decoherence by quantum phase transition

46
Chang-Pu Sun (孙昌璞) Institute of Theoretical Physics, Chinese Academy of Sciences [email protected] http://www.itp.ac.cn/~suncp Decoherence by Quantum Phase Transition Lecture 4

Upload: others

Post on 18-Dec-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Decoherence by Quantum Phase Transition

Chang-Pu Sun

(孙昌璞)

Institute of Theoretical Physics, Chinese Academy of Sciences

[email protected]://www.itp.ac.cn/~suncp

Decoherence

by Quantum Phase Transition

Lecture 4

Page 2: Decoherence by Quantum Phase Transition

Outlines

2. Quantum Measurement: Model of Decoherence

1. What is quantum decoherence

?

3. Environment induced Decoherence

and Quantum Chaos

5.

Emergence of Decoherence as a Phenomenon in

4. Quantum Phase Transition

Quan, Song , Liu, Zanardi, Sun, PRL, 2006

Page 3: Decoherence by Quantum Phase Transition

( ) ( )txtxdtd ,Hψ,ψi =

Wave Mechanics

Schrödinger Equation

Quantum Mechanics

Wawe function

( ) 2|ψ x, t |

Probability finding Particle

Matrix Mechanics

, Matrix mn mnP Q⎡ ⎤⎢ ⎥→ ⎢ ⎥⎢ ⎥⎣ ⎦

x x ..

x x ..

.. .. ..

[ ], 0Q P ≠

Observable spectrum relates two “orbits”

Q PΔ Δ ∼

Page 4: Decoherence by Quantum Phase Transition

Quantum Measurement Postulate

nncn n →=∑ψ

( )nA n a n=

naMeasuring A, once you obtain , then

nnc nψ =∑

Wave Function Collapse (WFC) !!!

Page 5: Decoherence by Quantum Phase Transition

5’th Solvay

conference (1927)

Quantum Theory –

“Quantum Wave Mechanics”

-

takes flight

“Electrons and photons”

Page 6: Decoherence by Quantum Phase Transition

Particle beam

probe“two slit ” experiment

Wave-Particle Duality

Page 7: Decoherence by Quantum Phase Transition

10 10 CC +=ψ

Page 8: Decoherence by Quantum Phase Transition

Quantum Decoherence

Wave Packet Collapse (WPC)

Page 9: Decoherence by Quantum Phase Transition

Decoherence

in Quantum Measurement

nncn n →=∑ψ nnc

n n2∑→ψψ

Single Particle Picture Ensemble Picture

Page 10: Decoherence by Quantum Phase Transition

Ensemble Explanation For Quantum Measurement

1 1 2 2( ) ( ) ( )n nnx c x c x c xψ φ φ φ= = +∑

2*m n M nn n

c c n m c n nρ ψ ψ ρ= = → =∑ ∑

Vanishing of Diagonal Elements due to QM

interference:

2 2 2 21 1 2 2 1 2 1 2( , ) | | | ( ) | | | | ( ) | * * ( ) ( ) . .x x c x c x c c x x c cρ φ φ φ φ= + + +

Quantum Probability to Classical Probability

Page 11: Decoherence by Quantum Phase Transition

Bohr’s Complementarity

~x pΔ Δi

Particle wave

Matter possesses particleMatter possesses particle--wave duality, but the particle and wave duality, but the particle and wave natures are wave natures are repulsive with each other in a same experimentrepulsive with each other in a same experiment

Uncertainty Principle p k p= + Δ

Page 12: Decoherence by Quantum Phase Transition

Vanishing interference due to Perturbation of Momentum (PM) ?

Nature, 395,33(1998)

PM is Not Unique, Quantum Entanglement

Page 13: Decoherence by Quantum Phase Transition

From Conventional Copenhagen to Modern Point of View for Quantum Measurement

Modern Approach : Zurek, Zeh, Joos, Sun, et al

1.

Need not time to complete QM with WFC for the System (S)2.

Measuring Apparatus (D) must be Classical

van Neuman

Entanglement by interaction between S and D

Decoherence :Classical Correlation from Entanglement By Environment

Copenhagen

Page 14: Decoherence by Quantum Phase Transition

Von-Neumann Model for QM

( )x xφ φ=

IH SP−

=D S interaction measured system

, detectorSX P↔

[ ][ ] [ ]

i

, , 0

X

X S P S

=

= =

,P

X

S s s s

x x x

=

=

( , ) ( ) ( )sx t x t c x st sψ ψ φ= = +∑(0) ( ) sx c sψ φ= ∑

( )x tφ + ( 2 )x tφ + ( 3 )x tφ + ( 3 )x tφ +

Page 15: Decoherence by Quantum Phase Transition

( ) ( )

( )

iSPts

isPs

t e c s

c s e

ψ φ

φ

= ⊗

= ⊗

∑(0) ( )sc sψ φ= ⊗∑

Simple Mathematics

( , ) ( )

|

( )

isPts

s

x t x t

c x e s

c x st s

ψ ψ

φ

φ

=

=

= +

isPte x x st= +

Page 16: Decoherence by Quantum Phase Transition

Ideal Measurement =Schmidt decomposation

a t sΔ Δ( )x tφ + ( 2 )x tφ +

t sΔ

Schmidt decomposition

sk n n nc s k bψ χ φ= ⊗ = ⊗∑ ∑

m n mn m nχ χ δ φ φ= =Overlaps :

a t sΔ Δ∼( )x tφ + ( 2 )x tφ +

t sΔ

Page 17: Decoherence by Quantum Phase Transition

Stern-Gerlach

Experiment

( ) ( )0 0 1 Dψ α β= + ⊗

( )2

2 zpH g B zM

σ= +

2

2exp4xx Dσ

⎡ ⎤−⎢ ⎥⎣ ⎦

Page 18: Decoherence by Quantum Phase Transition

( ) ( ) 1 00 1 0t D Dψ ψ α β→ = ⊗ + ⊗

( ) ( )2

1 or 0 exp2px D x iB z i DM

⎧ ⎫= ± −⎨ ⎬

⎩ ⎭

Dynamic Schmidt Decomposation

Page 19: Decoherence by Quantum Phase Transition

Reduced Density Matrix

( ) B z kz∼

( ) ( )2 2

( |)

1 1 0 0 * 1 0 .

s DTr t t

F h c

ρ ψ ψ

α β αβ

=

+ + +

{ }2 2 2 41 0 exp 2 0tF D D a f t tξ →∞= = − − ⎯⎯⎯→

Deacying Decoherence Factor

Page 20: Decoherence by Quantum Phase Transition

SH C P= Ultra-Relativistic particle + N Spin Array

Model Hamiltonian

HEPP-Coleman Model

HI ∑j1

N12 Vx − j ct1 302j,

(Hepp,1975, Sun ,1993)

Page 21: Decoherence by Quantum Phase Transition

UIt j1

N

e−iFx−jct2j 12 130

Fx − j ct −

tVx − j ct ′dt ′ 1

c −x−jct

Vydy

Ut|↑ 0 ⊗ |↓ ⊗ ⊗ |↓ |↑ 0|↑ ⊗. . .⊗|↑,Ut|↓ 0 ⊗ |↓ ⊗ ⊗ |↓ |↓ 0 ⊗ |↓ ⊗ ⊗ |↓

Ujt|↓ |uj − sin Fx − jcos Fx − j

Vxdx

2

Exact Solution

Page 22: Decoherence by Quantum Phase Transition

ΔSz 12 ∑

j1

N

⟨t|3j|t 12 N ||2 ∑

j1

N

sin2Fx − j

sin2Fx − j ≃ F2x − j ΔSz 2NV2t2

N → V N g→

FN, t j1

N

⟨↓ |uj j1

N

cos Fx − j

|cos Fx − j|≤ 1

Decoherence

due to the macroscopicness

Page 23: Decoherence by Quantum Phase Transition

Principle Difficulty :

Uncertainty inEntanglement

Entanglement Quantum Mesurement ≠

12

112

1 0 ,

D D D± −

± = ±⎡ ⎤⎣ ⎦= ⎡ ⎤⎣ ⎦∓

11 02

12

1, 0,

, ,

D D

D D

η

+ −

= −⎡ ⎤⎣ ⎦= + − −⎡ ⎤⎣ ⎦

Page 24: Decoherence by Quantum Phase Transition

QM Needs Classical Correlation

2 21 1 0 01, 1, 0, 0,D D D Dα β+

n n n nn nnC n D B S A⊗ = ⊗∑ ∑

nDn ⊗ nn AS ⊗or

Page 25: Decoherence by Quantum Phase Transition

Zurek

Triple Model

( )1

2

ES2 z

H

pH g B z HM

σ= + +

Interaction with Screen

Zurek: Environment Induced Decoherence

( ) ( )0 0 1 D Eψ α β= + ⊗ ⊗

( ) 2 2SD 1 1 0 01, 1, 0, 0,ETr D D D Dρ ψ ψ α β= = +

Step 1: ( ) ( )1 01 0 1 0D E D D Eα β α β+ ⊗ ⊗ → ⊗ + ⊗ ⊗

( )1 0 1 1 0 01 0 1 0D D E D E D Eα β α β⊗ + ⊗ ⊗ → ⊗ ⊗ + ⊗ ⊗0 1 0E E =

Step 2:

Page 26: Decoherence by Quantum Phase Transition

More About Environment induced decoherence

ESSE HHHH ++=

( ) ( ) ( ),0 0 0 ;S D Eψ φ ϕ= ⊗Initial state: ( )0SD g eC g C eφ = +

State evolution: ( ) ( ) ( )teCtgCt eegg ϕϕψ ⊗+⊗=

( ) ( ) ( ) ,0exp EtiHt ϕϕ αα −= ( )eg,=α

C.P. Sun, Phys. Rev. A (1993).

K. Hepp, Hev. Phys. Acta, 45, 237 (1972).J.S. Bell, Hev. Phys. Acta, 48, 93 (1975).

Page 27: Decoherence by Quantum Phase Transition

( ) ( ) ( )( ) eeCggCttTrt egES22

+== ψψρ

( ) ( ) ( ) ( )g e e gge g eC C e gt t gt Ct C eϕ ϕ ϕ ϕ∗ ∗+ +

Reduced density matrix of the system:

( ) ( )1

N

e g j jj

t t e gϕ ϕ=

=∏

Decoherence due to Factorization :

0 5 10 15 200.0

0.2

0.4

0.6

0.8

1.0

D(T

,t)

ωZt

α2=10 α2=1 α2=0.1

C.P. Sun , PRA, 1993

Page 28: Decoherence by Quantum Phase Transition

Decoherence

due to Quantum Chaos

Classical Chaos: Butterfly Effect:

Slightly different initial condition leads

to exponential divergence of trajectories

Same Dynamics

Slightly differentinitial condition

Largely differentFinal State

Zurek,Nature,412,712(2001);

PRL, 89,170405 (2002)

Page 29: Decoherence by Quantum Phase Transition

No Butterfly Effect in Quantum Mechanics? Quantum Chaotic Environment :

Unitary Transformation

†0 1 0 1

0 1

( ) ( ) (0) | ( ) ( ) (0)

(0) (0)

E t E t E U t U t E

E E

=

=

Peres, Conception of Quantum Chaos ,1995

Same initial state evolve according to two slightly different Hamiltonian

U1

U2†

0 1( ) ( ) | ( ) ( ) 0E t E t E U t U t E= =

1( )E t

0( )E t

E

1(0)E

1(0)E1( )E t

1( )E t

Page 30: Decoherence by Quantum Phase Transition

Quantum phase transition (QPT)

Ising

model in a transverse field

( )0 1 1x z zj j j

jJ gH H H σ σ σ += + = − +∑

Quasi-

classical dynamics

Quasi-

classical dynamics

12

Gg

→→→→ →→ → → → →= − −←← →

2gG ↑ = − −↑↑↑ ↑↑↑↑ ↑ ↑↑ ↑↑↓↑:1<<g

:1>>g

Page 31: Decoherence by Quantum Phase Transition

Motivation (uncertainty relation)

In decoherence

process, e.g., vanishing of interference paptern, the randomness of relative phase has its source in uncertainty relation

In QPT, the quantum fluctuation is also due to the uncertainty relation

Is there any intriguing relation between them???

Page 32: Decoherence by Quantum Phase Transition

Generalized Hepp-Coleman model:

( )1+− += ∑ x z zj j j

j

J eH g e σ σ σ

e

g

z zjg j j 1H J += − σ σ∑

( )e e g eH H H V= λ = +

xje jV J .= −λ σ∑

Ising

model in a transverse field

Page 33: Decoherence by Quantum Phase Transition

Exact solution of Loschmidt

echo

( ) ( )kke e k kH A A 1/ 2+λ = ε −∑

( )( )k k 2e e ( ) 2J 1 2 cos kaε = ε λ = + λ − λ

[ ] [ ] [ ]( )ikal

x k kk s e l e l

l s l

eA u iv ,N

−+ −

<

= σ σ − σ∑ ∏

K=2n/Na

ke ( )ε λ

c 1λ = λ =

Large N

Finite N

Page 34: Decoherence by Quantum Phase Transition

Ground states

g gG ......= ↓↓ ↓

( ) ( )k k k kg ek 0

G icos sin A A G+ +−

>

⎡ ⎤= α + α⎣ ⎦∏

( ) ( ) ( )k k k k kB cos A isin A ,+

± ±= α − α ∓

k gB G 0=

k eA G 0=

z zjg j j 1H J += − σ σ∑z z x

j je j j 1 jH J J+= − σ σ − λ σ∑ ∑

Page 35: Decoherence by Quantum Phase Transition

( ) [ ] gt exp iH t Gα αϕ = −

( ) ( ) ( )2 2g eL( , t) | D t | | t | t |λ = = ⟨ϕ ϕ

Decoherence

&

Loschmidt

echo

( ) ( )s eg g e[ t ] c c D t∗ρ =

( ) ( ) ( )g eD t t | t= ⟨ϕ ϕ

Reduced Density matrix

Loschmidt echo

( ) ( )2 2 kk e

k 0

L( , t) [1 sin 2 sin t ].>

λ = − α ε∏

Page 36: Decoherence by Quantum Phase Transition

Loschmidt

echo

via Local density of state

( ) tL t e γ−∼

2( ) ( ) = | | | ( ),i ts s

s

L L t e dt G E Eωω δ ω−= ⟨ ⟩ −∑∫

2 2

1( )( )

L ωω γ−Ω +

Page 37: Decoherence by Quantum Phase Transition

A heuristic analysis

cK

c kk 0

L ( , t) F L( , t),>

λ ≡ > λ∏ cKk 0c kS( , t) ln L | ln F |>λ = ≡ −∑

( )2

2c2

E(K )S( , t) sin 2J[1 ]t(1 )λ

λ ≈ − − λ− λ

( )2cL ( , t) exp tλ ≈ −γ

2 2c c c cE(K ) 4 N (N 1)(2N 1) /(6N )= π + +

2c4J E(K )γ =

[ ] ( )22 2ksin 2 k a /(1 )α ≈ λ − λ

ke 2J |1 |ε ≈ − λ

Page 38: Decoherence by Quantum Phase Transition

Numerical results: far from the critical point

Our result: Unpublished ,

but even posted in Arxive before the PRL paper

( )2cL ( , t) exp tλ ≈ −γ

Short time behavior

Page 39: Decoherence by Quantum Phase Transition

Universality of Loschmidt

Echo

transverse field Ising model

Cucchietti, Fernandez-Vidal, Paz, quantph/0604136

Boson Habburd model

( )2cL ( , t) exp ut F(t)λ ≈ −

Coupling independent u

Page 40: Decoherence by Quantum Phase Transition

Numerical results : near the critical point

Large N

Small N

Page 41: Decoherence by Quantum Phase Transition

⊗⊗ ⊗ ⊗ ⊗

Implementation :Superconducting Quantum Network

Circuit QED for Charge Qubit array

Page 42: Decoherence by Quantum Phase Transition

( ) ( ) ( 1)0 [ ] ( )x z zH h B α α α

α α

λ λ σ σ σ += ≡ +∑ ∑

: / 0.05mNEC C CΣ ≈

( )†x a aφ η= +

( )1/ 2( / ) /S d l Lη ω=

( )† † † ( )F xH a a g a a aa α

α

ω σ= − +∑

Model Hamiltonian

Page 43: Decoherence by Quantum Phase Transition

0 0

| ,k kkk k

G O O−> >

= − ≡∏ ∏

Pseudo-Spin Representation:

† †

† †

† †

1,

,

.

zk k k k k

xk k k k k

yk k k k k

S

S i

S

γ γ γ γ

γ γ γ γ

γ γ γ γ

− −

− −

− −

= + −

= +

= −( )

0k

kn nH H>= ∑

( ) ( cos2 sin 2 )kn nk zk nk xk nkH S Sε α α= +

0

k km niH t iH t

mn kk

D e e−

>

= − −∏

Page 44: Decoherence by Quantum Phase Transition

Summary and conclusion1.

We establish the connection between the QPT and the decoherence

for the first time.

2. We obtain the decohence

factor (Loschmidt

echo) quantitatively through the exact calculation

3. Both the analysis and the numerical result confirm our assumption that the quantum critical behavior of the environment strongly enhances its ability of inducing decoherence.

4. A possible physical implementation is proposed based on the superconducting Circuit QED

Page 45: Decoherence by Quantum Phase Transition

Recent Objectives and Their Status

Quantum Information Quantum Physics

Sources of Decoherence in Multi-Qubit System (esp. in Solid State System, 1/f)

Decoherence Models for Many Body System with Inner or External Environment

Protocols for Quantum Storage and Memory

Exotic Light Propagation in Coherence Medium

Quantum Information Transfer for Multi-Qubits

Correlation in Engineered FM (AF) Quantum Spin Chain

Quantum State Control for Quantum Open System

Fast Quantum Logic Gate with Noise Suppression

Non-Desolation Readout of Quantum Information

Theory of Quantum Measurement in Practice

?

We have worked More

We have initialed some

We are ready to work

?

?

Page 46: Decoherence by Quantum Phase Transition