이산수학(discrete mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf ·...

15
이산수학 이산수학(Discrete Mathematics) (Discrete Mathematics) 이산수학 이산수학(Discrete Mathematics) (Discrete Mathematics) 집합 집합 (Set) (Set) 2011 2011년 봄학기 봄학기 강원대학교 강원대학교 컴퓨터과학전공 컴퓨터과학전공 문양세 문양세

Upload: others

Post on 30-Jun-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

이산수학이산수학(Discrete Mathematics) (Discrete Mathematics) 이산수학이산수학(Discrete Mathematics) (Discrete Mathematics) 집합집합 (Set)(Set)집합집합 (S )(S )

20112011년년 봄학기봄학기

강원대학교강원대학교 컴퓨터과학전공컴퓨터과학전공 문양세문양세강원대학교강원대학교 컴퓨터과학전공컴퓨터과학전공 문양세문양세

Page 2: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Introduction to SetsIntroduction to Sets1.6 Sets

정의

• 집합(set)이란 순서를 고려하지 않고 중복을 고려하지 않는 객체(object)들의 모임이다.

• A set is a new type of structure, representing an unordered collection (group) of zero or more distinct (different) objects.

Basic notations for sets• For sets, we’ll use variables S, T, U, …

We can denote a set S in writing by listing all of its elements in curly braces { and }:• We can denote a set S in writing by listing all of its elements in curly braces { and }:

{a, b, c} is the set of whatever three objects are denoted by a, b, c.

• Set builder notation: {x|P(x)} means the set of all x such that P(x).

원소 나열법 (예: {…, -3, -2, -1, 0, 1, 2, 3, …})

조건 제시법 (예: {x | x is an integer})

Discrete Mathematicsby Yang-Sae MoonPage 2

Page 3: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Basic Properties of SetsBasic Properties of Sets1.6 Sets

Sets are inherently unordered: (순서가 중요치 않다!)

• No matter what objects a, b, and c denote,No matter what objects a, b, and c denote,

{a, b, c} = {a, c, b} = {b, a, c} = {b, c, a} = {c, a, b} = {c, b, a}.

All elements are distinct (unequal); multiple listings make no difference! (중복은 의미가 없다!)

• If a=b, then {a, b, c} = {a, c} = {b, c} = {a, a, b, a, b, c, c, c, c}.

• This set contains at most two elements!

Discrete Mathematicsby Yang-Sae MoonPage 3

Page 4: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Definition of Set EqualityDefinition of Set Equality1.6 Sets

Two sets are declared to be equal if and only if they contain exactly the same elements.y(동일한 원소들로 이루어진 두 집합은 동일하다.)

In particular, it does not matter how the set is defined or denoted. (집합의 equality에서 정의나 표현은 중요치 않다.)

For example: The set {1, 2, 3, 4} = For example: The set {1, 2, 3, 4} {x | x is an integer where x > 0 and x < 5 } = {x | x is a positive integer whose square is >0 and <25}{ | p g q }

Discrete Mathematicsby Yang-Sae MoonPage 4

Page 5: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Infinite Sets (Infinite Sets (무한무한 집합집합))1.6 Sets

Conceptually, sets may be infinite (i.e., not finite, without end, unending). (집합은 무한할 수 있다. 무한집합), g) ( 있 )

Symbols for some special infinite sets:• N = {0, 1, 2, …} The Natural numbers. (자연수의 집합)

• Z = {…, -2, -1, 0, 1, 2, …} The Zntegers. (정수의 집합)

Z+ {1 2 3 } Th iti i t (양의 정수의 집합)• Z+ = {1, 2, 3, …} The positive integers. (양의 정수의 집합)

• Q = {p/q | pZ, qZ, q0} The rational numbers. (유리수의 집합)

• R = The Real numbers such as 3 141592 (실수의 집합)• R = The Real numbers, such as 3.141592… (실수의 집합)

Infinite sets come in different sizes!(무한집합이라도 크기가 다를 수 있다.) We will cover it in $3.2.

Discrete Mathematicsby Yang-Sae MoonPage 5

Page 6: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Venn DiagramsVenn Diagrams1.6 Sets

Discrete Mathematicsby Yang-Sae MoonPage 6

Page 7: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

원소원소(Elements or Members)(Elements or Members)1.6 Sets

xS (“x is in S”) is the proposition that object x is an lement or member of set S. (x는 S의 원소이다.)

• e.g. 3N, ‘a’{x | x is a letter of the alphabet}

C d fi t lit i t f l ti• Can define set equality in terms of relation:(원소 기호를 사용한 두 집합의 동치 증명)

S = T x(xS xT) x(xT xS) x(xS xT)“Two sets are equal iff they have all the same members.”

S ( S) “ i t i S” 는 의 원소가 아니다xS (xS) “x is not in S” (x는 S의 원소가 아니다.)

Discrete Mathematicsby Yang-Sae MoonPage 7

Page 8: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

공집합공집합(Empty Set)(Empty Set)1.6 Sets

(“null”, “the empty set”) is the unique set that contains no elements. (공집합()이란 원소가 하나도 없는 유일한 집합이다.)

= {} = {x|False}

{}

공집합을 원소로 하는 집합

공집합

공집합을 원소로 하는 집합

Discrete Mathematicsby Yang-Sae MoonPage 8

Page 9: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Subsets(Subsets(부분집합부분집합) and Supersets() and Supersets(모집합모집합))1.6 Sets

S T (“S is a subset of T”) means that every element of Sis also an element of T. (S의 모든 원소는 T의 원소이다.)

S T x (xS xT)

S, S S (모든 집합은 공집합과 자기 자신을 부분집합으로 가진다.)

S T (“S is a superset of T”) means TS.

Note S = T (S T) (S T)

S T means (S T) i e ( S T)S T means (S T), i.e. x(xS xT)

Discrete Mathematicsby Yang-Sae MoonPage 9

Page 10: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Proper Subsets & SupersetsProper Subsets & Supersets1.6 Sets

S T (“S is a proper subset of T”) means that S T

but T S Similar for S Tbut T S. Similar for S T.(S가 T에 포함되나 T는 S에 포함되지 않으면, S를 T의 진부분집합이라 한다.)

Example:

S

p{1,2} {1,2,3}

ST

Venn Diagram equivalent of S T

Discrete Mathematicsby Yang-Sae MoonPage 10

Page 11: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Sets are Objects, Too!Sets are Objects, Too!1.6 Sets

The objects that are elements of a set may themselves be sets. (집합 자체도 객체가 될 수 있고, 따라서 집합도 다른 집합의 원소가 될 수 있다.)

For example, let S={x | x {1,2,3}}p , { { , , }}

then S={ , {1} {2} {3}{1}, {2}, {3},{1,2}, {1,3}, {2,3},{1,2,3} }{ , , } }

Note that 1 {1} {{1}} !!!!{ } {{ }}

Discrete Mathematicsby Yang-Sae MoonPage 11

Page 12: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Cardinality and FinitenessCardinality and Finiteness1.6 Sets

|S| (read “the cardinality of S”) is a measure of how many different elements S has.(|S|는 집합 S의 원소 중에서 서로 다른 값을 가지는 원소의 개수이다.)

E.g., ||=0, |{1,2,3}| = 3, |{a,b}| = 2,

|{{1,2,3},{4,5}}| = ____|{{ , , },{ , }}| ____

If |S|N, then we say S is finite.

Otherwise, we say S is infinite.

What are some infinite sets we’ve seen?

Discrete Mathematicsby Yang-Sae MoonPage 12

Page 13: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Power Sets (Power Sets (멱집합멱집합))1.6 Sets

The power set P(S) of a set S is the set of all subsets of S.

P(S) {x | x S} (P(S)는 집합 S의 모든 부분집합을 원소로 하는 집합)P(S) = {x | x S} (P(S)는 집합 S의 모든 부분집합을 원소로 하는 집합)

Examples:

• P({a,b}) = {, {a}, {b}, {a,b}}.

• P() = {}, P({}) = {, {}}.

Sometimes P(S) is written 2S.

Note that for finite S |P(S)| = |2S|= 2|S|Note that for finite S, |P(S)| = |2 |= 2| |.

It turns out that |P(N)| > |N|.

There are different sizes of infinite sets!(자연수 집합의 power set의 크기가 자연수 집합보다 크다?!)

Discrete Mathematicsby Yang-Sae MoonPage 13

Page 14: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Ordered Ordered nn--tuplestuples1.6 Sets

Ordered n-tuples are like sets, except that duplicates matter, and the order makes a difference.,(Ordered n-tuple에서는 원소의 중복이 허용되고, 순서도 차이를 나타낸다.)

For nN an ordered n-tuple or a sequence of length n is For nN, an ordered n-tuple or a sequence of length n is written (a1, a2, …, an). The first element is a1, etc.

Note (1 2) (2 1) (2 1 1)Note (1, 2) (2, 1) (2, 1, 1).

순서가 중요함(의미를 가짐)

중복이 허용됨(의미를 가짐)

Empty sequence, singlets, pairs, triples, quadruples, …,

순서가 중요함(의미를 가짐)

p y q , g , p , p , q p , ,n-tuples.

Discrete Mathematicsby Yang-Sae MoonPage 14

Page 15: 이산수학(Discrete Mathematics) › ~ysmoon › courses › 2011_1 › dm › 06.pdf · 2016-06-02 · Discrete Mathematics Page 13 by Yang-Sae Moon. Ordered n--tuplestuples 1.6

Cartesian ProductsCartesian Products1.6 Sets

For sets A, B, their Cartesian product

A B = {(a b) | aA bB }A B = {(a, b) | aA bB }.(a가 A의 원소이고 b가 B의 원소인 모든 순서쌍(pair) (a, b)의 집합이다.)

E.g. {a,b}{1,2} = {(a,1),(a,2),(b,1),(b,2)}

Note that for finite A B |A B| |A||B|Note that for finite A, B, |AB|=|A||B|.

Note that the Cartesian product is not commutative: Note that the Cartesian product is not commutative: AB: AB=BA (Cartesian product는 교환법칙이 성립하지 않는다.)

E { b} {1 2} {1 2} { b} {(1 ) (1 b) (2 ) (2 b)}• E.g. {a,b}{1,2} {1,2}{a,b} = {(1,a),(1,b),(2,a),(2,b)}

A1 A2 A = {(a1 a2 a ) | aiAi i = 1 2 3 n}

Discrete Mathematicsby Yang-Sae MoonPage 15

A1 A2 … An = {(a1, a2, …, an) | aiAi, i = 1, 2, 3, …, n}