrosion Coating Thickness

Corrosion Coating Density

Concrete Coating Density

Content Density

Steel Density

Concrete Coating Thickness

D 32in:=

t 0.45in:=

tcorr 0.125in:=

ρcorr 87.4pcf:=

ρcc 189.8pcf:=

ρcont 54pcf:=

ρst 490.1pcf:=

tcc 3in:=

Environmental Parameter :Hs 11.2m:=Significant Wave HeightTp 15.2sec:=Spectral Peak Periodd 20m:=Water DepthUr 1.27ft sec

1−⋅:=Seabed Steady Current Velocity

Zr 2m:=

Seawater Density ρsw 64pcf:=

Kinematic Viscosity of Seawater ν 1.03 10 5−⋅ ft

2sec

1−⋅:=

Angle Between Wave Direction And Pipeline Direction  φwave 90deg:=

Angle Between Current Direction And Pipeline Direction φcurr 90deg:=

Page 45: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

CALCULATIONS :

Submerged Weight :

This section calculates provided weight by pipeline properties section

Total Outside Diameter Dcc D 2tcorr+ 2tcc+:=

Dcc 38.25 in=

Internal Diameter ID D 2t−:=

ID 31.1 in=

Corrosion Coating Diameter Dcorr D 2tcorr+:=

Dcorr 32.25 in=

Steel Weight Wst 0.25π D2

ID2

−( )⋅ ρst⋅:=

Wst 225.91kg

m=

Corrosion Coating Weight Wcorr 0.25π Dcorr2

D2

−( )⋅ ρcorr⋅:=

Wcorr 11.395kg

m=

Concrete Coating Weight Wcc 0.25π Dcc2

Dcorr2

−( )⋅ ρcc⋅:=

Wcc 651.651kg

m=

Content Weight Wcont 0.25π ID2

⋅ ρcont⋅:=

Wcont 423.929kg

m=

Buoyancy B 0.25π Dcc2

⋅ ρsw⋅:=

B 760.013kg

m=

Submerged Weight Wsub Wst Wcorr+ Wcc+ Wcont+ B−:=

Wsub 552.87kg

m=

Vertical Stability :

Specific Gravity VSWsub B+

B:= VS 1.1≥

VS 1.727=

if VS 1.1< "Need More Thickness", "OK!",( ) "OK!"=

Page 46: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Hydrodynamic Force Acting On Pipeline :

Minimum Required Submerged Weight Calculation According To DNV RP E305

Natural Period Parameter AccordingTo DNV RP E305 Figure 2.2   Tn

d

g:=

Tn 1.428 s=

Tn

Tp0.094= φ

Tp

Hs:= φ 4.542

s

m0.5

=

Peakness Parameter γ 5 φ 3.6s

m0.5

≤if

1 φ 5s

m0.5

≥if

3.3 otherwise

:=

γ 3.3=

Assuming There's No Reduction For Directional And Spreading Factor R = 1, Us* = Us

Wave Induced Current Velocity Perpendicular To The Pipe According To DNV RP E305 Figure 2.1

Us0.01 Hs⋅

Tn:= Us 0.078

m

s=

Zero Up Crossing Period According To DNV RP E305 Figure 2.2

Tu 1.35 Tp⋅:= Tu 20.52 s=

From The Soil Parameter Data

Roughness Zo 5.21 10 6−⋅ m:=

A1Dcc

Zo:= A1 1.865 105

×=

B1Zo

Dcc:= B1 5.363 10 6−

×=

Average Velocity To Reference Velocity Ratio

Ud1

lnZr

Zo1+⎛⎜

⎝⎞⎟⎠

1 B1+( ) ln A1 1+( )⋅ 1−⎡⎣ ⎤⎦⋅⎡⎢⎢⎣

⎤⎥⎥⎦

Ur⋅:=

Ud 0.335m

s=

Significant Acceleration As 2πUs

Tu:=

As 0.024m

s2

=

Page 47: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

Using Simplified Static Stability Method According To DNV RP E305

Current To Wave Velocity Ratio MUd

Us:= M 4.275=

Keulegan Carpenter Number KCUs Tu⋅

Dcc:= KC 1.656=

REUd Us+( ) Dcc⋅

ν:= RE 4.2 105

×=

Hidrodynamic Force Coefficients

Drag Coefficient CD 1.2 RE 3 10 5−⋅< M 0.8≥∧if

0.7 otherwise

:=

CD 0.7=

Lift Coefficient CL 0.9:=

Inertia Coefficient CM 3.29:=

Soil Friction Coefficient

Soil Type: Sand

μ 0.7:=

Calibration Factor According To DNV RP E305 Figure 5.12

M 4.275=

KC 1.656=

Fw 1:=

Hydrodynamic Forces vs Required Submerged Weight :

Phase Angle Range i 0 90..:=

θ i i deg⋅:=

Lift Force FL θ( ) 0.5ρsw

gDcc⋅ CL⋅ Us cos θ( )⋅ Ud+( )2⋅:=

Drag Force FD θ( ) 0.5ρsw

gDcc⋅ CD⋅ Us cos θ( )⋅ Ud+( )2⋅:=

Inertia Force FI θ( ) 0.25ρsw

gπ⋅ Dcc

2⋅ CM⋅ As⋅ sin θ( )⋅:=

Required Submerged Weight Ws θ( ) FwFD θ( ) FI θ( )+ μ FL θ( )⋅+

μ⎛⎜⎝

⎞⎟⎠

⋅:=

Page 48: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

0 20 40 60 80 10011

12

13

14

15

Ws θ( )lb

ft

θdeg

Wreq max Ws θ( )( ):=

Wreq 21.12kg

m= Wsub 552.87

kg

m=

if Wsub Wreq≤ "Need More Thickness", "OK!",( ) "OK!"=

Safety Factor For Submerged Weight Due To Requirement Weight

SFwWsub

Wreq:= SFw 26.177=

Page 49: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

WALL THICKNESS CALCULATIONDURING HYDROTEST CONDITION

DATA INPUT:

Nominal Water Depth (MSL) dnom 65.6ft:=

Highest Astronomical Tide HAT 12.5ft:=

Storm Surge (1 year) SS 0ft:=

Maximum Wave Height Hmax 6.2ft:=

Maximum Water Depth dmax dnom HAT+ SS+Hmax

2+:=

dmax 81.2 ft=

Minimum Water Depth dmin 0ft:=

Usage Factor (according to DNV 81Section 4 Table 4.1)

ηh_1 0.72:=

ηh_2 0.5:=

Gravity g 32.174ft

s2

=

Temperatur Derating Faktor kt 1:=

Seawater Density ρsw 64lb

ft3

:=

Maximum External Pressure Pe_max ρsw g⋅ dmax⋅:=

Pe_max 36.089 psi=

Minimum External Presure Pe_min ρsw g⋅ dmin⋅:=

Pe_min 0=

Pressure Design (hidrotes) Pd 403.75psi:=

Outside Diameter D 32in:=

Corrosion Allowance CA 0.125in:=

Tsweet 0.7 CA⋅:=

Material API 5L X‐52

Spesified Minimum Yield Stress SMYS 52000psi:=

Modulus Elasticity E 3.01 107

× psi:=

CALCULATIONS:

1. Standard DNV 81

Zone 1

Minimum Req. Wall Thickness tDNV_1Pd Pe_min−( ) D⋅

2 ηh_1⋅ SMYS⋅ kt⋅:=

tDNV_1 0.173 in=

Nominal Wall Thickness tnom_1_DNV_sw tDNV_1 Tsweet+:=

Page 50: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

tnom_1_DNV_sw 0.26 in=

Zone 2tDNV_2

Pd Pe_min−( ) D⋅

2 ηh_2⋅ SMYS⋅ kt⋅:=Minimum Req. Wall Thickness

tDNV_2 0.248 in=

Nominal Wall Thickness tnom_2_DNV_sw tDNV_2 Tsweet+:=

tnom_2_DNV_sw 0.336 in=

2. STANDARD ASME B31.8

Longitudinal Joint Factor E1 1:=

S1 0.72 E1⋅ SMYS⋅:= S1 3.744 104

× psi=

Design Hoop Stress

Minimum Wall Thickness tASMEPd D⋅

2 S1⋅:= tASME 0.173 in=

Nominal Wall Thickness tnom_ASME_sw tASME Tsweet+:=

tnom_ASME_sw 0.26 in=

SUMMARY AND CONCLUSION:

DNV 81

Zone 1  tnom_1_DNV_sw 0.26 in=

Zone 2 tnom_2_DNV_sw 0.336 in=

ASME B31.8

tnom_ASME_sw 0.26 in=

Page 51: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline
Page 52: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

WALL THICKNESS CALCULATIONDURING INSTALLATION CONDITION

DATA INPUT:

Nominal Water Depth (MSL) dnom 65.6ft:=

Highest Astronomical Tide HAT 12.5ft:=

Storm Surge (1 year) SS 0ft:=

Maximum Wave Height Hmax 6.2ft:=

Maximum Water Depth dmax dnom HAT+ SS+Hmax

2+:=

dmax 81.2 ft=

Minimum Water Depth dmin 0ft:=

Usage Factor (according to DNV 81Section 4 Table 4.1)

ηh_1 0.72:=

ηh_2 0.5:=

Gravity g 32.174ft

s2

=

Temperatur Derating Faktor kt 1:=

Seawater Density ρsw 64lb

ft3

:=

Maximum External Pressure Pe_max ρsw g⋅ dmax⋅:=

Pe_max 36.089 psi=

Minimum External Presure Pe_min ρsw g⋅ dmin⋅:=

Pe_min 0=

Pressure Design (hidrotes) Pd 323psi:=

Outside Diameter D 32in:=

Corrosion Allowance CA 0.125in:=

Tsweet 0.7 CA⋅:=

Material API 5L X‐52

Spesified Minimum Yield Stress SMYS 52000psi:=

Modulus Elasticity E 3.01 107

× psi:=

CALCULATIONS:

1. Standard DNV 81

Zone 1

Minimum Req. Wall Thickness tDNV_1Pd Pe_min−( ) D⋅

2 ηh_1⋅ SMYS⋅ kt⋅:=

tDNV_1 0.138 in=

Nominal Wall Thickness tnom_1_DNV_sw tDNV_1 Tsweet+:=

Page 53: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

tnom_1_DNV_sw 0.226 in=

Zone 2tDNV_2

Pd Pe_min−( ) D⋅

2 ηh_2⋅ SMYS⋅ kt⋅:=Minimum Req. Wall Thickness

tDNV_2 0.199 in=

Nominal Wall Thickness tnom_2_DNV_sw tDNV_2 Tsweet+:=

tnom_2_DNV_sw 0.286 in=

2. STANDARD ASME B31.8

Longitudinal Joint Factor E1 1:=

S1 0.72 E1⋅ SMYS⋅:= S1 3.744 104

× psi=

Design Hoop Stress

Minimum Wall Thickness tASMEPd D⋅

2 S1⋅:= tASME 0.138 in=

Nominal Wall Thickness tnom_ASME_sw tASME Tsweet+:=

tnom_ASME_sw 0.226 in=

SUMMARY AND CONCLUSION:

DNV 81

Zone 1  tnom_1_DNV_sw 0.226 in=

Zone 2 tnom_2_DNV_sw 0.286 in=

ASME B31.8

tnom_ASME_sw 0.226 in=

Page 54: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline
Page 55: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

WALL THICKNESS CALCULATIONDURING OPERATION CONDITION

DATA INPUT:

Nominal Water Depth (MSL) dnom 65.6ft:=

Highest Astronomical Tide HAT 12.5ft:=

Storm Surge (1 year) SS 0ft:=

Maximum Wave Height Hmax 11.2ft:=

Maximum Water Depth dmax dnom HAT+ SS+Hmax

2+:=

dmax 83.7 ft=

Minimum Water Depth dmin 0ft:=

Usage Factor (according to DNV 81Section 4 Table 4.1)

ηh_1 0.72:=

ηh_2 0.5:=

Gravity g 32.174ft

s2

=

Temperatur Derating Faktor kt 1:=

Seawater Density ρsw 64lb

ft3

:=

Maximum External Pressure Pe_max ρsw g⋅ dmax⋅:=

Pe_max 37.2 psi=

Minimum External Presure Pe_min ρsw g⋅ dmin⋅:=

Pe_min 0=

Pressure Design (hidrotes) Pd 323psi:=

Outside Diameter D 32in:=

Corrosion Allowance CA 0.125in:=

Tsweet 0.7 CA⋅:=

Material API 5L X‐52

Spesified Minimum Yield Stress SMYS 52000psi:=

Modulus Elasticity E 3.01 107

× psi:=

CALCULATIONS:

1. Standard DNV 81

Zone 1

Minimum Req. Wall Thickness tDNV_1Pd Pe_min−( ) D⋅

2 ηh_1⋅ SMYS⋅ kt⋅:=

tDNV_1 0.138 in=

Nominal Wall Thickness tnom_1_DNV_sw tDNV_1 Tsweet+:=

Page 56: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline

tnom_1_DNV_sw 0.226 in=

Zone 2tDNV_2

Pd Pe_min−( ) D⋅

2 ηh_2⋅ SMYS⋅ kt⋅:=Minimum Req. Wall Thickness

tDNV_2 0.199 in=

Nominal Wall Thickness tnom_2_DNV_sw tDNV_2 Tsweet+:=

tnom_2_DNV_sw 0.286 in=

2. STANDARD ASME B31.8

Longitudinal Joint Factor E1 1:=

S1 0.72 E1⋅ SMYS⋅:= S1 3.744 104

× psi=

Design Hoop Stress

Minimum Wall Thickness tASMEPd D⋅

2 S1⋅:= tASME 0.138 in=

Nominal Wall Thickness tnom_ASME_sw tASME Tsweet+:=

tnom_ASME_sw 0.226 in=

SUMMARY AND CONCLUSION:

DNV 81

Zone 1  tnom_1_DNV_sw 0.226 in=

Zone 2 tnom_2_DNV_sw 0.286 in=

ASME B31.8

tnom_ASME_sw 0.226 in=

Page 57: Daftar Pustaka - Institut Teknologi Bandungdigilib.itb.ac.id/files/disk1/629/jbptitbpp-gdl-rezamuhamm-31421-7... · Bai, Yong. 2001. “Pipelines and Risers ... “Subsea Pipeline