ddbd fundamentals

70
RELUIS Linea di ricerca N RELUIS Linea di ricerca N .4 .4 July July 2007 Meeting 2007 Meeting Roma Roma 3 Luglio 2007 3 Luglio 2007 EUCENTRE Univerisà delgi studi di Pavia

Upload: armjafari

Post on 01-Oct-2015

225 views

Category:

Documents


0 download

DESCRIPTION

DDBD Fundamentals

TRANSCRIPT

  • RELUIS Linea di ricerca NRELUIS Linea di ricerca N.4.4JulyJuly 2007 Meeting2007 Meeting

    RomaRoma3 Luglio 20073 Luglio 2007

    EUCENTRE Univeris delgistudi di Pavia

  • 12 unit12 unit di ricercadi ricercaTask Argomento UR 1 Principi, aspetti generali, azione Pavia

    2 Strutture in calcestruzzo, a telaio Bologna 3 Strutture in calcestruzzo, a pareti e

    miste Ferrara

    4 Strutture prefabbricate Brescia

    5 Struttura in muratura Genova 6 Strutture in acciaio Napoli 7 Strutture miste acciaio calcestruzzo Benevento 8 Strutture in legno Trento 9 Ponti esistenti e di nuova costruzione Milano Poli 10 Strutture sismicamente isolate Basilicata 11 Fondazioni superficiali e profonde Milano Poli 12 Strutture di sostegno Perugia

  • Review of programme LINEA IVReview of programme LINEA IV11 ANNOANNO 22 ANNOANNO 33 ANNOANNO

    DefinitionDefinition of of generalgeneral aspectsaspectsDefinitionDefinition of of specificspecific aspectsaspectsSelectionSelection of case of case studiesstudiesDesign Design usingusingtraditionaltraditionalmethodsmethodsDesign using Design using displacementdisplacement--based methodsbased methodsNonNon--linear timelinear time--history analyseshistory analysesIdentification and Identification and discussion of discussion of issuesissuesSpecificSpecificimprovementsimprovements totothe the displacementdisplacementbasedbased methodmethodReRe--designdesign and and verificationverificationDevelopmentDevelopment of of specificspecificguidelinesguidelinesDevelopment of a Development of a model code and model code and general general commentarycommentary

  • me Fu F Fn rKi he Ki Ke y d

    (a) SDOF Simulation (b) Effective Stiffness Ke

    1 2 3 4 5 6Displacement Ductility

    0

    20

    40

    60

    D

    a

    m

    p

    i

    n

    g

    (

    %

    )

    0 1 2 3 4 5Period (seconds)

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    (

    m

    )

    5%

    10%

    15%

    20%

    30%

    d

    Te

    Elasto-Plastic

    Steel Frame

    Concrete Frame

    Unbonded Prestressing

    (c) Equivalent damping vs. ductility (d) Design Displacement Spectra

    DDBD fundamentalsDDBD fundamentals

  • Sviluppo del progetto Sviluppo del progetto

  • Strutture a telaio in c.a. a differente Strutture a telaio in c.a. a differente numero di piani e campate (in numero di piani e campate (in particolare, da 1 a 6 piani e da 1 a 3 particolare, da 1 a 6 piani e da 1 a 3 campate);campate);

    I materiali sono quelli comunemente I materiali sono quelli comunemente utilizzati nella pratica corrente utilizzati nella pratica corrente (calcestruzzo Rck 300 ed acciaio (calcestruzzo Rck 300 ed acciaio FeFe b b 44 k;44 k;

    1.1. STRUTTURE CONSIDERATESTRUTTURE CONSIDERATE(progettate secondo la procedura DDBD)(progettate secondo la procedura DDBD)

  • Analisi dinamiche non lineariAnalisi dinamiche non lineariTelaio 36 Telaio 36 -- Sintesi dei risultatiSintesi dei risultati

    0 0.5 1 1.5 2 2.5 3 3.5 40

    1

    2

    3

    4

    5

    6

    Drift di piano [%]

    n piano Inviluppo drift massimi

    Sismi tipo 2 - ag = 0.35

    Sismi tipo 1.1 - ag = 0.35

    Sismi tipo 1.2 - ag = 0.35

    Sismi con Te>4s - ag = 0.35

    Sismi tipo 2 - ag = 0.50

    0 50 100 150 200 250 3000

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    2000

    Spostamento orizzontale [mm]

    altezza della struttura [cm] Inviluppo spostamenti massimi assoluti

    Sismi tipo 2 - ag = 0.35

    Sismi tipo 1.1 - ag = 0.35

    Sismi tipo 1.2 - ag = 0.35

    Sismi con Te>4s - ag = 0.35

    Sismi tipo 2 - ag = 0.50

    Nelle due figure seguenti sono sovrapposti i valori medi degli inviluppi degli spostamenti e degli interstory drift ottenuti per 4 diversi gruppi di sismi.

  • ResearchResearch UnitUnit 3: RC 3: RC WallsWalls & & MixedMixed

    20 storey case study wall 20 storey case study wall structure examined.structure examined.

    ForceForce--Based Design and Based Design and Displacement Based Design Displacement Based Design undertaken.undertaken.

    NonNon--linear timelinear time--history history analyses undertaken to analyses undertaken to consider performance.consider performance.

    Capacity design implications Capacity design implications considered.considered. Snellezza del muro h/l = 10,7

  • RU 3: Risultati RU 3: Risultati -- FBDFBD

    0

    10

    20

    30

    40

    50

    60

    70

    0 10000 20000 30000 40000 50000

    A

    l

    t

    e

    z

    z

    a

    [

    m

    ]

    Momento [kNm]

    An. Dinamica (3 acc. Naturali)An. Dinamica (7 acc. Naturali)An. Dinamica (3 acc. Artificiali)An. Dinamica (7 acc. Artificiali)Approccio agli spostamentiAmplificazione dinamica

    0

    10

    20

    30

    40

    50

    60

    70

    0 1000 2000 3000 4000 5000

    A

    l

    t

    e

    z

    z

    a

    [

    m

    ]

    Taglio [kN]

    An. Dinamica (3 acc. Naturali)An. Dinamica (7 acc. Naturali)An. Dinamica (3 acc. Artificiali)An. Dinamica (7 acc. Artificiali)Approccio agli spostamentiAmplificazione dinamica

    0

    5

    10

    15

    20

    25

    1 2 3 4 5 6 7

    V

    a

    l

    o

    r

    i

    d

    i

    d

    u

    t

    t

    i

    l

    i

    t

    [

    -

    ]

    Accelerogrammi artificialiDuttilit richiesta Duttilit richiesta media Duttilit disponibile

    Confronto tra la duttilit richiesta dalla serie di 7 accelerogrammi artificiali, la duttilit richiesta media e la duttilit

    disponibile calcolata con approccio alle forze per CDA

    FBD drifts not reported!!!

  • RU 3: Risultati RU 3: Risultati -- DBDDBD

    02468

    1012141618

    1 2 3 4 5 6 7V

    a

    l

    o

    r

    i

    d

    i

    d

    u

    t

    t

    i

    l

    i

    t

    [

    -

    ]

    Accelerogrammi artificialiDuttilit richiesta Duttilit richiesta media Duttilit disponibile

    Confronto tra la duttilit richiesta dalla serie di 7 accelerogrammi artificiali, la duttilitrichiesta media e la duttilit disponibile calcolata con approccio agli spostamenti

  • RU 3: CONFRONTI CON DIVERSI PROGRAMMI DI RU 3: CONFRONTI CON DIVERSI PROGRAMMI DI CALCOLOCALCOLO

    Again design driftappears to bearound 1.5%

  • Definition of typical Italian precast concrete building layoutsDefinition of typical Italian precast concrete building layoutsThree different case studies:Three different case studies:

    One storey PC building One storey PC building with with double teedouble tee roof roof elementselements

    One storey PC building One storey PC building with with omegaomega roof roof elementselements

    One storey PC building One storey PC building with precast concrete with precast concrete columns and long span columns and long span wood beamswood beams

    7

    5

    0

    0,00 m

    8,40 m1.1.

    2.2.

    3.3.

    ResearchResearch UnitUnit 4: 4: PrePre--castcast structuresstructures

  • M=Me

    h=he

    d

    Ke, Ke,

    d

    h=he

    M=Me

    Kfoundation

    Kfoundation

    M=Me

    h=he

    d

    Ke, Ke,

    d

    h

    M

    Kfoundation

    Me

    he

    1.1.

    3.3.

    2.2.

    4.4.

    RESEARCH PHASE DEFINITION

    Columns fixed at the base and pinned at the top, the foundation flexibility is not taken into account.

    As in phase 1 but considering the effect of foundation flexibility

    Take into account the different types of base connection (pocket foundation, grouted sleeves); foundation flexibility taken into account

    Considering the effect of changing the inflection point along the column due to the presence of column to beam connections.

    Unit di ricerca N.4STRUTTURE PREFABBRICATE

    Prof. Paolo RIVAIng. Andrea BELLERI

  • COLUMN TO FOUNDATION CONNECTIONS

    40Section B-B

    4

    0

    9

    9

    2 9

    8

    9

    St. 16/10 L=3306

    10 22 L=7218 L=3719

    22 L=19526 L=171

    7

    8

    St. 16/10 L=250

    St. 8/10 L=1662

    5

    8 L=1304

    PF8

    8

    2

    4

    6

    GroutEMACO S55

    B

    5

    B

    7

    2

    8

    PF Force-Drift

    -100

    -75

    -50

    -25

    0

    25

    50

    75

    100

    -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

    Drift (%)

    L

    a

    t

    e

    r

    a

    l

    f

    o

    r

    c

    e

    (

    k

    N

    )

    Theoretical yield

    P-

    Planned to use experimental results to calibrate the parameters of the hysteresis rule that will be used in the Finite Element analyses to validate the DDBD procedure .

    Unit di ricerca N.4STRUTTURE PREFABBRICATE

    Prof. Paolo RIVAIng. Andrea BELLERI

  • FUTURE EFFORTSFUTURE EFFORTS1. Define a parametric procedure to determine the true column

    point of inflection (due to the presence of top connections).

    2. Model the behaviour of different types of column to foundation connection.

    3. Take into account foundation flexibility.

    4. Define the DDBD procedure to take into account different column to base connection types and validate it by means of time history analyses.

    5. Analyse the other case studies.

    6. Continue the experimental survey.

    Unit di ricerca N.4STRUTTURE PREFABBRICATE

    Prof. Paolo RIVAIng. Andrea BELLERI

  • ResearchResearch UnitUnit 5: 5: MasonryMasonry structuresstructures

    Displacement and energy dissipation considered.Displacement and energy dissipation considered. Case study structures under examination.Case study structures under examination.

  • RU5: Case RU5: Case StudyStudy structurestructure 1 1 New New ConstructionConstruction

    2060

    1

    2

    0

    0

    PLAN (ground storey)

    4

    3

    0

    3

    3

    0

    3

    3

    0

    3

    3

    0

    Principal elevation

  • RU5: Case RU5: Case StudyStudy structurestructure 2 2 ExistingExisting ConstructionConstruction

    Structure is a section of an existing solid block Structure is a section of an existing solid block masonry building.masonry building.

    Building has undergone changes with time and Building has undergone changes with time and possesses several weak elements and irregular possesses several weak elements and irregular characteristics.characteristics.

    (h sotto trave=312)

    a

    (h =345)(h sotto trave=324)

    3

    3

    0

    1

    8

    2

    1

    1

    0

    1

    8

    1

    CAMERA

    203

    129

    a=14

    +0.33

    213108

    1

    7

    9

    1

    1

    2

    (h =345)(h sotto trave=324)

    CAMERA

    1

    7

    7

    1

    1

    0

    (h =350)CAMERA

    102

    208

    210

    1 08

    CAMERA (h putrella=0000)(h voltino=00000)

    127

    203

    2

    6

    0

    2

    2

    5

    97CAMERA

    (h sotto trave=314)(h =340)

    209

    2

    9

    8

    1

    2

    0

    CAMERA

    (h sotto trave=315(h =340)

    a

    ANDRONE(h chiave=348)(h imposta=291)

    3

    2

    0

    2

    0

    0

    (h trave=300)

    CAMERA (h =325)

    0.00

    p= 30

    a= 17.5

    2

    2

    3

    1

    1

    7

    CAMERA (h chiave=346)(h imposta=244)

    1

    1

    0

    2

    6

    0

    128

    236

    +0.26

    PLAN (ground storey)

    180180 360 200230

    1150

    1

    1

    6

    0

    3

    0

    5

    4

    7

    0

    3

    8

    5

    2

    3

    0

    2

    3

    0

    2

    3

    0

    Elevation of structural wallTransverse section

  • ResearchResearch UnitUnit 6: Steel 6: Steel structuresstructures

    Various displacement considerations and relations have Various displacement considerations and relations have been developed for different frame configurations.been developed for different frame configurations.

    A trial DBD method has been developed for bucklingA trial DBD method has been developed for buckling--restrained brace (BRB), moment resisting frame (MRF) restrained brace (BRB), moment resisting frame (MRF) type structures and now concentrically braced frame (CBF) type structures and now concentrically braced frame (CBF) structures. structures.

    Recent work has concentrated on design of CBF systems.Recent work has concentrated on design of CBF systems. 5 & 105 & 10--storey case study structures have been designed storey case study structures have been designed

    and methodology performance assessed.and methodology performance assessed.

  • RU6: CBF RU6: CBF considerationsconsiderations

    Compression brace buckling

    Tension brace yieldingUltimate state (max compression brace ductility)

    Possible target pointVb

    ueff

    Individual brace response:

    comp

    tens

    Typical Pushover

    2.4 8.3F = +c

    r a b = +

    ( )1 2.4 8.32 2

    c F

    y

    = = +

    EF

    rKL y =

  • RU6: Displacement contributionsRU6: Displacement contributions

    Storey drift components: column Storey drift components: column axial deformations, brace axial axial deformations, brace axial deformations and beam middeformations and beam mid--span span deflection.deflection.

    r l r li,d i,d br,i,d b,i,d c,i,d c,i,d

    i,d i ii i

    22 2

    v v vtg tg

    L sen h

    += + + +

    r lb,i,d c,i,d c,i,d 2

    br,i,d i i,d yi

    22

    vsen

    h ++ + =

    Relation between strain quantities Relation between strain quantities and brace ductility.and brace ductility.

  • RU6: Case study RU6: Case study applicationsapplications

    3500

    3500

    3500

    3500

    4000

    3500

    3500

    3500

    3500

    3500

    0

    200

    400

    600

    800

    1000

    1200

    0 0.1 0.2 0.3 0.4 0.5ud (m)

    V

    b

    (

    k

    N

    )

    Design

    Pushover with brittle braces

    Actual pushover

    10 storey structure10 storey structureResults for accurate Results for accurate

    iterative methoditerative method

    0123456789

    10

    0 0.1 0.2 0.3 0.4 0.5u i (m)

    F

    l

    o

    o

    r

    TargetRHA Average2s_R12s_R22s_R32s_R42s_R52s_R62s_R7

    Tension

    0123456789

    1011

    -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 f

    F

    l

    o

    o

    r

    Target

    Capacity

    RHA

    Compression

  • RU6: Case study RU6: Case study applicationsapplications

    3500

    3500

    3500

    3500

    4000

    3500

    3500

    3500

    3500

    3500

    10 storey structure10 storey structureResults for simplified Results for simplified

    methodmethod

    0100200300400500600700800900

    1000

    0 0.05 0.1 0.15 0.2 0.25ueff (m)

    V

    b

    (

    K

    N

    )

    Design

    Analysis

    0123456789

    10

    0 0.1 0.2 0.3 0.4 0.5u i (m)

    F

    l

    o

    o

    r

    TargetRHA Average2s_R12s_R22s_R32s_R42s_R52s_R62s_R7

    Tension

    0123456789

    1011

    -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 f

    F

    l

    o

    o

    r

    Target

    Capacity

    RHA

    Compression

    Pushover with real sections and residual strength for compression

    diagonals at the design displacements

  • Research Unit 7: Composite Research Unit 7: Composite StructuresStructures

    Case study structures described.Case study structures described. Force basedForce based--design carried out. Intended to verify design design carried out. Intended to verify design

    using displacementusing displacement--based assessment.based assessment. 3D structure modelled in SAP2000.3D structure modelled in SAP2000. Parameters expected to influence behaviour of structures Parameters expected to influence behaviour of structures

    identified.identified.

  • RU7: Case study structuresRU7: Case study structures

    9-storeys of 3.5m (ground storey 4m)

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    0,00

    + 4,00

    + 7,50

    + 11,00

    + 14,50

    + 18,00

    + 21,50

    + 25,00

    + 28,50

    + 32,00

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    2

    8

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    4

    ,

    0

    0

    3

    ,

    4

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    31,00

    7,006,005,006,007,00

    3

    2

    ,

    0

    0

    Moment resisting frame in longitudinal direction

    HE B 320HE B 320HE B 320HE B 320

    HE B 320HE B 320HE B 320HE B 320

    HE B 320

    HE B 320

    HE B 320

    HE B 280 HE B 280

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    I

    P

    E

    3

    0

    0

    HE B 280HE B 320HE B 320HE B 320HE B 320

    HE B 280HE B 320HE B 320HE B 320HE B 320HE B 280

    HE B 280HE B 320HE B 320HE B 320HE B 320

    HE B 280HE B 280

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450

    IPE 450 IPE 450 IPE 450 IPE 450I

    P

    E

    3

    0

    0

    I

    P

    E

    4

    5

    0

    I

    P

    E

    4

    5

    0

    Y1 Y2 Y3 Y4 Y5 Y6

    X1

    X2

    X3

    X4

    X5

    7,00 6,00 5,00 6,00 7,00

    31,00

    6

    ,

    0

    0

    6

    ,

    0

    0

    6

    ,

    0

    0

    6

    ,

    0

    0

    2

    4

    ,

    0

    0

    Y

    X

    Pianta piano tipo

    PLAN

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    H

    E

    B

    2

    8

    0

    168,3

    x 12,5 168,3 x 12,5

    168,3

    x 12,5 168,3 x 12,5

    168,3

    x 12,5 168,3 x 12,5

    168,3

    x 12,5 168,3 x 12,5

    168,3

    x 12,5 168,3 x 12,5

    168,3

    x 12,5 168,3 x 12,5

    168,3

    x 12,5 168,3 x 12,5

    168,3

    x 12,5 168,3 x 12,5

    168,3 x 12,5168,

    3 x 12

    ,5

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    IPE 300 IPE 300

    IPE 300 IPE 300

    IPE 300 IPE 300

    IPE 300 IPE 300

    IPE 300 IPE 300

    IPE 300 IPE 300

    IPE 300 IPE 300

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    2

    ,

    9

    0

    3

    ,

    4

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    5

    0

    3

    ,

    0

    5

    3

    ,

    0

    5

    3

    ,

    0

    5

    3

    ,

    0

    5

    3

    ,

    0

    5

    3

    ,

    0

    5

    3

    ,

    0

    5

    IPE 300

    IPE 300

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 450

    IPE 300

    IPE 300

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    H

    E

    B

    3

    2

    0

    + 32,00

    + 28,50

    + 25,00

    + 21,50

    + 18,00

    + 14,50

    + 11,00

    + 7,50

    + 4,00

    0,00

    4

    ,

    0

    0

    3

    ,

    5

    0

    3

    ,

    5

    5

    3

    ,

    0

    5

    6,00 6,00 6,00 6,00

    3

    2

    ,

    0

    0

    24,00

    Braced frames in transverse direction

  • RU7: General design progressRU7: General design progress Case study structures dimensioned using a forceCase study structures dimensioned using a force--based based

    design approach.design approach.

    HE B 280

    280

    2

    8

    0

    10,5

    1

    8

    2

    4

    4

    1

    8

    R25

    12,5168

    ,3

    Profilo circolare cavo formato a caldo

    IPE 300

    1

    0

    ,

    7

    7,1

    3

    0

    0

    150

    2

    7

    8

    ,

    6

    1

    0

    ,

    7

    R15

    2

    0

    ,

    5

    2

    7

    9

    2

    0

    ,

    5

    300

    3

    2

    0

    HE B 320

    IPE 450

    1

    4

    ,

    6

    4

    2

    0

    ,

    8

    1

    4

    ,

    6

    4

    5

    0

    190

    600

    150

    61,5 88,5

    5

    5

    Lamiera grecata tipoA 55/P 600 HI-BOND

    t = 1.5 mm Fe 430 hP =55 mm

    Rete elettrosaldata 10/25

    600

    5

    5

    1

    5

    0

    Solaio compostocalcestruzzo-lamiera grecata

  • Research Unit 8: Timber StructuresResearch Unit 8: Timber Structures

    Case study structures selected & described. Case study structures selected & described. Characteristics of timber joint studied Characteristics of timber joint studied important important

    deformation parameters obtained. Design deformation parameters obtained. Design displacement considerations made.displacement considerations made.

    DisplacementDisplacement--based design methodology based design methodology developing.developing.

    MonteMonte--Carlo simulations to probabilistically Carlo simulations to probabilistically evaluate performance of case study structures evaluate performance of case study structures currently underway.currently underway.

  • RU8: Portal frame case studyRU8: Portal frame case study

    Radial joint behaviour studied intended that joints yield.

  • RU8: Displacement considerationsRU8: Displacement considerations Yield displacement composed of deformations from joint Yield displacement composed of deformations from joint

    + frame. This is added to acceptable plastic deformation + frame. This is added to acceptable plastic deformation to give design displacement.to give design displacement.

    Yield characteristics of single bolt control system yield Yield characteristics of single bolt control system yield dispdisp.. Strength of joint can be controlled (without significantly Strength of joint can be controlled (without significantly

    changing yield displacement) by changing number of bolts.changing yield displacement) by changing number of bolts.

  • RU8: Factors influencing target displacementsRU8: Factors influencing target displacements

  • RU8: Factors influencing target displacementsRU8: Factors influencing target displacements

  • Research Unit 9: New & existing Research Unit 9: New & existing bridgesbridges

    DDBD of regular concrete bridges. Comparison with force DDBD of regular concrete bridges. Comparison with force based design. Verification with time history analyses.based design. Verification with time history analyses.

    DDBD of irregular concrete bridges. Comparison with force DDBD of irregular concrete bridges. Comparison with force based design. Verification with time history analyses.based design. Verification with time history analyses.

    DDBD of long span concrete bridges with limited ductile DDBD of long span concrete bridges with limited ductile piers and with/without inpiers and with/without in--plane movement joints. plane movement joints. Comparison with force based design. Verification with time Comparison with force based design. Verification with time history analyses.history analyses.

  • Activities of RU9 in the second yearActivities of RU9 in the second year

    Parametric study: regular bridges

    H=7.5 m, 10 m, 12.5 m, 15 m

  • Activities of RU9 in the second yearActivities of RU9 in the second yearCalcestruzzo

    Materialsfc 40 [MPa] Resistenza a compressione Ec 30000 [MPa] Modulo elastico Wc 25 [kN/m3] Peso specifico Acciaio fy 455 [MPa] Sforzo di snervamento Es 200000 [MPa] Modulo elastico dbl 43 [mm] Diametro barre longitudinali

    Abutmens: elastic behaviour, stiffness K=75000 kN/m, damping 8%, displacement limit 100 mm

    Deck: Iyy=44 m4 Pier diameter: from 2 m to 2.7 m

    Pier design displacement limit:4% of drift

  • Some results: regular bridge

    SDOF parametersH [m] 7.5 10 12.5 15sys [%] 10.5 8.5 7.5 6.4Dd [m] 0.24 0.32 0.399 0.479Meff [ton] 2909 2948 2994 3039Teff [s] 1.4 1.73 2.08 2.38Keff [kN/m] 59005 38754 27313 21109VB [kN] 14180 12394 10908 10101SS [%] 31.4 45.2 62.7 79.3

    H = 7.5 mA1 P1 P2 P3 A2

    H[m] - 15.00 7.50 15.00 -D[m] - 2.50 2.50 2.50 -Mass[ton] 357 928 986 928 357D - 1.27 6.99 1.27 - [%] 8.00 7.66 18.05 7.66 8.00V [kN] 2223 2432 4864 2432 2223M [kN*m] - 36477 36477 36477 -Keff [kN/m] 75000 11825 16224 11825 75000

    H = 10.0 mA1 P1 P2 P3 A2

    H[m] - 20.00 10.00 20.00 -D[m] - 2.50 2.50 2.50 -Mass[ton] 357 949 997 949 357D - 0.96 5.39 0.96 - [%] 8.00 5.00 17.15 5.00 8.00V [kN] 2800 1660 3471 1660 2800M [kN*m] - 33207 34709 33207 -Keff [kN/m] 75000 6094 8681 6094 75000

    H =12.5 mA1 P1 P2 P3 A2

    H[m] - 25.00 12.50 25.00 -D[m] - 2.50 2.50 2.50 -Mass[ton] 357 970 1007 970 357D - 0.77 4.38 0.77 - [%] 8.00 5.00 16.31 5.00 8.00V [kN] 3420 885 2299 885 3420M [kN*m] - 22134 28737 22134 -Keff [kN/m] 75000 2603 4596 2603 75000

    H = 15.0 mA1 P1 P2 P3 A2

    H[m] - 30.00 15.00 30.00 -D[m] - 2.50 2.50 2.50 -Mass[ton] 357 991 1018 991 357D - 0.64 3.69 0.64 - [%] 8.00 5.00 15.51 5.00 8.00V [kN] 4006 409 1273 409 4006M [kN*m] - 12282 19091 12282 -Keff [kN/m] 75000 1006 2120 1006 75000

    Displacement Pattern Limit Limit Yield

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 20 40 60 80 100 120 140 160 180Position [m]

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    s

    [

    m

    ]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 20 40 60 80 100 120 140 160 180Position [m]

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    s

    [

    m

    ]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 20 40 60 80 100 120 140 160 180Position [m]

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    s

    [

    m

    ]

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0 20 40 60 80 100 120 140 160 180Position [m]

    D

    i

    s

    p

    l

    a

    c

    e

    m

    e

    n

    t

    s

    [

    m

    ]

  • Elastic Modal Superposition witha and w/o R Effective and Modified Modal Superposition

    H = 7.5 m

    H = 10.0 m

    H =12.5 m

    H = 15.0 m

    Design THA Average EMS with R EMS no R EffMS MMS

    0 40 90 140 190 240 2800

    1

    2

    3

    4x 105

    Position [m]

    M

    o

    m

    e

    n

    t

    [

    k

    N

    *

    m

    ]

    0 40 90 140 190 240 2800

    1

    2

    3

    4x 105

    Position [m]

    M

    o

    m

    e

    n

    t

    [

    k

    N

    *

    m

    ]

    0 40 90 140 190 240 2800

    1

    2

    3

    4x 105

    Position [m]

    M

    o

    m

    e

    n

    t

    [

    k

    N

    *

    m

    ]

    0 40 90 140 190 240 2800

    1

    2

    3

    4x 105

    Position [m]

    M

    o

    m

    e

    n

    t

    [

    k

    N

    *

    m

    ]

    0 40 90 140 190 240 2800

    1

    2

    3

    4x 105

    Position [m]

    M

    o

    m

    e

    n

    t

    [

    k

    N

    *

    m

    ]

    0 40 90 140 190 240 2800

    1

    2

    3

    4x 105

    Position [m]

    M

    o

    m

    e

    n

    t

    [

    k

    N

    *

    m

    ]

    0 40 90 140 190 240 2800

    1

    2

    3

    4x 105

    Position [m]

    M

    o

    m

    e

    n

    t

    [

    k

    N

    *

    m

    ]

    0 40 90 140 190 240 2800

    1

    2

    3

    4x 105

    Position [m]

    M

    o

    m

    e

    n

    t

    [

    k

    N

    *

    m

    ]

    Better moment prediction when using effective-stiffness modal superposition (EffMS)

    Some results: irregular bridge

  • Long span concrete bridges with limited ductile piers and with/without in-plane movement joints

    Bridge dimension and shape from real condition limited ductility, significant irregularities in span and pier heights.

    Some different assumption in comparison previous analyses: moment capacities are different at different pier bases. The distribution of shear force is estimated by:

    P,iP,i

    P,i

    VH

    P,iP,i

    P,i

    VH (Ductile column)

    (Elastic column) P,i P ,iP ,i

    P ,i

    VH

    P,i=moment capacity of ith pier as a percentage of the moment capacity of critical pier.

    discretized pier elements with lumped masses have to be considered

    Secant stiffness from:

    23N 1 N 1i i i

    c sec top B ii 1 i 1

    F h hHE I V F H3 2 3

    = =

    = +

  • 3D fiber element model for non linear time-history analyses

    Software: OPENSEESversion 1.7.3 (Fenves et al 2006)

    A Revised Effective Modal Superposition is applied: effective modal superposition with 5% damped acceleration spectrum is used to estimate the abutment shear and deck transverse moment. effective modal superposition with design displacement spectrum scaled down by appropriate system damping is used to calculate the flexural moment demand at the potential plastic hinge locations (when higher modes are equally important as first inelastic mode)

  • Deck properties

    Pier properties

    Substitute structure parameters

    Some results: bridge with in-plan movement joint

    X-axis Y-axis Z-axis19.24 10-set 297.44 647.4

    Cross sectional area (m2)

    Second moment of area (m4) about local

    sys (%) sys (m) Msys (Mt) M (%)8.93 0.726 10230 39.08

    Tsys(s) Ksys (s) VB (kN) SS (%)4 25250 18330 12.70%

    Abut 1 Pier 1 Pier 2 Pier 3 Pier 4 Abut 2M

    (MNm) --- 570 470 440 390 ---

    D (rad/m) --- 0.81x10-3 1.12x10-3 0.63x10-3 0.55x10-3 --- (%) --- 1.6 1.0 1.0 1.0 ---

    Y-axis Z-axis thickness4 7 1.2 20.64

    X-axis Y-axis Z-axis10-set 101.36 35.76

    Dimension (m) along local Sectional area (m2)

    Second moment of area (m4)

    Abut 1 Pier 1 Pier 2 Pier 3 Pier 4 Abut 2V (kN) 4850 29500 22500 16600 19400 3100

    MN (MNm) --- 1355 960 700 880 --- (%) --- 4 2.5 2.5 2.5 ---

    Revised effective modal superposition results

    FBD results

  • Research Unit 10: Structures with Research Unit 10: Structures with passive control (isolation) devicespassive control (isolation) devices

    Tentative displacementTentative displacement--based design methodology based design methodology for both isolated bridges and isolated buildings for both isolated bridges and isolated buildings proposed. proposed.

    Building case study structure selected (4Building case study structure selected (4--storey RC storey RC frame), bridge case study structure still being frame), bridge case study structure still being decided on. decided on.

    Different isolation systems listed & equivalent Different isolation systems listed & equivalent viscous damping considered.viscous damping considered.

    Some issues identified for further study.Some issues identified for further study. Important phases of research listed.Important phases of research listed. Collaboration with other groups not requested. Collaboration with other groups not requested.

  • 0 100 200 300 400 500 600Shear (KN)

    0 100 200 300 400 500 600

    2nd floor

    DDBD ULD TLD JPN SAP 2

    4th floor

    3rd floor

    1st floor

    Isolator

    Case StudyCase Study

    Previous Activities of RU10Previous Activities of RU10Implementation and verification of a DDBD procedure for BIImplementation and verification of a DDBD procedure for BI--

    BuildingsBuildingsDiscrepancies between DDBD predictions and NTHA resultsDiscrepancies between DDBD predictions and NTHA results

    SAP2000

    0

    100

    200

    300

    400

    500

    600

    700

    1 5 0 2 00 2 5 0 3 00

    Target Displacement/Limit Displacement (%)

    (

    m

    m

    )

    0

    100

    200

    300

    400

    500

    600

    7000 5 00 1 000 1 5 00 2 000

    40% 60% 100%80%

    (

    m

    m

    )Elasto-Plastic system (EP) with r=1.5%

    1.1. Rubber Devices (RD)Rubber Devices (RD)

    2.2. Added Damping Added Damping RDsRDs (ADRD)(ADRD)

    3.3. ElastoElasto--Plastic systems (EP)Plastic systems (EP)

    4.4. LeadLead--Rubber Bearings (LRB)Rubber Bearings (LRB)

    5.5. SteelSteel--PTFE Sliding Bearings (SB) + RDPTFE Sliding Bearings (SB) + RD

    6.6. SB + SMA devices with/out viscous dampers (VD)SB + SMA devices with/out viscous dampers (VD)

    7.7. Friction Pendulum Systems (FPS) with/out VDFriction Pendulum Systems (FPS) with/out VD

    8.8. SB + Steel Hysteretic Device (SHD)SB + Steel Hysteretic Device (SHD)

    SAPi

    SAPAV

    DDBD

    Dt/DlimDDBDULDTLDJPN

    SAP

    STOREY SHEAR STOREY SHEAR FORCES FORCES

    Isolation Isolation SystemsSystems

    base displ.floor

  • Activities of RU10 in the second yearActivities of RU10 in the second year

    Experimental Shaking table and PseudoExperimental Shaking table and Pseudo--Dynamic Tests on different reducedDynamic Tests on different reduced--

    scale Models of multiscale Models of multi--storeysstoreys BIBI--BuildingsBuildings

    MOTIVATION: observation of appreciable discrepancies in terms of both max. base displacement and max. storey shear forces between DDBD predictions and NTHA results for some Isolation Systems

    Evaluation of enhanced equivalent static force

    Distributions

    Evaluation of enhanced

    damping ratios &/or damping

    reduction factors

    Experimental Experimental

    Numerical Numerical

    Same iterative procedure as in Same iterative procedure as in BlandonBlandon and Priestley [2005]and Priestley [2005]

    FURTHER DEVELOPMENTS OF THE DDBD FURTHER DEVELOPMENTS OF THE DDBD PROCEDURE FOR BIPROCEDURE FOR BI--BUILDINGSBUILDINGS

    PROPOSED SOLUTIONS

    NTHAsNTHAs of 3of 3--, 5, 5--, 8, 8--storey building Modelsstorey building Modelsequipped with different equipped with different ISsISs (SAP2000)(SAP2000)

    BI-buildings with inelastic superstructure

  • Activities of RU10 in the second yearActivities of RU10 in the second year

    ElastoElasto--Plastic systems (EP)Plastic systems (EP)

    SB + SMA devices without viscous dampersSB + SMA devices without viscous dampers

    Results of the studyResults of the study

    0.00

    0.50

    1.00

    1.50

    2.00

    5 10 15 20 25 30 35 400

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 10 20 30 40 50 60 70

    Ashour

    Tolis Faccioli

    SSN

    prEC8

    FR-ESP

    CHINA

    JPN

    N-H

    Wu Hanson

    EC8

    Iter. Proc.

    optim.i

    f

    i

    f

    /

    i

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0 10 20 30 40 50 60 70

    AshourTolis FaccioliSSNprEC8FR-ESPCHINAJPNN-HWu HansonEC8optim.r=0r=1.5r=3r=5r=10

    f

    i (%)0.00

    0.25

    0.50

    0.75

    1.00

    1.25

    1.50

    0 10 20 30 40 50 60 70

    i

    f

    /

    i

    =10

    =20

    =30

    =40

    =50

    =60

    =70

    i

    f

    /

    i

    i

    f

    %%

    %

    %%

  • Activities of RU10 in the second yearActivities of RU10 in the second year

    ElastoElasto--Plastic systems (EP)Plastic systems (EP) SB + SMA devices without VDSB + SMA devices without VD

    Results of the studyResults of the study

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Dy=10mm, r=1%Dd/Dlim=40%

    Dy=20mm, r=0%Dd/Dlim=60%

    Dy=10mm, r=1%Dd/Dlim=60%

    Dy=15mm, r=3%Dd/Dlim=60%

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Reviewed DDBD

    DDBD

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Dy=5mm, r=5%b=0.5, FR=10%Dd/Dlim=40%

    Dy=5mm, r=3%b=0.3, FR=5%Dd/Dlim=60%

    Dy=10mm, r=5%b=0.5, FR=2.5%

    Dd/Dlim 80%

    Dy=5mm, r=1%b=0.5, FR=2.5%Dd/Dlim=100%

    0

    0.5

    1

    1.5

    2

    2.5

    3

    Reviewed DDBD

    DDBD

    DA

    Vm

    ax(S

    AP)

    /

    Dt

    exact predictions

    ERROR

  • 0 0.5 1 1.5 2 2.5

    S0

    S1

    S2

    S3

    Linear (e)

    Bilinear (g)

    Parabolic (f)

    Pi=f( T2/T1, T1/Tf; Tis/Tf )

    =

    ii

    iibi am

    amVF

    e

    e

    d

    d

    c

    c

    b

    b

    b

    g

    g

    g

    f

    f

    f

    ed

    c

    a

    a

    a

    0 1 5 3 0 4 5

    e

    e

    d

    d

    c

    c

    b

    b

    b

    g

    g

    g

    f

    f

    fe

    d

    c

    a

    a

    a

    0 1 5 3 0 4 5

    e

    e

    d

    d

    c

    c

    b

    b

    b

    g

    g

    g

    f

    f

    fed

    c

    a

    a

    a

    0 1 5 3 0 4 5

    LDRB PGA=0.54g;Tiso/Tbf=3.56

    a: experimentalb: uniform (ITA)c: triangular (ITA/USA)

    g: bilinear

    S3

    S2

    S1

    kNFSB+SHD

    PGA=0.31g;Tiso/Tbf=4.26FSB+SMA

    PGA=0.54g;Tiso/Tbf=3.86

    d: trapezoidal (JPN)e: linearf: parabolic

    S3

    S2

    S1

    S3

    S2

    S1

    90.0

    353.0

    97.5

    Tavola Vibrante

    Celle di carico

    150.0

    90.0

    150.0

    345.0

    Forze statiche equivalenti Forze statiche equivalenti Confronti sperimentaliConfronti sperimentali

  • Attivit svolta nel corso del secondo anno di ricerca

    1. Simulazione numerica delle prove sperimentali eseguite su tavola vibrante presso il PWRI, mediante il codice di calcolo 4GL (Paolucci, 1997)

    2. Calibrazione ed utilizzo del modello costitutivo SFCM, allo scopo di creare abachi che descrivano il decadimento della rigidezza e lincremento di smorzamento del sistema terreno - fondazione

    Research Unit 11: Deep & shallow foundationsResearch Unit 11: Deep & shallow foundations

  • Simulazione delle prove sperimentali su tavola vibrante (PWRI)Fondazione modello posta su tavola vibrante, sollecitata con diversi segnali sismici

  • -0.5-0.25

    00.25

    0.5

    M

    /

    V

    B

    5.5 7.5 9.5 11.5 13.5 15.5Time (s)

    -0.5-0.25

    00.25

    0.5

    M

    /

    V

    B

    Case 2-2

    no degr.

    degr.

    5.5 6 6.5-0.2-0.1

    00.10.2

    M

    /

    V

    B

    observed

    simulated

    Case 2-2

    Simulazione delle prove sperimentali su tavola vibrante (PWRI)

  • Creazione di abachi mediante il modello SFCM

    Obiettivo:Simulazione di prove cicliche, per mettere in evidenza linfluenza di vari parametri progettuali sullandamento delle curve di decadimento della rigidezza e di variazione dello smorzamento

    Calibrazione dei parametri del modello:prove sperimentali eseguite ad Ispra (TRISEE, 1998)

  • Creazione di abachi mediante il modello SFCMAnalisi ed interpolazione dei risultati rigidezza rotazionale

    1E-005 0.0001 0.001 0.01 0.1rotazione (rad)

    0

    0.2

    0.4

    0.6

    0.8

    1

    K

    /

    K

    0

    (

    -

    )

    Vmax/V

    La disposizione dei punti dipende unicamente dal fattore di sicurezza

    0,000000

    0,200000

    0,400000

    0,600000

    0,800000

    1,000000

    1,200000

    0,000100 0,001000 0,010000 0,100000 1,000000

    rotazione (rad)

    K

    /

    K

    0

    maKK += 1

    10

  • 0,000000

    0,200000

    0,400000

    0,600000

    0,800000

    1,000000

    1,200000

    0,000010 0,000100 0,001000 0,010000 0,100000 1,000000

    spostamento u/B (-)

    K

    T

    /

    K

    T

    0

    Creazione di abachi mediante il modello SFCMAnalisi ed interpolazione dei risultati rigidezza traslazionale

    La disposizione dei punti dipende dal fattore di sicurezza e dal valore di h/B

    nbKTKT += 1

    10

    1E-006 1E-005 0.0001 0.001 0.01spostamento normalizzato u/B (m)

    0

    0.2

    0.4

    0.6

    0.8

    1

    K

    T

    /

    K

    T

    0

    (

    -

    )

  • Creazione di abachi mediante il modello SFCMAnalisi ed interpolazione dei risultati smorzamento

    1E-005 0.0001 0.001 0.01 0.1rotazione (rad)

    0

    0.2

    0.4

    0.6

    0.8

    0.1

    0.3

    0.5

    0.7

    s

    m

    o

    r

    z

    a

    m

    e

    n

    t

    o

    (

    -

    )

    La disposizione dei punti dipende unicamente dal fattore di sicurezza

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    0,000100 0,001000 0,010000 0,100000 1,000000

    rotazione (rad)

    s

    m

    o

    r

    z

    a

    m

    e

    n

    t

    o

    (

    -

    )

    dc +=

  • Creazione di abachi mediante il modello SFCMVerifica: confronto con i dati sperimentali:

    PWRI

    Rigidezza rotazionale - sabbia densa (VMAX/V=29.7 - a=5192.13, m=1.02)

    0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0,00001 0,0001 0,001 0,01 0,1 1

    rotazione (rad)

    K

    /

    K

    0

    (

    -

    )

    abacosperimentali

    Rigidezza rotazionale - sabbia mediamente addensata (VMAX/V=16.3 - a=653.02, m=0.788)

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1

    0,00001 0,0001 0,001 0,01 0,1 1

    rotazione (rad)

    K

    /

    K

    0

    (

    -

    )

    abacosperimentali

  • Sintesi risultati ottenutiSintesi risultati ottenuti

    ValidazioneValidazione su dati da tavola vibrante di un modello semplice per lo su dati da tavola vibrante di un modello semplice per lo studio dellstudio dellinterazione dinamica suolointerazione dinamica suolo--struttura in campo nonstruttura in campo non--linearelineare.

    Calibrazione del modello costitutivo SFCM sulla base di prove sperimentali cicliche su modelli di grande scala, e creazione di abachi che descrivano il decadimento della rigidezza e lincremento di smorzamento del sistema terreno - fondazione

  • Research Unit 12: Retaining StructuresResearch Unit 12: Retaining Structures

  • Summary of progress for Summary of progress for LineaLinea IVIV

    Available literature appears to be well Available literature appears to be well researched.researched.

    Some useful DDBD recommendations are Some useful DDBD recommendations are emerging emerging likely that draft model code can likely that draft model code can be formed.be formed.

  • Book on Book on DisplacementDisplacement BasedBased SeismicSeismicDesign of Design of StructuresStructures

    New book New book releasedreleased 2007 2007 withwith a a lotlot of material of material relevantrelevant toto Linea IV.Linea IV.

    ChapterChapter 14 14 includesincludes the the basicsbasics of a of a draftdraft code code forforDBD.DBD.

  • SampleSample PagesPages

    Info to be proposed:

    Design motions

    Performance Criteria

  • SampleSample PagesPagesInfo to be proposed:

    Strain limits

    Drift limits

    Material Strengths

  • SampleSample PagesPages

    Info to be proposed:

    Design displacement profile for different structural types.

    Guidelines for the formation of equivalent SDOF systems

  • SampleSample PagesPages

    Info to be proposed:

    Equivalent viscous damping expressions

    Effective period & stiffness approach

    Design base shear and equivalent lateral forces.

    ... e Capacity Design?

  • LikelyLikely scope of scope of draftdraft model code model code

    RC framesRC frames RC walls & frameRC walls & frame--wallswalls PC structures PC structures capanonecapanone UnreinforcedUnreinforced masonry masonry

    structuresstructures Steel structures Steel structures MRFsMRFs, ,

    CBFsCBFs, BRB frames, BRB frames Composite structures Composite structures --

    MRFsMRFs

    Timber structures Timber structures capanonecapanone con con nodinodi anulareanulare

    Bridges Bridges RC: Regular & RC: Regular & IrregularIrregular

    Isolated structures Isolated structures Retaining structures Retaining structures

    paratiaparatia a a cuneocuneo Foundation Structures Foundation Structures

    piled and pad footingspiled and pad footings

  • GrazieGrazie

    RELUIS Linea di ricerca N.4July 2007 Meeting12 unit di ricercaReview of programme LINEA IVSviluppo del progetto STRUTTURE CONSIDERATE(progettate secondo la procedura DDBD)Research Unit 3: RC Walls & MixedRU 3: Risultati - FBDRU 3: Risultati - DBDRU 3: CONFRONTI CON DIVERSI PROGRAMMI DI CALCOLOResearch Unit 4: Pre-cast structuresResearch Unit 5: Masonry structuresRU5: Case Study structure 1 New ConstructionRU5: Case Study structure 2 Existing ConstructionResearch Unit 6: Steel structuresRU6: CBF considerationsRU6: Displacement contributionsRU6: Case study applicationsRU6: Case study applicationsResearch Unit 7: Composite StructuresRU7: Case study structuresRU7: General design progressResearch Unit 8: Timber StructuresRU8: Portal frame case studyRU8: Displacement considerationsRU8: Factors influencing target displacementsRU8: Factors influencing target displacementsResearch Unit 9: New & existing bridgesResearch Unit 10: Structures with passive control (isolation) devicesSummary of progress for Linea IVBook on Displacement Based Seismic Design of StructuresSample PagesSample PagesSample PagesSample PagesLikely scope of draft model code Grazie