decoherence in flux qubits - umdkosborn/index_files/disq/071206... · 2007. 12. 10. · decoherence...

36
Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN Frontier Research System CREST-JST • Measurement of T 1 , T 2 – qubit as a spectrum analyzer • Longer T 1 samples • Flux qubit in a cavity

Upload: others

Post on 24-Feb-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Decoherence in flux qubits

Yasunobu Nakamura

NEC Nano Electronics Research LaboratoriesRIKEN Frontier Research SystemCREST-JST

• Measurement of T1, T2 – qubit as a spectrum analyzer• Longer T1 samples• Flux qubit in a cavity

Page 2: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

YuriPashkin

AnttiNiskanen

ShenTsai

OlegAstafiev

KhalilHarrabi

MichioWatanabe

TsuyoshiYamamoto

FumikiYoshihara

KazuakiMatsuba

TiefuLi

YasuNakamura

HyunsikIm

FarrukhAbdumalikov

Page 3: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Study of decoherence

= Characterization of environment• Qubit as a tool for investigating its environment

environment

interaction

qubit

tunabletunable

Charge-flux: Cottet 2002, Ithier 2005 (Saclay)Charge: Astafiev 2004 (NEC), Duty 2004 (Chalmers)Flux: Bertet 2005 (Delft), Yoshihara 2006 (NEC), Kakuyanagi 2007 (NTT)Phase: Simmonds 2004, Cooper 2005, Martinis 2005 (NIST/UCSB)

Steffen 2006, Bialczak 2007 (UCSB), Claudon 2006 (Grenoble)

Page 4: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Possible decoherence sources

phonons?

photons?

magnetic-field noise?

charge fluctuations?

paramagnetic/nuclear spins?

trapped vortices?

charge/Josephson-energy fluctuations?

quasiparticletunneling?

environment circuit modes?

Page 5: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Flux qubit: Hamiltonian and energy levels

J.E. Mooij et al. Science 285, 1036 (1999)

0.8 1.0 1.2-100

0

100

Energy (GHz)

γq/πnφ/nφ* nφ*=0.5

Page 6: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Sensitivity to noises

relaxation

dephasing

transverse coupling

longitudinal coupling

nφ-nφ*

Page 7: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Estimation of decoherence time

• EJ-fluctuation can be the largest contribution

4JJ flux qubit @ optimal bias point

preliminaryJ. Koch et al. PRA 76, 042319 (2007)

cf. transmon and CPB

constraints:

Page 8: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Flux qubit: experimental setup

Rabi oscillationsresonant microwave pulse

visibility~79.5%

Page 9: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Energy relaxation

relaxation and excitation

for weak perturbation: Fermi’s golden rule

ex. Johnson noise in ohmic resistor R

spontaneous emission

absorption

zero-point fluctuation of environment

• qubit energy E01 variable• relaxation ∝ S(+E01 ) and excitation ∝ S(-E01 )⇒ quantum spectrum analyzer

U. Gavish et al.R. Aguado and L. KouwenhovenR. Schoelkopf et al.O. Astafiev et al.

Page 10: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

T1 vs f: flux bias dependence

80

70

60

50

Switc

hing

pro

babi

lity

(%)

1.61.20.80.40.0Time ( µs)

π ~ 4ns

delay readout pulse

E01 /h (G

Hz)

E01

initialization to ground state is better than 90%⇒ relaxation dominant⇒ classical noise is not important

at qubit frequency ~ 5 GHz

Page 11: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Γ1 vs E01: qubit energy dependence

• Data from both sides of spectroscopy coincide

• Floor at high-frequency

• Random high-frequency peaks• Broad structure at low frequency

• Depends on SQUID bias pointE01/h (GHz)sample3

E01/h (GHz)sample5

Page 12: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Gamma_1 at different flux bias

Page 13: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Dephasing

free evolution of the qubit phase

dephasing

sensitivity of qubit energy to the fluctuations of external parameter

tunable

information of S(ω) at low frequencies

tunablefor Gaussian fluctuations

Page 14: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Dephasing: T2Ramsey, T2echo measurement

π/2~2ns π/2

t

correspond to detuning

readout pulse

Ramsey interference (free induction decay)

0.01 0.1 1 10 100freq.

0.20.40.60.8

1

thgiew

[1/t]

π/2π ~ 4ns

t/2

readout pulse

π/2~2ns

t/2

spin echo

0.01 0.1 1 10 100freq.

0.20.40.60.8

1

thgiew

[1/t]

Page 15: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Optimal point to minimize dephasing

Ib

nφ• two bias parameters– External flux: nφ=Φex/Φ0

– SQUID bias current Ib

E01 (GHz)

Ib

G. Burkard et al. PRB 71, 134504 (2005); P. Bertet et al. PRL 95, 257002 (2005).

Page 16: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

T1 and T2echo at optimal point nφ=nφ*, Ib=Ib*

T1=545±16ns

Echo decay time is limited by relaxation

Pure dephasing due to high frequency noise (>MHz) is negligible

Page 17: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Echo at nφ≠nφ*, Ib=Ib*

consistent with 1/f flux noise

do not fit

No high-frequency cut-off (soft nor hard)below ~1 MHz

Page 18: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

1/f noise cut off dependence

Page 19: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

ΓϕRamsey, Γϕecho vs nφ : flux bias dependence

Red lines: fit

For

Flux noise, not charge noise nor critical current noise

F. Yoshihara et al. PRL 97, 167001 (2006)

Page 20: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Dephasing due to photon number fluctuations in SQUID plasma mode

D.I. Schuster et al. PRL 94, 123602 (2005); P. Bertet et al. Phys. Rev. Lett. 95, 257002 (2005).

thermal fluctuation of photon number in resonator ⇒ dephasing of qubit

κ: cavity decay

exponential decay

Red: dephasing due to 1/f flux noisequbit + resonator

Page 21: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

1/f flux noise: sample dependence

3 4.58 242.9 11.0 1.63

5 5.08 246.4 9.68 1.406 3.85 229.5 18.7 2.90

11 6.07 232.6 10.1 1.5514 5.45 132 4.9 1.32Loop area ~3 µm2

7±3x10-6 [Φ0] SQUID~2500-160000 µm2 F.C.Wellstood et al. APL50, 772 (1987)1.5x10-6 [Φ0] phase qubit ~10000 µm2 (gradiometer) R.C. Bialczak et al. PRL 99, 187006 (2007)~ 1x10-6 [Φ0] flux qubit ~1000 µm2 (Berkeley, unpublished)~ 1x10-6 [Φ0] flux qubit ~ 25 µm2 K. Kakuyanagi et al. PRL 98, 047004 (2007)

Loop size independent?

Page 22: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Optimal point to minimize dephasing

Ib

nφ• two bias parameters– External flux: nφ=Φex/Φ0

– SQUID bias current Ib

E01 (GHz)

Ib

G. Burkard et al. PRB 71, 134504 (2005); P. Bertet et al. PRL 95, 257002 (2005).

Page 23: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Γ1, ΓϕRamsey, Γϕecho vs Ib : bias current dependence

relaxation:

Increase |Ib-Ib*| ⇒ selectively introduce Ib noise coupling

F. Yoshihara et al. PRL 97, 167001 (2006).

•exponential decay

dephasing:

•inefficient echo

Yu. Makhlin and A. Shnirman, PRL92, 178301 (2004);G. Burkard et al. PRB71, 134504 (2005).

Page 24: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Summary• T1, T2 measurement in flux qubit, T1,T2echo~ several µs• dependence on flux bias and SQUID-current bias conditions⇒ characterization of environment

Optimal point nφ=nφ*, Ib=Ib*

T1 limited echo decayPure dephasing due to low freq. noise

nφ=nφ*, Ib≠Ib*

‘white’ Ib noise dominant

nφ≠nφ*, Ib=Ib*

1/f flux noise dominant

Open questions: -T1 vs flux bias-residual dephasing at optimal point-origin of 1/f flux noise

Page 25: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Effect of environment circuit design

R-environmentwith large Cshunt

LC-environmentwith less Cshunt

Page 26: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Single qubit 06-06-06 with on-chip LC filter

SQUIDplasmamode

Res

onan

ce in

the

LC

filte

r

Page 27: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Rabi measurements at optimal point

0 1 2 3 4-5

0

5

t(µ s)0 1 2 3 4

-5

0

5

t(µ s)

0 1 2 3 4-5

0

5

t(µ s)0 1 2 3 4

-5

0

5

t(µ s)

0 1 2 3 470

75

80

t(µ s)0 1 2 3 4

80

85

90

t(µ s)

Psw

(%)

strong driving

weak driving

T2Rabi ~ 6 µs(corrected for drift)

Page 28: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Relaxation at optimal point last logs of T1T2 B=opt Ipre=0.311opt2.lvd

0 5 10 15 20 25 3029

30

31

32

33

34

35

36

37

38

time (µ s)

Psw

(%)

T1 = 6.3 µs

Page 29: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Ramsey at optimal point last logs of T1T2 B=opt Ipre=0.311opt2.lvd

0 0.5 1 1.5 2 2.5 331

32

33

34

35

36

37

38

39

time (µ s)

Psw

(%)

T2Ramsey = 2.7 µs

Page 30: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Echo at optimal point last logs of T1T2 B=opt Ipre=0.311opt2.lvd

0 5 10 15 20 25 3031.5

32

32.5

33

33.5

34

34.5

35

35.5

36

time (µ s)

Psw

(%)

T2echo = 3.7 µs

Page 31: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Sample with best coherence

On-chip resistors were replaced by superconducting leads by mistake

∆/h=2.557 GHz, IP=157 nA2.3 µΦ0/Hz1/2 @ 1Hz

Page 32: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

A. Abdumalikov, Jr.O. AstafievFlux qubit in a cavity: sample design

Nb – main part of the resonator

Qubit

SOG – isolator, used only for test structures

Al – adjust coupling of the resonator and qubit

Resonator quality factor is defined by the form of this Al island

chip size: 2.5 × 5 mm

Page 33: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Spectroscopy

• Plot shows the change of the phasedip when peak when

Page 34: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Vacuum Rabi splitting

fit:

Page 35: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Relaxation time (continuous measurement)

• measured by sweeping the pulse period– Pulse width was 10 ns

• T1= 0.73 µs – Qubit frequency

E01/h = 8.4 GHz– Coupling to cavity

gsinθ/h = 30 MHz

• E01 dependence

Page 36: Decoherence in flux qubits - UMDkosborn/index_files/DISQ/071206... · 2007. 12. 10. · Decoherence in flux qubits Yasunobu Nakamura NEC Nano Electronics Research Laboratories RIKEN

Remarks

•Qubit is powerful tool to analyze its environment

What we have tried and we have been trying

• Flux bias point dependence (nφ*=0.5, 1.5, 2.5; up to 20 Gs)• T1 depends on bias point – coupling to the SQUID is different• T2echo, T2Ramsey are almost independent ~ 20% variation

• Area dependence• 4 times larger qubit – flux noise 3.6 µΦ0/Hz-1/2

• Qubit with small ∆/h~50 MHz• Long T1 ~ 5 ms• Consistent with flux noise contribution• However, does not necessarily mean flux noise contribution

• Spin locking• Temperature dependence of T1• Qubit with variable ∆• Superconducting leads