dálkové studium 2013 elektrické měření v. provazník měřicí ... · vzduchové tlumení...

21
Dálkové studium 2013 Elektrické měření V. Provazník 1 Měřicí metody Metoda přímá – přístroj je ocejchován přímo v jednotkách měřené veličiny např. V, A, atd. Metoda nepřímá - měřená veličina se vypočítá nebo, odvodí (změříme U a I a vypočítáme R) Druhy chyb a jejich vyjadřování a) Soustavné (systematické – nepřesnost měřicích přístrojů, metod měření, výsledek můžeme opravit korekcí) b) Nahodilé (náhodné – působení magnetického nebo elektrického pole, teploty. Zprůměrujeme několik měření) c) omyly Absolutní a relativní chyba Zjištěná hodnota veličiny měřením se vždy liší od hodnoty skutečné. Tento rozdíl vyplývá z principiálních fyzikálních důvodů. Absolutní chyba: Jde o chybu měření, kterou se rozumí rozdíl mezi hodnotou naměřenou Xm a skutečnou Xs: Reálnými měřícími prostředky skutečnou hodnotu nelze nikdy zjistit. Měřením se pouze přiblížíme ke správné hodnotě. Relativní chyba: a. Bezrozměrné číslo: chyba relativní je dána vztahem b. Vyjádření v "%": chyba relativní je dána vztahem Příklad: Pomocí dílenského ručkového voltmetru jsme změřili napětí tužkového monočlánku jako 1,5V. Pomocí přesného číslicového voltmetru jsme zjistili napětí článku 1,506V. Zjistěte velikost absolutní a relativní chyby měření, předpokládáme-li, že číslicový voltmetr udává přesnou hodnotu napětí. UN = 1,5V US =1,506V ΔU = UN - US = 1,5 - 1,506 = -0,006V δU = ΔU / US.100 = -0,3984% Absolutní chyba měření je -0,006 V, relativní -0,4%. s m X X x S X x x 100 . S X x x

Upload: others

Post on 08-Sep-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

1

Měřicí metody

Metoda přímá – přístroj je ocejchován přímo v jednotkách měřené veličiny např. V, A, atd.

Metoda nepřímá - měřená veličina se vypočítá nebo, odvodí (změříme U a I a vypočítáme R)

Druhy chyb a jejich vyjadřování

a) Soustavné (systematické – nepřesnost měřicích přístrojů, metod měření, výsledek můžeme opravit korekcí)

b) Nahodilé (náhodné – působení magnetického nebo elektrického pole, teploty. Zprůměrujeme několik měření)

c) omyly

Absolutní a relativní chyba

Zjištěná hodnota veličiny měřením se vždy liší od hodnoty skutečné. Tento rozdíl vyplývá z principiálních fyzikálních důvodů.

Absolutní chyba:

• Jde o chybu měření, kterou se rozumí rozdíl mezi hodnotou naměřenou Xm a skutečnou Xs:

• Reálnými měřícími prostředky skutečnou hodnotu nelze nikdy zjistit. Měřením se pouze přiblížíme ke správné hodnotě.

Relativní chyba:

a. Bezrozměrné číslo: chyba relativní je dána vztahem

b. Vyjádření v "%": chyba relativní je dána vztahem

Příklad: Pomocí dílenského ručkového voltmetru jsme změřili napětí tužkového monočlánku jako 1,5V. Pomocí přesného číslicového voltmetru jsme zjistili napětí článku 1,506V. Zjistěte velikost absolutní a relativní chyby měření, předpokládáme-li, že číslicový voltmetr udává přesnou hodnotu napětí. UN = 1,5V

US =1,506V ΔU = UN - US = 1,5 - 1,506 = -0,006V δU = ΔU / US.100 = -0,3984% Absolutní chyba měření je -0,006 V, relativní -0,4%.

sm XXx

SXx

x

100.SXx

x

Page 2: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

2

Při odečítání ze stupnice se snažíme měřit ve třetí třetině stupnice

Přesnost přístroje, rozbor. Přesnost měření měřících přístrojů a jejich příslušenství se vyjadřuje třídou přesnosti. Třída přesnosti udává u naměřené hodnoty veličiny dovolenou maximální odchylku od skutečné velikosti a to v procentech měřícího rozsahu při dodržení vztažných podmínek (teplota atd.). Odchylka může být na kterémkoliv místě stupnice. To znamená, že měřicí přístroj s třídou přesnosti 1,5 na rozsahu 300 V může mít v kterémkoli místě stupnice odchylku nejvýše 1,5 % z rozsahu 300 V tj. 4,5 V. Třída přesnosti je tedy plně využita jen při plné výchylce ručky měřidla. Ukazuje-li ručka poloviční výchylku, přístroj měří na rozsahu 300 V napětí 150 V a odchylka 4,5 V již představuje tříprocentní nepřesnost. Kdyby ručka ukazovala jen 1/10 celé výchylky, tj. 30 V, a byla tam největší dovolená odchylka 4,5 V, nepřesnost měření by byla 15 %. Z toho vyplývá, chceme-li měřit přesně, že výchylka ručky při měření musí být v poslední třetině stupnice.

Třída přesnosti:

určuje maximální relativní chybu přístroje v % nejvyšší hodnoty měřicího rozsahu.

Číselná řada 0.05 – 0.1 – 0.2 – 0.5 – 1 – 1.5 – 2.5 – 5.

Rozdělení měřicích přístrojů

a) Podle použití – voltmetry, ampérmetry, wattmetry, ohmmetry, atd. b) Podle měřicí soustavy – magnetoelektrické, feromagnetické, elektrodynamické, poměrové,

atd. c) Podle přesnosti – normály, laboratorní přístroje, provozní a servisní přístroje. Rozváděčové

přístroje d) Podle vyjádření naměřené hodnoty – ručkové (analogové), číslicové (digitální)

Konstanta měřicího přístroje

Konstanta měřicího přístroje je číslo, kterým musíme násobit údaj přístroje v dílcích, abychom dostali hodnotu naměřené veličiny. Počet fyzikálních jednotek na dílek stupnice.

M

MK

M je největší hodnota měřicího rozsahu (konec stupnice)

αM je počet dílků stupnice (výchylka) odpovídající rozsahu M

Stupnice má 30 dílků na konci stupnice je 120 V. Konstanta je 120/30 = 4 V/d. To znamená, že dělení dílků stupnice je po 4 voltech. (Zobrazovanou výchylku násobíme 4)

Page 3: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

3

Citlivost měřicího přístroje

Citlivost měřicího přístroje udává, jakou výchylkou ručky reaguje na jednotku měřené veličiny (počet dílků připadající na jednotku měřené veličiny)

KC

1

C = 1/K = ¼ = 0,25 vyjadřuje se dílek na jednotku fyzikální veličiny např. d/V (např. na 1V připadá ¼ dílku)

Ručky měřicích přístrojů:

Kopinatá, nožová, jazýčková.

Pro přesné čtení a odstranění paralaxy je pod ručkou zrcátko, při odečítání hodnoty nesmíme vidět obraz ručky v zrcátku.

Page 4: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

4

Druhy stupnic a údaje na stupnici

Provedení vlastní stupnice:

oblouková, kruhová, rovná

celkový počet dílků, jejich dělení, a zda jsou lineární a nelineární

fyzikální veličina

Značka výrobce, výrobní číslo

umístění přístroje pro měření, měřicí systém, třída přesnosti, zkušební napětí

Pružné koncové dorazy pro ručku

na krytu pod středem je šroub pro nastavení nuly ručky oproti stupnici

Čtení na přístrojích a měřicí rozsahy.

Pro měření větších hodnot a univerzálnosti se použije citlivý přístroj a sníží se skoky jeho citliviost.

Toto dělení skoků odpovídá nějakému násobku, případně má samostatnou stupnici. Snažíme se volit měřicí rozsat tak, aby pokud možno jsem měřili ve třetí třetině stupnice pokud to přístroj umožní.

Vysvětlit rozsahy na avometu a dalších dílenských přístrojích. Upozornit na desítkovou, sestkovou či jinou stupnici.

Tlumení měřicích přístrojů

Nejlepší tlumení je magnetické. Používá se ho např. v soustavě magnetoelektrické.

Cívka soustavy je navinuta na uzavřeném hliníkovém rámečku a tvoří v podstatě

otočnou část měřicího ústrojí. Při pohybu cívky protíná rámeček indukční křivky

magnetického pole ve vzduchové mezeře, vzniká v něm proud, který brzdí pohyb rámečku

a zabraňuje kývání ručky. Čím rychleji se rámeček pohybuje, tím je brždění intenzívnější, u rámečku v klidu se neindukuje žádný proud a brždění neprobíhá.

Page 5: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

5

Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů

Při pohybu křidélka nebo pístu se vzduch na jedné straně

stlačuje a na druhé zřeďuje, obojí brzdí pohyb a tlumí výchylky ručky.

Page 6: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

6

Značky na přístrojích určující měřicí soustavu

Další informativní značky

Page 7: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

7

Přetižitelnost měřicích přístrojů.

Trvalé přetížení je 1,2 násobkem rozsahu.

Krátkodobé u voltmetru 2x a ampérmetru 10x rozsah přístroje

Druhy a systémy měřicích přístrojů. Uchycení otočného ústrojí je, že se v safírových ložiskách otáčí ocelový hrot nebo na napnutém závěsu z fosforbronzu.

Page 8: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

8

Magnetolektrická soustava

Princip:

Na pólech trvalého magnetu jsou umístěny pólové nástavce z měkkého železa. V dutině mezi pólovými nástavci je pevný váleček. Ve vzduchové mezeře mezi válečkem a pólovými nástavci je otočně umístěna cívka v hliníkovém rámečku. Na hřídeli je připevněna ručička a pružinka, která slouží pro přívod proudu a zároveň drží ručičku na nule.

Funkce:

Průchodem proudu cívkou se vytvoří magnetické pole cívky, které se snaží natočit cívku tak, aby se směr jejího magnetického toku shodoval se směrem magnetického toku trvalého magnetu. Její pohyb se přenáší přes hřídel na ručičku, která nám na stupnici ukáže příslušnou výchylku.

Tlumení:

tlumení magnetické (vířivé proudy v Al rámečku), na kterém je cívka navinuta

Vlastnosti: Měří stejnosměrné hodnoty napětí a proudu, stupnice je lineární

Použití:

Stejnosměrné voltmetry a ampérmetry, nepřímo pro měření dalších veličin. Pro měření střídavých veličin musí mít zabudován usměrňovač.

Značka:

Page 9: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

9

Feromagnetická soustava

Princip:

V dutině kruhové cívky jsou umístěny dva plíšky. Pevný plíšek je připevněný k cívce, otočný na hřídel a je spojen s ručičkou měřicího přístroje. Průchodem proudu cívkou vzniká v její dutině magnetické pole, které oba plíšky souhlasně zmagnetuje. Souhlasné póly se začnou odpuzovat, pohyb otočného plíšku se přenese přes hřídel na ručičku měřicího přístroje.

Vlastnosti:

Velké přetížení, robustní a odolné řešení, velká spotřeba, lze konstruovat s velkým úhlem vychýlení vhodné pro rozvaděčové přístroje.

Použití:

K měření stejnosměrného i střídavého napětí (efektivní hodnota) - cívka je navinuta tenkým vodičem s hodně závity nebo k měření stejnosměrného a střídavého proudu - cívka je navinuta vodičem velkého průřezu s malým počtem závitů.

Ttumení:

Vzduchovým křidélkem

Značka:

Page 10: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

10

Elektrodynamická soustava

Princip:

Skládá se z pevné cívky, která je rozdělená na dvě části. V její dutině je na hřídeli uložena otočná napěťová cívka. Přívod je proveden pružinou, která zároveň tvoří řídící moment. Tlumení je vzduchové. Průchodem proudu cívkami se vytváří magnetické pole. Magnetické pole otočné cívky se snaží natočit cívku tak, aby se směr jejího magnetického toku vyrovnal směru magnetického toku pevné cívky.

Vlastnosti:

Měří stejnosměrné i střídavé hodnoty (u střídavých skutečnou efektivní hodnotu), dnes převážně pro měření výkonu, má velkou spotřebu, uplatňuje se u ní vliv cizích magnetických polí – používá se magnetické stínění.

Použití:

Podle způsobu zapojení cívek, nejčastěji jako Wattmetr pro měření stejnosměrného i střídavého výkonu (pevná cívka – I, pohyblivá – U).

Značka:

Page 11: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

11

Změna rozsahu měřicího přístroje

Předřadník

V případě, že rozsah voltmetru je malý, lze snížit jeho citlivost vložením sérového předřadného odporu (předřadníku). Na předřadníku zůstane takový úbytek napětí, aby zbývající napětí odpovídalo maximálnímu rozsahu měřidla.

Výpočet:

1 nRvRp

Uv

Un

Rp = odpor předřadníku

Rv = odpor voltmetru (vnitřní odpor)

U = měřené napětí

Uv = rozsah voltmetru

n = poměrné číslo zvětšení rozsahu, udává, kolikrát se rozsah zvětší

Obr. a) je základní zapojení b) více rozsahové zapojení

Příklad:

Voltmetrem do 10 V s vnitřním odporem Rv = 2 kΩ chceme měřit napětí do 50 V. Jak veliký musí být odpor předřadníku?

kkRp 81

10

502

Velikost odporu předřadníku je 8 kΩ.

Page 12: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

12

Bočník

Zvyšuje rozsah ampérmetru, část proudu, která je větší než maximální rozsah ampérmetru teče okolo měřidla.

1

n

RaRb

Ia

In

Rb = odpor bočníku

Ra = odpor ampérmetru

I = měřený proud

Ia = rozsah ampérmetru

n = poměrné číslo zvětšení rozsahu, udává, kolikrát se rozsah zvětší

Obr. a) je základní zapojení b) více rozsahové zapojení

Příklad:

Ampérmetrem o rozsahu 0,5 A s vnitřním odporem Ra= 3 Ω máme měřit proudy do 2 A. Jaký odpor musí mít bočník?

114

3

1Ia

I

RaRb

Velikost bočníku je 1 Ω.

Page 13: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

13

Můstky

Můstkem nazýváme zapojení čtyř odporů nebo dalších součástek podle zobrazeného obvodu.

Pro měření rezistorů používáme stejnosměrné napájení pro vyloučení dalších impedancí.

Pro měření C a L můstky napájíme střídavým proudem a můstek se vyrovnává jak amplitudově tak i fázově.

V úhlopříčce napájení je zapojen nulový indikátor (galvanoměr). Prvky 2 – 4 bývají nastavitelné např. pomocí přesných dekád a slouží pro vyvážení můstku a změnu rozsahů. Podstata můstku spočívá v rovnováze úbytků napětí v obou větvích. U vyváženého můstku měřidlem neprotéká žádný proud. Odporem R2 můstek vyvažuje R3 a R4 se volí tak, aby jejich poměr byl např. 0,1 – 1 – 10 – 100 – 1 000

NI

_ +

Rx

R3

R2

R4

A

C

B

D

Wheatstoneův (Wheatstonův)

můstek

4

32

R

RRRx

4

3

2 U

U

U

Ux

Page 14: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

14

Měření napětí se provádí voltmetrem a základní jednotka, ve které se odečítají, jsou volty [V].

Voltmetr se zapojuje paralerně (vedle) ke zdroji nebo součástkám.

Měření proudu provádí se ampérmetrem a základní jednotka, ve které se odečítají, jsou ampéry [A].

Ampermetr se zapojuje do série (za sebou)v obvodu nebo k součástkám.

Měření odporu

Měření přímá se provádí pomocí ohmmetrů nebo můstků. Jejich stupnice udává přímo velikost odporu v Ω

Měření odporu nepřímou metodou pomocí ampérmetru a voltmetru.

Velikost odporu se vypočítá.

Elektrický odpor je vlastností konkrétního vodivého tělesa.

Jednotkou elektrického odporu je Ohm [Ω], často se používají násobky kΩ a MΩ. Převrácená hodnota elektrického odporu se nazývá elektrická vodivost G, její jednotkou je Siemens [S].

Elektrický odpor i elektrická vodivost jsou konstanty charakterizují konkrétní těleso, vedle materiálu jsou ovlivněny i jeho geometrickou konfigurací. K charakterizaci konkrétního materiálu se používají veličiny:

měrná elektrická vodivost (konduktivita) γ [S·m-1]

měrný elektrický odpor (rezistivita) ρ [Ω·m]

Ohmova metoda

Elektrický odpor se obvykle měří přímo podle Ohmova zákona tak, že se tělesem nechá protékat elektrický proud a změří se úbytek napětí, ke kterému dojde na tělese. Odpor se pak spočítá podle vztahu:

Elektrický proud měříme ampérmetrem a úbytek elektrického napětí voltmetrem. Protože je obvykle nutné měřit napětí i proud současně, jsou možná dvě uspořádání:

Page 15: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

15

Nepřímé měření malých a velkých odporů

A. Zapojení vhodné pro měření malých odporů

B. Zapojení vhodné pro měření velkých odporů

Obě uspořádání jsou však svým způsobem problematická. V případě zapojení A je na voltmetru skutečné napětí na měřeném odporu, ovšem ampérmetr ukazuje součet proudů procházejících měřeným odporem i voltmetrem. Toto uspořádání je vhodné tam, kde je proud procházející měřeným odporem podstatně vyšší než proud procházející voltmetrem, tedy pokud bude měřený odpor poměrně malý. Při známé hodnotě odporu voltmetru RV lze provést korekci a neznámý odpor vypočítat podle vztahu:

V zapojení B je sice přesně změřen proud protékající odporem, ovšem změřený úbytek napětí je navýšen o úbytek napětí na ampérmetru. Toto uspořádání bude vhodné tam, kde je úbytek napětí na měřeném odporu podstatně vyšší než úbytek napětí na ampérmetru, tedy při poměrně vysokých hodnotách měřeného odporu. Při známé hodnotě vnitřního odporu ampérmetru lze provést korekci:

Substituční metoda (porovnávací)

Změříme proud při stejném napětí procházející neznámým odporem a následně pomocí dekády nastavíme stejný proud v obvodu a na dekádě si přečteme hodnotu v Ω.

Page 16: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

16

Měření kapacity

Měří se pomocí střídavě napájených můstků

Nepřímou metodou

MK je měřič kmitočtu (čitač). Pro kapacity od desítek nF můžeme použít si síťový kmitočet 50 Hz

A) Měření velkých kapacit (malých reaktancí):

V

A

CXR

V

IC

UC

IV

<< IC

G MK

B) Měření malých kapacit (velkých reaktancí):

V

A

CX

RA

UC

IC

G MK

UA

<< UC

Vzorec pro výpočet nepřímé metody

Za předpokladu, že ztrátový činitel tg je menší než 0,01 platí XC = ZC

I

U

CXC

1

U

IC

Page 17: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

17

Přímá měření kapacity provádíme pomocí můstků.

De Sautyho můstek

v horních větvích fungují kapacity neznámá Cx a kondenzátor C2

Indikátor - obvykle vysokoohmové sluchátko, které se s protékajícím střídavým proudem ozývá

Pokud zvuk utichne, můstek je vyrovnán

napájení - střídavým proudem z generátoru o kmitočtu, který je většinou 1 kHz

Proměnný rezistor R2 se musí předem ocejchovat podle kapacitního normálu

Wienův můstek

Page 18: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

18

Měření indukčnosti

Nepřímé měření Z = XL = ωL

Maxwell-Wienův můstek

432 CRRLX

4

32

R

RRRX

Můstek se vyvažuje tak, že zvolíme vhodnou velikost R2, R3 a

můstek vyvážíme změnou C4 .

Měření výkonu

Elektrický výkon je práce vykonaná za jednotku času a platí pro něj vztah: IUt

tIU

t

AP .

.. [W].

Měření výkonu stejnosměrného proudu

Jako měřicí přístroj použijeme voltmetr a ampérmetr pro nepřímé měření nebo wattmetr pro přímé měření.

Měření výkonu střídavého proudu

Tento vztah však platí pouze pro stejnosměrný proud, jelikož v obvodech se střídavým proudem

dochází k fázovému posunu o úhel φ, který je způsoben periodickou změnou velikosti a směru

proudu za stejný časový úsek, tuto periodickou změnu nazýváme sinusovým průběhem.

V obvodu střídavého proudu rozlišujeme tři výkony:

a) výkon zdánlivý S = U.I [VA]

f

LL L

2 H

WIUP

Page 19: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

19

b) výkon činný P = U.Ič = U.I.cos φ [W]

c) výkon jalový Q = U.Ij = U.I.sin φ [VAr]

Trojúhelník výkonů a vztahy mezi veličinami P, Q, S a účiníkem ϕ

Schéma watmetru

Vstupní svorky jsou na wattmetru označeny šipkami a proudová (zde vodorovná)má silnější kontakty

oproti napěťové cívce (zde svislé).

S

Q

P

ϕ

22 QPS

22 QSP

22 PSS

S

Pcos

Page 20: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

20

Příklady zapojení

Nepřímá metoda

Přímá metoda s watmetrem, šipky označují vstupní svorky

Page 21: Dálkové studium 2013 Elektrické měření V. Provazník Měřicí ... · Vzduchové tlumení pomocí křidélka používá se u feromagnetických přístrojů Při pohybu křidélka

Dálkové studium 2013 Elektrické měření V. Provazník

21

Měření ve 3f síti Měření elektrické energie Pro měření elektrické energie se používají nejčastěji elektroměry. Podle druhu proudu rozlišujeme elektroměry na stejnosměrný a střídavý proud. Elektroměry se používají pro měření elektrické energie v 1 fázových obvodech nebo v 3 fázových obvodech. Pro neměnné hodnoty proudu a napětí W=U.I.t [J, V, A, s] Práce je dána při konstantním výkonu součinem výkonu a casu. Elektroměr obsahuje měřič okamžitého výkonu a integrátor.

http://elektronika01.blogspot.cz/

http://www.wikiskripta.eu/index.php/M%C4%9B%C5%99en%C3%AD_odporu

http://user.unob.cz/zaplatilek/ZEL/ a zvolit Úvod do elektrických měření I