dam age c on t rol b y c lu st er im p lan t at ion an d h ... · f - 2 0 1 3 -p dn- 0 0 3 2 7 1 3...

33
F-2013-PDN-0032713-R0 Damage Control by Cluster implantation and heated implantation Yoshiki Nakashima, Shigeki Sakai, Tsutomu nagayama, Hiroshi Onoda Nissin Ion Equipment Co., Ltd. July 11, 2013

Upload: others

Post on 19-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0

Damage Control by Cluster implantation and heated implantation

Yoshiki Nakashima, Shigeki Sakai, Tsutomu nagayama, Hiroshi Onoda

Nissin Ion Equipment Co., Ltd.July 11, 2013

Page 2: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 2

Ion implantation technologies for defect suppression

2. Low temp implant

3. Heated implant

1. Cluster ion implant

Thick and fine amorphous, Clear regrowth

Less damages, Enhancing dynamic annealing

Page 3: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 3

Ion Implantation Systemsfor Damage Control

Page 4: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 4

B18H22

High current with precise beam control

Ultra shallow junction formation

High activation

Diffusion suppression

Damage engineering

Strain engineeringB10H14

C7H7

C16H10

Cluster ion implanter CLARIS

Page 5: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 5

Cold ion implantation

Precise beam control with high current0.2 – 7keV with Cluster B0.24 – 10.5keV with Cluster C

CLARIS EXCEED

High productivity medium current toolMore than 550 tools installation3 – 750keV with EX3000AH3 – 960keV with EX9600A

Page 6: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 6

Chiller

Gas CoolingSystem

Feed-through

Feed-through

Cold implant system

Insitu-cooling (Stable!)

Batch cooling & warming (Quick & Reliable!)

Closed cycle cooling

Page 7: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 7

High temperature ion implanter IMPHEAT

Temperature: up to 500oCEnergy: 3 – 960keVSpecies: Al, P, B, N, etc.High Current Al beamMass production tool for SiC devices

Ion beams(Scanned horizontally)

Heat shield

Temperature Controlled by TC and feedback

Wafer

Mec

hani

cal S

can

High Temperature Platen

Electrostatic chuck with heater

Page 8: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 8

Damage Control with Cold and Cluster ion Implantation

Page 9: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 9

Damage control mechanism with cold implant

9

Dynamic annealing during implant causes thinner amorphous layer

Ion Implantationat cold substrate

Ion Implantation at room temperature substrate

This area remains even if the temperature is zero Kelvin

a-Si

Interstitials and vacancies

a-Si

Dam

age

dist

ribut

ion

depth

Page 10: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 10

Ideal implant for eliminating EORDs

10

a-Si

To eliminate EORD not only thicker amorphous layer but also good a/c interface abruptness is required, ideally delta profile is the best.

a-Sia-Si

Delta profile

CrystalSi

a/c interface abruptness

Bad Good Best

Focus on a/c interface abruptness

Page 11: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 1111

1.0E+17

1.0E+18

1.0E+19

1.0E+20

1.0E+21

1.0E+22

1.0E+23

0 10 20 30 40 50

Depth (nm)

dam

age

conc

entr

atio

n (c

m⁻³

)

10 nm/decade

20 nm/decade

5 nm/decade

Amorphous layer: 8 nmAbruptness: 4 nm/decade

Amorphous layer thickness a/c interface abruptness

Crystal trimDr. Matthias Posselt,Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf,

a-Si

Amorphous layer thickness

a/c interface abruptness

Damage simulation by Crystal TRIM

Page 12: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 1212

Crystal trim simulation result. A layer with over 2x1021cm-3

damage density is defined as amorphous layer

0

10

20

30

40

50

60

1.0E+14 1.0E+15 1.0E+16

C Dose ( /cm2)

a-Si

Thi

ckne

ss (n

m)

C.Hatem IIT2008 P.399

C Equi. Energy 10keV

RT

-100℃

-30℃

RT

-60℃

C+

C7+

Experimental result and crystal-Trim simulation result show a good agreement. Crystal trim can estimate the amorphous layer thickness

Experimental data

Amorphous layer thickness

Page 13: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 1313

22nm 23nm

15nm

C⁺

C₅⁺ C₁₄⁺

C⁺/C₅⁺/C₁₄⁺

4.5keV 2x10¹⁵ cm⁻²

As-implanted

Wafer -30 deg C

Crystal-Trim can estimate a/c interface abruptness

1.0E+14

1.0E+15

1.0E+16

1.0E+17

1.0E+18

1.0E+19

1.0E+20

1.0E+21

1.0E+22

1.0E+23

0 50 100 150

Depth (nm)

Con

cent

ratio

n (c

m-3

)

C⁺ C₅⁺ C₁₄⁺

Cluster size dependence on a/c interface abruptness

Page 14: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 14

EORD reduction with a/c interface abruptness

14

22nm 23nm

As-implanted

After RTA 800oC 10sec

15nm

C+ C5+ C14

+

C+/C5+/C14

+ 4.5keV 2E15 at -30oC as-impl and after RTA 800oC 10sec Less EOR defects with better a/c interface abruptness

Page 15: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 15

Cluster ion size effect

15

Si

C14+

Tilt 0 deg / Twist 0 deg

Energy

Equivalent energy and equivalent dose are same

1 keV

2 keV

5 keV

14 keV

C5+

C2+

C+

・・

・・・・・

・・・・・

・・・・・

・・ ・・

Dose

2x1015 cm-2

1x1015 cm-2

4x1014 cm-2

1.4x1014 cm-2

Page 16: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 1616

1.0 keV (equivalent) 2x10¹⁵ cm⁻² tilt 0 twist 0

2 dimension carbon profile and damage profile

Carbon profile Damage profile

a/c interface abruptness as a function of cluster

Larger cluster ions make tighter and abrupt damage distribution.

Page 17: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 1717

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

C C C C C C C C C C C C C C

Abru

ptne

ss (n

m/d

ecad

e)1.0E+17

1.0E+18

1.0E+19

1.0E+20

1.0E+21

1.0E+22

1.0E+23

0 10 20 30 40 50

Depth (nm)

dam

age

conc

entr

atio

n (c

m⁻³

)

10 nm/decade

20 nm/decade

5 nm/decade

Amorphous layer: 8 nmAbruptness: 4 nm/decade 1.0 keV (equivalent)

2x10¹⁵ cm⁻²tilt 0 twist 0

Bigger cluster size makes better a/c interface abruptness

a/c interface abruptness as a function of cluster size

Page 18: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 18

Cluster ion size effect

18

a-Si

To form steep damage profile, Cluster C is preferable than monomer C.

a-Si

a/c interface abruptness

better

C+ < C2+ < C3

+ < ・・・ < C12+ < C13

+ < C14+

Page 19: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 19

Lighter cluster ion effect: simulation model

19

Si

C6+

O5+

Ne4+

Si3+

Ar2+

Ge+

Tilt 0 deg / Twist 0 deg

Energy 6 keV

12 x 6 = 72

16 x 5 = 80

20 x 4 = 80

27 x 3 = 81

40 x 2 = 80

72

Mass

Same energy and almost same momentum cluster ions

Page 20: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 2020

2 dimension depth profile and damage profile

Depth profile Damage profile

6 keV 1x1015 cm-2 tilt 0 twist 0

a/c interface abruptness as a function of ion

Lighter cluster ions make tighter and abrupt damage distribution.

Page 21: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 21

Relationship between amorphous layer and a/c interface abruptness at same energy and almost same momentum

21Lighter cluster ion makes better a/c interface abruptness at same amorphous layer.

Stee

p (g

ood)

Long

tail

(bad

)

0

5

10

15

20

25

30

0 5 10 15 20amorphous layer (nm)

abru

ptne

ss (n

m/d

ecad

e)Ge⁺ (73) Ar₂⁺ (80) Si₃⁺ (81) Ne₄⁺ (80) O₅⁺ (80)

C₆⁺ (72) 5x10¹⁴ cm⁻² 2x10¹⁵ cm⁻² 5x10¹⁵ cm⁻²

6 keV

Tilt 0°/ Twist 0°

Page 22: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 22

Damage control mechanism of cluster ion mass

22

a-Si

Comparing same energy and almost same momentum cluster ions, lighter ion cluster makes better a/c interface abruptness.

a-Si

a/c interface abruptness

bad good

Ge+ < Ar2+ < Si3+ < Ne4

+ < O5+ < C6

+

Page 23: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 23

Sub Summary

23

Cold implantation is effective to the damage control. At cold temperature recombination of interstitials and vacancies are suppressed. Therefore cold implantation makes thicker amorphous layer.

End of range defects (EORD) is related to not only amorphous layer thickness but also amorphous crystal (a/c) interface abruptness.

Bigger cluster size ion makes better a/c interface abruptness.(C+ < C2

+ < C3+ < ・・・ < C12

+ < C13+ < C14

+)

Lighter cluster ion makes better a/c interface abruptness. (Ge+ < Ar2

+ < Si3+ < Ne4+ < O5

+ < C6+)

We can design not only amorphous layer thickness but also a/c interface abruptness using crystal-TRIM simulation.

We can control damage using cluster ion implantation.

Page 24: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 24

High Dose Dopant Implantation to Heated Si Substrate

without Amorphous Layer Formation

Page 25: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 25

Motivation In Fin-FET structures, SDE ion implantation amorphizes Si Fin. It would

be very difficult to recover Si single crystal structure with anneal, especially when Fin width becomes small or amorphization reaches to the Si Fin bottom. Flash memory SDs are the same situation.

Basic studies for high dose & high activation doping without amorphous formation for advanced device structures by using heated implantation.

Si or Si Oxide

Gate Gate

Si Fin Amorphization

Regrowth from channel

Regrowth from remained crystal Si or bottom Si sub.

Tilt implant STI

Si sub

Regrowth from remained crystal Si

Fin FET Flash Memory

Page 26: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 26

a-Si thickness Amorphous Si thickness decreases with increasing implant temperature. Around 300oC is the key temperature for implant damage recovery.

Si single crystal structure seems to be maintained at over 300oC.

0

10

20

30

40

50

60

70

80

RT 100℃ 200℃ 300℃ 400℃ 500℃ 600℃Implant Temperature (℃)

a-Si

thic

knes

s (nm

)

P 20keV 1E15As 45keV 1E15BF2 20keV 1E15

Critical Amorphization Dose

BF2 20keV 7.0E14/cm2

P 20keV 1.2E14/cm2

As 45keV 1.2E14/cm2

Page 27: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 27

XTEM for As implant Single crystal structure remains in As as-implanted at higher

than 300oC. However, many dislocations remain in the crystal structures.

RT 300oC 600oC As 45keV 1E15

Page 28: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 28

Low temperature long time anneal cannot remove the defects. Only results in growth of the defect size and widens defect formed band width. As+ implantation results in the similar defects remained.

(a)BF2as-impl. (b)BF2 after600oC 1H anneal

(c)P as-impl. (d)P after 600oC 1H

anneal

BF2 and P 20keV 1E15/cm2 at 300oC

XTEM after 600oC 1H anneal- BF2 and P -

Page 29: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 29

In order to obtain defects free crystal after annealing, Generally used annealing conditions in device manufacturing

Shallower As profiles for reducing residual defects after anneal; location of defects are close to the surface, and defects could be removed through Si surface.

As Ion ImplantationAs 5keV 1.5E15/cm2 RT - 550oC As 20keV 1.5E15/cm2 300oC - 550oC

Anneal Spike RTA 1015oC

Rp:7.1nm

Rp:17.2nm

Experimental

Page 30: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 30

There still remains thick density of defects. Size of the defects get larger and defects density become less. Spike RTA 1015oC also cannot remove the defects in As+

20keV implant.

(b)After sRTA(a) as-impl. (c) as-impl. (d)After sRTA

at 300oC at 550oCAs 20keV 1.5E15/cm2 As 20keV 1.5E15/cm2

XTEM after 1015oC spike RTA - As 20keV 1.5E15/cm2 -

Page 31: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 31

Crystal structure remains during implant at implant temperature more than somewhere between 300oC-400oC. Many defects, however, remain in crystal Si.

The residual defects are removed after 1015oC spike RTA.

RT implant 300oC implant 400oC implant

After sRTA

As-implanted

XTEM after 1015oC spike RTA - As 5keV 1.5E15/cm2 -

Page 32: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

F-2013-PDN-0032713-R0 NISSIN CONFIDENTIAL 32

High Dose doping without amorphous formation for advanced device structures by using heated implantation has been studied.

1. High dose implantation with keeping single crystal structure has been embodied at implant substrate temperature higher than somewhere between 300oC and 400oC by heated implantation.

2. Many defects remain in as-implanted Si and were eliminated after spike RTA. Lower energy implant realizes defect free doping after anneal.

It has been shown that high dose doping without amorphization and also without defect can be successfully embodied. This technology can be applied to FinFETand memory processes, which prefer doping without a-Si formation.

Sub Summary

Page 33: Dam age C on t rol b y C lu st er im p lan t at ion an d h ... · F - 2 0 1 3 -P DN- 0 0 3 2 7 1 3 -R0 Dam age C on t rol b y C lu st er im p lan t at ion an d h eat ed im p lan t

Thank you for your attention!