edificios inteligentes 2

43
EDIFICIOS INTELIGENTES Definición Un edificio es inteligente cuando las capacidades necesarias para lograr que el costo de un ciclo de vida sea el óptimo en ocupación e incremento de la productividad, sean inherentes en el diseño y administración del edificio. Como un concepto personal, considero un edificio inteligente aquél cuya regularización, supervisión y control del conjunto de las instalaciones eléctrica, de seguridad, informática y transporte, entre otras, se realizan en forma integrada y automatizada, con la finalidad de lograr una mayor eficacia operativa y, al mismo tiempo, un mayor confort y seguridad para el usuario, al satisfacer sus requerimientos presentes y futuros. Esto sería posible mediante un diseño arquitectónico totalmente funcional, modular y flexible, que garantice una mayor estimulación en el trabajo y, por consiguiente, una mayor producción laboral. DESCRIPCIÓN DE LOS SISTEMAS Iluminación El aprovechamiento de la luz natural fue una de las condicionantes de la propuesta, que conjuga el diseño arquitectónico y la ingeniería bioclimática. El 60% del edificio goza de luz y ventilación naturales. El muro de la fachada oriente, en zona de urgencias, es de vitroblock, que no solamente permite el paso de la luz y una adecuada ventilación, sino que además sirve como colchón acústico. Debido a la función social de esta obra, se seleccionó cuidadosamente el uso de fuentes de luz eficientes, con horas de vida prolongada. La forma de encender y apagar la iluminación de la vivienda puede ser automatizada y controlada de formas complementarias al control tradicional a través del interruptor clásico. Se puede en esta manera conseguir un incremento del confort y ahorro energético. Abajo se indica las principales funciones de control domótico de la iluminación. La iluminación puede ser regulada en función del nivel de luminosidad ambiente, evitando su encendido innecesario o adaptándola a las necesidades del usuario. La activación de ésta

Upload: adrian-correa

Post on 10-Apr-2016

220 views

Category:

Documents


0 download

DESCRIPTION

excelente libro

TRANSCRIPT

Page 1: Edificios Inteligentes 2

EDIFICIOS INTELIGENTES

Definición

Un edificio es inteligente cuando las capacidades necesarias para lograr que el costo de un ciclo de vida sea el óptimo en ocupación e incremento de la productividad, sean inherentes en el diseño y administración del edificio.

Como un concepto personal, considero un edificio inteligente aquél cuya regularización, supervisión y control del conjunto de las instalaciones eléctrica, de seguridad, informática y transporte, entre otras, se realizan en forma integrada y automatizada, con la finalidad de lograr una mayor eficacia operativa y, al mismo tiempo, un mayor confort y seguridad para el usuario, al satisfacer sus requerimientos presentes y futuros. Esto sería posible mediante un diseño arquitectónico totalmente funcional, modular y flexible, que garantice una mayor estimulación en el trabajo y, por consiguiente, una mayor producción laboral.

DESCRIPCIÓN DE LOS SISTEMAS

Iluminación

El aprovechamiento de la luz natural fue una de las condicionantes de la propuesta, que conjuga el diseño arquitectónico y la ingeniería bioclimática. El 60% del edificio goza de luz y ventilación naturales. El muro de la fachada oriente, en zona de urgencias, es de vitroblock, que no solamente permite el paso de la luz y una adecuada ventilación, sino que además sirve como colchón acústico. Debido a la función social de esta obra, se seleccionó cuidadosamente el uso de fuentes de luz eficientes, con horas de vida prolongada.

La forma de encender y apagar la iluminación de la vivienda puede ser automatizada y controlada de formas complementarias al control tradicional a través del interruptor clásico. Se puede en esta manera conseguir un incremento del confort y ahorro energético. Abajo se indica las principales funciones de control domótico de la iluminación.

La iluminación puede ser regulada en función del nivel de luminosidad ambiente, evitando su encendido innecesario o adaptándola a las necesidades del usuario. La activación de ésta

Page 2: Edificios Inteligentes 2

se realiza siempre cuando el nivel de luminosidad pasa un determinado umbral, ajustable por parte del usuario. Esto garantiza un nivel de iluminación mínima, que puede ser esencialmente útil para por ejemplo un pasillo o la iluminación exterior.

La iluminación puede ser activada en función de la presencia de personas en la estancia. Se activa la iluminación cuando un sensor detecta presencia. Esto garantiza una buena iluminación para por ejemplo zonas de paso como pasillos. Asegura que luces no se quedan encendidas en habitaciones cuando no hace falta.

Activación de la iluminación según otros eventos, por ejemplo al pulsar el mando a distancia del garage la iluminación exterior de acceso y el del garaje se puede encenderse por un tiempo limitado para poder tener un acceso seguro y confortable. O si salta el alarma de seguridad en el exterior de la vivienda se puede encender toda la iluminación exterior como función desastoría.

El encendido o apagado de una luminaria puede temporizarse a voluntad del usuario, permitiendo su actuación al cabo de determinado tiempo. Su uso puede ser variado, estando sujeto a las necesidades y deseos del usuario. Por ejemplo que se encienda la luz de forma graduada del dormitorio cierta hora de la mañana, o que se apaga toda la iluminación del jardín cierta hora por la noche.

La iluminación también puede realizarse a través mandos a distancia, con independencia del tradicional mecanismo de mando eléctrico. Un mismo mando a distancia puede controlar distintas luminarias a la vez que otras funciones del hogar digital.

Es preciso indicar que un sistema domótico debería garantizar siempre la posibilidad de encender y apagar la iluminación de forma tradicional, es decir, de forma voluntaria y manual mediante interruptores tradicionales por parte del usuario.

Climatización

La forma más básica de controlar la climatización de una vivienda es la conexión o desconexión de todo el sistema de climatización. Se puede realizar esto según una programación horaria, según presencia de personas en el hogar o de forma manual. Con estos modos de funcionamiento el sistema sólo garantiza el establecimiento de una temperatura de consigna única para toda la vivienda, de forma parecida a la existencia de un termostato de ambiente convencional. Sin embargo se puede hacer muchísimo más para alanzar un alto nivel de confort y ahorrar energía.

Page 3: Edificios Inteligentes 2

Zonificación

Cada zona definida en la vivienda tiene requisitos de uso o condiciones térmicas distintas, que hacen conveniente al ser gestionadas de forma independiente. Esta gestión por zonas puede realizarse siguiendo una misma programación para cada una de ellas, o bien ser controlarlas de forma independiente, incrementando, con ello, las posibilidades de uso y confort para el usuario.

Es importante resaltar que en instalaciones de climatización sin zonificación, algunas estancias de la vivienda pueden climatizarse por exceso como consecuencia de su tamaño, orientación, uso, etc., creando una reducción del confort para el usuario. Así mismo, otras estancias de la vivienda pueden climatizarse por defecto, es decir, sin alcanzar la temperatura deseada, creando una misma situación.

Los criterios seguidos para definir una zonificación de la vivienda pueden ser variados. De entre los posibles, los más habituales son los dos siguientes:

El uso dado a las dependencias, creando lo que se denomina como zona día (uso habitual durante el día como el comedor, el salón, etc.) y zona noche (habitualmente limitada a las habitaciones) La orientación de la vivienda, considerando los aportes energéticos solares, creando las dos zonas siguientes: la zona norte (estancias no expuestas a la radiación solar) y la zona sur (con incidencia solar).

Page 4: Edificios Inteligentes 2

Incremento del grado de confort al asegurar la temperatura deseada por el usuario en cada una de las zonas disponibles. Asociadamente, esta aplicación permite también reducir el consumo de energía al incrementar la eficiencia global de la instalación. Sólo se climatizan aquellas zonas de la vivienda que son necesarias.

El número y tipo de niveles de temperatura más comúnmente utilizados son los siguientes:

Nivel de temperatura de confort. Es el estado habitual de funcionamiento de la climatización, que se da, por lo general, cuando los usuarios se encuentran en la vivienda (por ejemplo, una temperatura de consigna de 21ºC para calefacción). Nivel de temperatura de economía. Estadode funcionamiento que se da cuando, o bien los usuarios salen de casa por un corto período de tiempo, o bien durante aquellos períodos en los cuales no se requiere un nivel de temperatura tan elevado (si se considera la calefacción) o tan bajo (si se considera el aire acondicionado). Un ejemplo de ello sería el uso de calefacción durante la noche al acostarse, con una temperatura de economía, por ejemplo, 18ºC). Nivel de temperatura antihelada. Con el objeto de evitar que el agua contenida en las conducciones de agua de la vivienda se hiele en invierno y produzca roturas en las mismas, el sistema de calefacción se puede poner en marcha para alcanzar una temperatura mínima establecida por el sistema (por ejemplo, una temperatura de 5ºC).

Los beneficios son el aumento del confort doméstico y optimización del consumo energético al asegurar que solamente se mantiene la temperatura necesaria durante un período concreto. Con el nivel antihelada se evita, además, la rotura de conducciones de agua por el efecto de la temperatura.

Derogación de niveles de temperatura

Page 5: Edificios Inteligentes 2

El sistema domótico gestiona el funcionamiento de la climatización siguiendo el programa introducido en el sistema domótico, es decir, acorde con el perfil de temperatura. Este seguimiento supone un determinado número de cambios entre los niveles de confort y economía. Sin embargo, el usuario puede modificar en cualquier momento el nivel de temperatura existente (de confort a economía, o viceversa), por diversos motivos, forzando un cambio puntual en el perfil de temperatura. A este cambio puntual se le conoce como derogar el nivel de temperatura existente.

Es preciso indicar que este cambio puntual no afecta al desarrollo del perfil de temperatura ni lo modifica. El sistema domótico seguirá el perfil de temperatura una vez se restablezca el nivel programado.

Puertas y ventanas

En el caso de tener Puertas y Ventanas motorizadas estas pueden ser integradas con el sistema de domótica.

Un área de aplicación principal es para gente con discapacidades físicas. La automatización puede ayudar al usuario tanto abrir como cerrar las puertas y ventanas a través del sistema de domótica. Cada puerta o ventana puede ser controlado de forma individual y por zonas.

Además las puertas de acceso a la finca, al garaje, etc. pueden ser abiertos por el sistema integrado de domótica en combinación de otras actuaciones como el encendido de la iluminación o como consecuencia de la desconexión del sistema de seguridad, etc.

Las puertas y ventanas pueden ser controladas para temas climatológicos. Es decir se pueden abrir y cerrar para crear corrientes de aire para la ventilación natural. Las puertas y ventanas también pueden programados para ser controlados de forma automática para el tema de seguridad si se detecta fuego, humo o gas, es decir cerrarse o abrirse automáticamente.

Pero no solo pueden ser controlados los motorespara abrir y cerrar las ventanas y puertas. También pueden ser controladas las cerraduras, con cerraduras electrónicas se puede abrir y cerrar cerraduras de forma local y remota a través del sistema de domótica.

Persianas y toldos

En el caso de tener persianas y toldos motorizados hay varias formas de controlar estos a través de los sistemas de domótica.

Las persianas y toldos pueden ser controlados según la temperatura interior o la situación climatológica del exterior. Es decir si queremos que entre el sol y la luz para calentar el interior de la vivienda a través de las ventanas las persianas pueden de forma automática abrirse según una programación horaria o según los datos de sensores de luz. En la misma manera podemos asegurarnos que están bajadas para que la luz solar no dañe el interior. También sensores de lluvia y viento pueden obligar a los toldos a recogerse para que no sean dañados.

Las persianas pueden ser controladas de forma automática según una programación horaria o un escenario por el tema del confort y el ahorro energético, para minimizar el uso de la iluminación artificial. Pueden por ejemplo subirse de forma automática por la mañana y bajarse por la noche para temas de confort o por el tema de seguridad. En la misma

Page 6: Edificios Inteligentes 2

manera pueden tener una acutación programada para el tema de la seguridad si se detecta por ejemplo humo, fuego, gas o una intrusión.

Aparatos

Hay muchos sistemas y aparatos dentro y en el exterior de la vivienda que pueden ser controlados por el sistema de domótica. Cafeteras, radios, y otros aparatos que se encienden simplemente activando la alimentación sueles ser integrados con facilidad y pueden para muchos usuarios ser prácticos y curiosos. Esto se puede realizar según una programación horaria, para simular presencia, para escenarios o según que se disparan otros eventos.

Sistemas más complejos tipo controladores de piscinas, suelosradiantes, etc. suelen ser mejor dejar con sus controladores originales y limitarse de interactuar con algunas entradas / salidas para captar valores (tipo temperaturas) y como mucho enviar información para actuar temporalmente sobre el sistema.

Riego

El riego automático es una aplicación muy utilizado por la gente que vive en viviendas unifamiliares. El riego puede ser gestionado por un controlador que normalmente se limita a regar según la programación horaria. Pero el riego puede ser más desarrollado y avanzado que eso. El riego puede ser activado de forma automática según programación horaria, pero también según la humedad en el césped, el día de la semana o cualquier otro valor. Además si el riego esta integrado en el sistema de domótica tele controlada, se puede controlar el riego de forma remota o según otros eventos como incendios o robos. Además existe la posibilidad de realizar actualizaciones puntuales y personalizados p.e. regar por la tarde, en vez de por la noche si el dueño planifica una barbacoa con los amigos por la noche.

Electrodomésticos

Page 7: Edificios Inteligentes 2

Una forma básica para controlar algunos electrodomésticos (como la lavadora, el fregaplatos, el horno, o el aire acondicionado) o es a través de la conexión y desconexión de la alimentación eléctrica. Esto podría valer con electrodomésticos más antiguos donde la interrupción de la alimentación simplemente significaba que se paraba el programa actual y al volver a conectar la alimentación se ponían en marcha otra vez. Esta actuación puede hacer la mayoría de los sistemas domóticos pero no siempre es muy aconsejable debido a que por un lado no es bueno conectar y desconectar la alimentación de un electrodoméstico. Por otro lado ya no es seguro que un electrodoméstico moderno se vuelva a poner en marcha en el estado en que se encontraba al ser desconectado. Para las calderas de calefacción y sistemas de aire acondicionado es mejor controlar la entrada del termostato para su activación / desactivación. Aire acondicionados tipo split se suelen poder controlar a través de señales de infrarrojo. Aparatos como hornos y lavadoras ya vienen con sistemas avanzadas para poder realizar la programación directamente en ellas.

Algunos modernos electrodomésticos domóticos empiezan ya a ser controlables a través de un sistema más amplio. En esos tipos de electrodomésticos no solo suele posibles poder controlar el encendido y apagado de forma remota o automática, sino también permiten funciones como; avisos remotos de un malfuncionamiento, como una puerta abierta del frigorífico, o un filtro sucio; telegestión para poder diagnosticar de forma remota un malfuncionamiento de un aparato o cargar de forma remota un nuevo software.

SEGURIDAD

Incendio

Los detectores pueden ser de humo, temperatura o manuales, ubicados en hall, oficinas, escaleras, cocheras, depósitos, etc. En caso de incendio el S.I. avisara con mensajes en pantalla, en el teclado alfanumérico y con sirenas en las escaleras de los pisos. También podrá llamar a una cantidad de números que pueden ser del personal, bomberos, policía, etc.

Los detectores que requieran alimentación serán respaldados por una UPS en caso de corte del suministro eléctrico.

Antirrobo

Al ser un sistema integrador de distintas clases de sensores y dispositivos, los sistemas inteligentes tienen la ventaja de poder programar a la misma unidad para distintas funciones, como ser para encender una luz o una alarma de intrusos. Por lo tanto, la misma instalación que se uso para la automatización de la luminaria ahora sirve para la de seguridad y viceversa.

El teclado alfanumérico sirve para ingresar el código de armado o la exclusión/inclusión de zonas, etc. Se pueden colocar: reed switch para la apertura y comprobación del estado de las puertas, detector de vidrio roto, sensor de movimiento o cualquier detector comercial de cualquier tipo, así como sirenas, strobes, etc. Todos los dispositivos se visualizarán en un plano para saber su estado.

Page 8: Edificios Inteligentes 2

Servicios de Seguridad:

Detectores de presencia Circuitos cerrados de televisión Comprobación del estado de las puertas. Vigilancia perimetral y periférica Control y bloqueo de accesos Protección anti-intrusos Control/comprobación de rondas de vigilancia Detección de incendios (humo y fuego) Detección de escapes o fugas de gas Evacuación automática de humo Señalización y megafonía de emergencia Telefonía de emergencia (interna o externa) Conexión con las fuerzas del orden, bomberos u otras

Uso eficiente del agua

Con el fin de reducir el consumo del agua utilizada tradicionalmente en hospitales similares, alrededor de 800 litros por cama y día, se estudiaron distintas posibilidades para la aplicación de equipos y accesorios. Se llegó a la decisión de instalar equipos que, además de contar con accesorios de bajo consumo de agua, operan en forma automática al cierre y apertura de las llaves alimentadoras. También se colocaron reguladores de temperatura en las regaderas de los baños, donde la demanda de agua caliente representa gastos excesivos. Con la aplicación de estos sistemas, se reduce en un 40% el consumo del agua.

Gases medicinales

La instalación de gases medicinales es vital en un hospital. El hospital en mención dispone del equipo denominado “Grado Médico”, lo mejor que existe en sistemas generadores de vacío y de aire comprimido, así como con una consola de tomas para cada cama.

Gestión de la domótica

La domótica se encarga de gestionar principalmente los siguientes cuatro aspectos del hogar:

Page 9: Edificios Inteligentes 2

Energía eléctrica: En este campo, la domótica se encarga de gestionar el consumo de energía, mediante temporizadores, relojes programadores, termostatos, etc. También se aprovecha de la tarifa nocturna, mediante acumuladores de carga. Confort: La domótica nos proporciona una serie de comodidades, como pueden ser el control automático de los servicios de: Calefacción, Agua caliente, Refrigeración, Iluminación y la gestión de elementos como accesos, persianas, toldos, ventanas, riego automático, etc. Seguridad:La seguridad que nos proporciona un sistema domótico es más amplia que la que nos puede proporcionar cualquier otro sistema, pues integra tres campos de la seguridad que normalmente están controlados por sistemas distintos: Seguridad de los bienes: Gestión del control de acceso y control de presencia, así como la simulación de presencia. Alarmas ante intrusiones. Seguridad de las personas: Especialmente, para las personas mayores y los enfermos. Mediante el nodo telefónico, se puede tener acceso (mediante un pulsador radiofrecuencia que se lleve encima, por ejemplo) a los servicios de ambulancias, policía, etc. Incidentes y averías: Mediante censores, se pueden detectar los incendios y las fugas de gas y agua, y, mediante el nodo telefónico, desviar la alarma hacia los bomberos, por ejemplo.

También se pueden detectar averías en los accesos, en los ascensores, etc.Comunicaciones: Este aspecto es imprescindible para acceder a multitud de servicios ofrecidos por los operadores de telecomunicaciones. La domótica tiene una característica fundamental, que es la integración de sistemas, por eso hay nodos (pasarela residencial) que interconectan la red domótica con diferentes dispositivos, como Internet, la red telefónica, etc.

Grados de inteligencia

La inteligencia de un Edificio es una medida:

De la satisfacción de las necesidades de los habitantes y su administración. De la posibilidad de respetar y adaptarse al medio ambiente que lo rodea.

Los elementos que deben considerarse como parte del programa arquitectónico de un Edificio Inteligente independientemente del género al que éste se refiera, siendo éstos:

La protección, contra contingencias contra accidentes caseros hasta problemas en edificios de varios niveles de oficinas desde la intrusión, el robo, el plagio, el clima, el incendio, entre otros. En todos estos casos existe la potencialidad de que cualquier falla desencadene un incendio destructor. El prever y superar tales sucesos es parte del programa del Edificio Inteligente. Manejo preventivo de contingencias, es primordial dotar desde el diseño arquitectónico de aquellos elementos necesarios para superar las fallas en el control de humo y aire caliente, (efecto de chimenea) tanto en cubos de escaleras y de elevadores, ductos de instalaciones, vestíbulos y pasillos largos y falsos plafones. Para todo ello es necesario la compartimentación vertical para ductos de instalaciones. Sellos en los pasos de tubería de ventilación en muros y losas. Así como también el control automatizado en puestas de compartimentación, vestibulación y salidas de emergencia en las instalaciones y los ductos. Se debe dotar al edificio de sistemas de extracción de humos estableciendo una presión positiva en cubos de escaleras y de elevadores.

Page 10: Edificios Inteligentes 2

Diseño Arquitectónico lógico, los edificios altos resuelven necesidades y problemas del programa arquitectónico, sin embargo crean nuevos problemas como su desalojo en un tiempo razonable, la falta de ventilación al no existir ventanas que puedan abrirse. Por lo que es lógico plantear como parte de su programa la existencia de elevadores eficientes en cualquier contingencia, al igual de niveles de refugio a prueba de contingencias, rutas y datos de acceso para bomberos, giro de puertas en el sentido de salida, pasamanos en escaleras y rampas, una adecuada señalización en escaleras y puertas para salidas de emergencia. Acabados y decoración, básicamente habría que considerar el control de los materiales combustibles, empleando retardantes en los acabados del edificio, y dejando claramente indicadas la localización de rampas y escaleras.

El principal problema de los detectores es la falsa alarma que se ha tratado de resolver en la combinación de los diversos tipos de censores. Por otro lado existen los sistemas operados por detectores para compuertas de compartimentación, el control de la presión positiva en ductos de escaleras y elevadores, el control programado de sistemas de acondicionamiento de aire, la iniciación de las alarmas y el voceo a la par de los sistemas de supresión de fuego por agua, espuma, polvo químico y gas. Dando a su vez aviso a la estación de bomberos.

Todo esto debe estar dentro del sistema central de control desde el cual se localiza el control de cada censor, se revisa y reporta el estado de cada elemento, se establece el récord impreso de los sucesos diarios y se despliegan en pantalla los planos de instalación.

Existen tres grados de inteligencia, catalogados en función de la automatización de las instalaciones o desde el punto de vista tecnológico:

1. Grado 1. Inteligencia mínima o básica. Un sistema básico de automatización del edificio, el cual no está integrado. Existe una automatización de la actividad y los servicios de telecomunicaciones, aunque no están integrados.2. Grado 2. Inteligencia media. Tiene un sistema de automatización del edificio totalmente integrado. Sistemas de automatización de la actividad, sin una completa integración de las telecomunicaciones.3. Grado 3. Inteligencia máxima o total. Los sistemas de automatización del edificio, la actividad y las telecomunicaciones, se encuentran totalmente integrados. El sistema de automatización del edificio se divide en: sistema básico de control, sistema de seguridad y sistema de ahorro de energía. El sistema básico de control es el que permite monitorear el estado de las instalaciones, como son: eléctricas, hidrosanitarias, elevadores y escaleras eléctricas, y suministros de gas y electricidad. El sistema de seguridad protege a las personas, los bienes materiales y la información. En la seguridad de las personas, destacan los sistemas de detección de humo y fuego, fugas de gas, suministro de agua, monitoreo de equipo para la extinción de fuego, red de rociadores, extracción automática de humo, señalización de salidas de emergencia y el voceo de emergencia. Para la seguridad de bienes materiales o de información, tenemos el circuito cerrado de televisión, la vigilancia perimetral, el control de accesos, el control de rondas de vigilancia, la intercomunicación de emergencia, la seguridad informática, el detector de movimientos sísmicos y el de presencia. El sistema de ahorro de energía es el encargado de la zonificación de la climatización, el intercambio de calor entre zonas, incluyendo el exterior, el uso activo y pasivo de la energía solar, la identificación del consumo, el control automático y centralizado de la iluminación, el control de horarios para el funcionamiento de equipos, el control de ascensores y el programa emergente en puntos críticos de demanda

Page 11: Edificios Inteligentes 2

Fases de desarrollo

Las fases de la producción de un edificio, son:

Fase proyectual Fase constructiva Fase operativa

Fase proyectual

Hoy en día para proyectar un edificio, sobre todo si se trata de un edificio inteligente, debe conformarse un equipo de trabajo con el propósito de lograr los más óptimos resultados. Este equipo lo componen: propietarios del edificio y usuarios, arquitectos, arquitectos paisajistas, restauradores de monumentos, gerente de operaciones, ingenieros civiles, hidráulicos, eléctricos, de telecomunicaciones e informática, consultores en instalaciones especiales, compañía constructora, proveedores de sistemas y servicios, y compañías de suministro de servicios de electricidad, agua, teléfono y gas. De esta forma existe la posibilidad de diseñar el inmueble con base en una comunicación constante, pues el trabajo en equipo es indispensable para obtener un edificio inteligente. Una evaluación y verificación aprobatoria del proyecto ejecutivo en los aspectos arquitectónico, tecnológico y financiero, nos permitirá continuar con la siguiente fase.

Fase constructiva

Se refiere a la ejecución de la obra, con base en los planos ejecutivos. En esta fase intervienen las compañías constructoras, contratistas, subcontratistas y demás elementos del equipo de trabajo de la etapa proyectual, con su asesoría, supervisión y aprobación.

Fase operativa

Los buenos resultados de la primera y segunda fases se ven reflejados en esta última, en la que están involucrados los usuarios, propietarios y el personal de administración y mantenimiento, quienes tienen la responsabilidad de operar, utilizar y mantener las instalaciones en óptimo estado. Para esto debe entrenarse al personal técnico, con el propósito de que intervenga adecuadamente desde el primer día

Se debe cumplir con los siguientes requisitos:

Eficiencia en el uso de energéticos y consumibles, renovables (Máxima Economía) Adaptabilidad a un bajo costo a los continuos cambios tecnológicos requeridos por sus ocupantes y su entorno (Máxima Flexibilidad). Capacidad de proveer un entorno Ecológico interior y exterior respectivamente habitable y sustentable, altamente seguro que maximice la eficiencia en el trabajo a los niveles óptimos de confort de sus ocupantes según sea el caso (Máxima Seguridad para el entorno, usuario y patrimonial). Eficazmente comunicativo en su operación y mantenimiento, (Máxima automatización de la actividad). Operando y mantenido bajo estrictos métodos de optimización (Máxima predicción y prevención, refaccionamiento virtual).

Aplicación de la infraestructura al sistema inteligente

Page 12: Edificios Inteligentes 2

Se pueden considerar cuatro elementos como básicos que se integran al Edificio Inteligente y serán los siguientes:

La estructura del edificio. Todo lo que se refiere a la estructura y diseño arquitectónico, incluyendo los acabados y mobiliario. Entre sus componentes están: la altura de losa a losa, la utilización de pisos elevados y plafones registrables, cancelería, ductos y registros para las instalaciones, tratamiento de fachadas, utilización de materiales a prueba de fuego, acabados, mobiliario y ductos para cableado y electricidad. Los sistemas del edificio. Son todas las instalaciones que integran un edificio. Entre sus componentes están: aire acondicionado, calefacción y ventilación, energía eléctrica e iluminación, controladores y cableado, elevadores y escaleras mecánicas, seguridad y control de acceso, seguridad contra incendios y humo, telecomunicaciones, instalaciones hidráulicas, sanitarias y seguridad contra inundación. Los servicios del edificio. Como su nombre lo indica, son los servicios o facilidades que ofrecerá el edificio. Entre sus componentes están: comunicaciones de video, voz y datos; automatización de oficinas; salas de juntas y cómputo compartidas; área de fax y fotocopiado; correo electrónico y de voz; seguridad por medio del personal; limpieza; estacionamiento; escritorio de información en el lobby o directorio del edificio; facilidad en el cambio de teléfonos y equipos de computación; centro de conferencias y auditorio compartidos, y videoconferencias. La administración del edificio. Se refiere a todo lo que tiene que ver con la operación del mismo. Entre sus variables están: mantenimiento, administración de inventarios, reportes de energía y eficiencia, análisis de tendencias, administración y mantenimiento de servicios y sistemas. La optimización de cada uno de estos elementos y la interrelación o coordinación entre sí, es lo que determinará la inteligencia del edificio.

QUE ES LA ELECTRICIDAD

La energía eléctrica se ha convertido en parte de nuestra vida diaria. Sin ella, difícilmente podríamos imaginarnos los niveles de progreso que el mundo ha alcanzado, pero ¿qué es la electricidad, cómo se produce y cómo llega a nuestros hogares?

La energía puede ser conducida de un lugar o de un objeto a otro (conducción). Eso mismo ocurre con la electricidad. Es válido hablar de la “corriente eléctrica”, pues a través de un elemento conductor, la energía fluye y llega a nuestras lámparas, televisores, refrigeradores y demás equipos domésticos que la consumen.También conviene tener presente que la energía eléctrica que utilizamos está sujeta a distintos procesos de generación, transformación, transmisión y distribución, ya que no es lo mismo generar electricidad mediante combustibles fósiles que con energía solar o nuclear. Tampoco es lo mismo transmitir la electricidad generada por pequeños sistemas eólicos y/o fotovoltaicos que la producida en las grandes hidroeléctricas, que debe ser llevada a cientos de kilómetros de distancia y a muy altos voltajes.

Page 13: Edificios Inteligentes 2

Pero ¿qué es la electricidad? Toda la materia está compuesta por átomos y éstos por partículas más pequeñas, una de las cuales es el electrón. Un modelo muy utilizado para ilustrar la conformación del átomo lo representa con los electrones girando en torno al núcleo del átomo, como lo hace la Luna alrededor de la Tierra.

Page 14: Edificios Inteligentes 2

El núcleo del átomo está integrado por neutrones y protones. Los electrones tienen una carga negativa, los protones una carga positiva y los neutrones, como su nombre lo indica, son neutros: carecen de carga positiva o negativa. (Por cierto, el átomo, según los antiguos filósofos griegos, era la parte más pequeña en que se podía dividir o fraccionar la materia; ahora sabemos que existen partículas subatómicas y la ciencia ha descubierto que también hay partículas de “antimateria”: positrón, antiprotón, etc., que al unirse a las primeras se aniquilan recíprocamente).

Pues bien, algunos tipos de materiales están compuestos por átomos que pierden fácilmente sus electrones, y éstos pueden pasar de un átomo a otro. Cuando estos electrones se mueven entre los átomos de la materia, se crea una corriente de electricidad. Es lo que sucede en los cables que llevan la electricidad a su hogar: a través de ellos van pasando los electrones, y lo hacen casi a la velocidad de la luz.

Sin embargo, es conveniente saber que la electricidad fluye mejor en algunos materiales que en otros. Antes vimos que esto mismo sucede con el calor, pues en ambos casos hay buenos o malos conductores de la energía. Por ejemplo, la resistencia que un cable ofrece al paso de la corriente eléctrica depende y se mide por su grosor, longitud y el metal de que está hecho. A menor resistencia del cable, mejor será la conducción de la electricidad en el mismo. El oro, la plata, el cobre y el aluminio son excelentes conductores de electricidad. Los dos primeros resultarían demasiado caros para ser utilizados en los millones de kilómetros de líneas eléctricas que existen en el planeta; de ahí que el cobre sea utilizado más que cualquier otro metal en las instalaciones eléctricas.

La fuerza eléctrica que “empuja” los electrones es medida en Voltios. (La primera pila eléctrica fue inventada por el científico italiano Alejandro Volta, y en su honor se le denominó “Voltio” a esta medida eléctrica).

Así como se miden y se pesan las cosas que usamos o consumimos normalmente, también la energía eléctrica se mide en Watts-hora. El Watt es una unidad de potencia y equivale a un Joule por segundo. Para efectos prácticos, en nuestra factura de consumo de energía eléctrica se nos cobra por la cantidad de kiloWatts-hora (kWh) que hayamos consumido durante un periodo determinado (generalmente, dos meses). Un kiloWatts-hora equivale a la energía que consumen:

Page 15: Edificios Inteligentes 2

Un foco de 100 watts encendido durante diez horas10 focos de 100 watts encendidos durante una horaUna plancha utilizada durante una horaUn televisor encendido durante veinte horasUn refrigerador pequeño en un díaUna computadora utilizada un poco más de 6 horas y media

Recuerde que “kilo” significa mil, por lo que un “kiloWatt”-hora equivale a mil Watts-hora. En los campos de la generación y consumo de electricidad, se utilizan los megaWatts (MW), equivalentes a millones de Watts; los gigaWatts (GW), miles de millones; y los teraWatts (TW), billones de Watts).

Electricidad estática.

Vimos antes que la corriente eléctrica fluye, es decir, que se mueve de un lugar a otro a través de un conductor, y lo hace a una gran velocidad; pero hay otro tipo de energía eléctrica, que es la electricidad estática, la cual, como su nombre lo indica, permanece en un lugar. Un ejemplo: Si usted frota en su ropa un globo inflado (de preferencia un suéter de lana) o en su propio cabello, puede poner el globo contra la pared y ahí permanecerá. ¿Por qué? Cuando es frotado, el globo toma electrones del suéter o del cabello y adquiere una ligera carga negativa, la cual es atraída por la carga positiva de la pared.

Ahora, de la manera indicada, frote usted dos globos inflados, a cada uno de ellos áteles un hilo y trate de que se acerquen uno al otro. ¿Qué ocurre? Los globos evitan tocarse entre sí. ¿Por qué? La explicación es que ambos tienen cargas negativas y éstas se repelen. Las cargas positivas se repelen y las cargas negativas también. En cambio, las cargas diferentes se atraen. Esto mismo ocurre con los polos de cualquier imán: el “norte” tiende a unirse con el “sur”, pero los polos iguales siempre se repelen entre sí.

La electricidad estática puede ocasionarnos descargas o lo que llamamos “toques”. Si usted camina sobre una alfombra o tapete, su cuerpo recoge electrones y cuando toca algo metálico, como es el picaporte de la puerta o cualquier otra cosa con carga positiva, la electricidad produce una pequeña descarga entre el objeto y sus dedos, lo que, además de sorpresivo, a veces, resulta un tanto doloroso.

Otra manifestación de la electricidad estática son los relámpagos y truenos de una tormenta eléctrica: las nubes adquieren cargas eléctricas por la fricción de los cristales de hielo que se mueven en su interior, y esas cargas de electrones llegan a ser tan grandes que éstos se precipitan hacia el suelo o hacia otra nube, lo cual provoca el relámpago y éste el trueno. El relámpago viaja a la velocidad de la luz (más de 300 mil kilómetros por segundo) y el trueno a la velocidad del sonido (poco más de 300 metros por segundo). Por esta razón es que primero vemos el relámpago y después escuchamos el trueno.

¿Cómo se genera la electricidad?

Hasta aquí hemos visto que la electricidad fluye a través de los cables, generalmente de cobre o aluminio, hasta llegar a nuestras lámparas, televisores, radios y cualquier otro aparato que tengamos en casa. Pero ¿cómo se produce la electricidad y de dónde nos llega?

Veamos, pues, cómo se genera la electricidad que consumimos en el hogar, pero antes es conveniente señalar que hay varias fuentes que se utilizan para generar electricidad: el movimiento del agua que corre o cae, el calor para producir vapor y mover turbinas, la geotermia (el calor interior de la Tierra), la energía nuclear (del átomo) y las energías

Page 16: Edificios Inteligentes 2

renovables: solar, eólica (de los vientos) y de la biomasa (leña, carbón, basura y rastrojos del campo).

También es importante saber que en México el 75% de la electricidad se genera a base de combustibles fósiles utilizados en plantas o centrales termoeléctricas (que producen calor y vapor para mover los generadores), las cuales consumen gas natural, combustóleo y carbón. (Si la central consume carbón, se le denomina carboeléctrica). “Dual” es un término que se aplica a las plantas que pueden consumir indistintamente dos de estos combustibles.

La mayoría de las plantas generadoras de electricidad queman alguno de esos combustibles fósiles para producir calor y vapor de agua en una caldera. El vapor es elevado a una gran presión y llevado a una turbina, la cual está conectada a un generador y cuando éste gira, convierte ese movimiento giratorio en electricidad. Después de que el vapor pasa a través de la turbina, es llevado a una torre de enfriamiento, donde se condensa y se convierte nuevamente en agua líquida para ser utilizada otra vez en la caldera y repetir el proceso indefinidamente.

Existen termoeléctricas llamadas de “ciclo combinado”; en ellas, los gases calientes de la combustión del gas natural que pasaron por la turbina pueden volverse a aprovechar, introduciéndolos a calderas que generan vapor para mover otra turbina y un segundo generador .

En todos los casos, la turbina está unida por su eje al generador, el cual contiene un rotor bobinado que gira dentro de un campo magnético estacionario con espiras (embobinado) de un largo y grueso cable. Cuando giran el eje de la turbina y el magneto que está dentro del generador, se produce una corriente de electricidad en el cable. ¿Por qué? Esto se explica por el llamado electromagnetismo, que descrito en términos sencillos consiste en lo siguiente: cuando un cable o cualquier material conductor de electricidad se mueve a través de un campo magnético -cortando líneas de fuerza magnéticas-, se produce una corriente eléctrica en el cable.

Page 17: Edificios Inteligentes 2

Para una mejor comprensión, se puede decir que un generador es como un motor eléctrico, pero al revés: en vez de usar energía eléctrica para hacer girar el motor, el eje de la turbina hace girar el motor para producir electricidad. La electricidad producida en el generador alcanza unos 25 mil voltios. En la planta ese voltaje es elevado a 500 mil voltios para que la electricidad pueda viajar a largas distancias a través de cables de alta tensión y, después, mediante transformadores que reducen el voltaje, llega a nuestros hogares, escuelas, industrias, comercios, oficinas, etc.

Las plantas nucleares utilizan la energía nuclear -del átomo- para producir calor que convierte el agua en el vapor necesario para mover las turbinas y los generadores. Otras plantas aprovechan el agua caliente o el vapor proveniente del interior de la Tierra (geotermia), sin necesidad de emplear combustible fósil o nuclear (uranio).

¿Qué son los sistemas de transmisión eléctrica?

Uno de los grandes problemas de la electricidad es que no puede almacenarse, sino que debe ser transmitida y utilizada en el momento mismo que se genera. Este problema no queda resuelto con el uso de acumuladores o baterías, como las que utilizan los coches y los sistemas fotovoltaicos, pues sólo son capaces de conservar cantidades pequeñas de energía y por muy poco tiempo. Conservar la electricidad que producen las grandes plantas hidroeléctricas y termoeléctricas es un reto para la ciencia y la tecnología. En algunos lugares, se aprovechan los excedentes de energía eléctrica o la energía solar para bombear agua a depósitos o presas situados a cierta altura; el agua después se utiliza para mover turbinas y generadores, como se hace en las plantas hidroeléctricas.

En cuanto se produce la electricidad en las plantas, una enorme red de cables tendidos e interconectados a lo largo y ancho del país, se encargan de hacerla llegar, casi instantáneamente, a todos los lugares de consumo: hogares, fábricas, talleres, comercios, oficinas, etc. Miles de trabajadores vigilan día y noche que no se produzcan fallas en el servicio; cuando éstas ocurren, acuden, a la brevedad posible, a reparar las líneas para restablecer la energía. A tal efecto, hay centros de monitoreo, estratégicamente situados, para mantener una vigilancia permanente en toda la red. A veces, los vientos, las lluvias y los rayos, entre otras causas, afectan las líneas de transmisión, las cuales deben ser revisadas y reparadas por los técnicos, ya sea en las ciudades o en el campo.

Ya vimos que cada uno de los generadores de las plantas hidroeléctricas y termoeléctricas producen electricidad de unos 25 mil voltios. ( Recuerde que el Voltio es la medida de la fuerza con que fluye la electricidad y debe su nombre a Alejandro Volta, un científico italiano que inventó la primera pila eléctrica). Ese voltaje inicial es elevado, en las propias instalaciones de la planta, hasta unos 400 mil voltios, pues la energía eléctrica puede ser transmitida con una mayor eficiencia a altos voltajes. Es así como viaja por cables de alta tensión y torres que los sostienen, a lo largo de cientos de kilómetros, hasta los lugares donde será consumida.

Antes de llegar a nuestros hogares, oficinas, fábricas, talleres y comercios, el voltaje es reducido en subestaciones y mediante transformadores cercanos a los lugares de consumo. En las ciudades, el cableado eléctrico puede ser aéreo o subterráneo. Para hacer llegar la electricidad a islas pobladas, se utilizan cables submarinos.

Cuando la electricidad entra a nuestra casa, pasa por un medidor. La “lectura” del medidor generalmente la efectúa (cada dos meses) un empleado de la compañía que nos proporciona el servicio eléctrico en nuestro hogar, oficina, taller, etc. El medidor marca la cantidad de kiloWatts/hora que consumimos cada día en iluminación, refrigeración, aire acondicionado, televisión, radio, etc.

Page 18: Edificios Inteligentes 2

TIPOS DE ENERGIA

Energía nuclear

Energía liberada durante la fisión o fusión de núcleos atómicos. Las cantidades de energía que pueden obtenerse mediante procesos nucleares superan con mucho a las que pueden lograrse mediante procesos químicos, que sólo implican las regiones externas del átomo.

La energía de cualquier sistema, ya sea físico, químico o nuclear, se manifiesta por su capacidad de realizar trabajo o liberar calor o radiación. La energía total de un sistema siempre se conserva, pero puede transferirse a otro sistema o convertirse de una forma a otra.

Energía cinética

Energía que un objeto posee debido a su movimiento. La energía cinética depende de la masa y la velocidad del objeto según la ecuación

E = m.v ²

Page 19: Edificios Inteligentes 2

donde m es la masa del objeto y v ² la velocidad del mismo elevada al cuadrado. El valor de E también puede derivarse de la ecuación

E = (m.a).d

donde a es la aceleración de la masa m y d es la distancia a lo largo de la cual se acelera. Las relaciones entre la energía cinética y la energía potencial, y entre los conceptos de fuerza, distancia,aceleración y energía, pueden ilustrarse elevando un objeto y dejándolo caer.

Cuando el objeto se levanta desde una superficie se le aplica una fuerza vertical. Al actuar esa fuerza a lo largo de una distancia, se transfiere energía al objeto. La energía asociada a un objeto situado a determinada altura sobre una superficie se denomina energía potencial. Si se deja caer el objeto, la energía potencial se convierte en energía cinética.

Energía potencial

Energía almacenada que posee un sistema como resultado de las posiciones relativas de sus componentes. Por ejemplo, si se mantiene una pelota a una cierta distancia del suelo, el sistema formado por la pelota y la Tierra tiene una determinada energía potencial; si se eleva más la pelota, la energía potencial del sistema aumenta. Otros ejemplos de sistemas con energía potencial son una cinta elástica estirada o dos imanes que se mantienen apretados de forma que se toquen los polos iguales.

Page 20: Edificios Inteligentes 2

Para proporcionar energía potencial a un sistema es necesario realizar un trabajo. Se requiere esfuerzo para levantar una pelota del suelo, estirar una cinta elástica o juntar dos imanes por sus polos iguales. De hecho, la cantidad de energía potencial que posee un sistema es igual al trabajo realizado sobre el sistema para situarlo en cierta configuración. La energía potencial también puede transformarse en otras formas de energía. Por ejemplo,cuando se suelta una pelota situada a una cierta altura, la energía potencial se transforma en energía cinética.

FUENTES RENOVABLES

Energía Hidráulica

Ya desde la antigüedad, se reconoció que el agua que fluye desde un nivel superior a otro inferior posee una determinada energía cinética susceptible de ser convertida en trabajo, como demuestran los miles de molinos que a lo largo de la historia fueron construyéndose a orillas de los ríos.

Más recientemente, hace más de un siglo, se aprovecha la energía hidráulica para generar electricidad, y de hecho fue una de las primeras formas que se emplearon para producirla.

Page 21: Edificios Inteligentes 2

El aprovechamiento de la energía potencial del agua para producir energía eléctrica utilizable, constituye en esencia la energía hidroeléctrica. Es por tanto, un recurso renovable y autóctono. El conjunto de instalaciones e infraestructura para aprovechar este potencial se denomina central hidroeléctrica.

Hoy en día, con los problemas medioambientales, se ven las cosas desde otra perspectiva. Esto ha hecho que se vayan recuperando infraestructuras abandonadas dotándolas de nuevos equipos automatizados y turbinas de alto rendimiento. En consecuencia, el impacto ambiental no es más del que ya existía o por lo menos inferior al de una gran central. A estas instalaciones, con potencia inferior a 5.000 kW se les denomina minihidráulicas.

Las minicentrales hidroeléctricas están condicionadas por las características del lugar de emplazamiento. La topografía del terreno influye en la obra civil y en la selección del tipo de máquina.

Centrales de aguas fluyentes: Aquellas instalaciones que mediante una obra de toma, captan una parte del caudal del río y lo conducen hacia la central para su aprovechamiento, para después devolverlo al cauce del río. Centrales de pie de presa: Son los aprovechamientos hidroeléctricos que tienen la opción de almacenar las aportaciones de un río mediante un embalse. En estas centrales se regulan los caudales de salida para utilizarlos cuando se precisen Centrales de canal de riego o abastecimiento, se pueden distinguir dos tipos:

Con desnivel existente en el propio canal: Se aprovecha mediante la instalación de una tubería forzada, que conduce el agua a la central, devolviéndola posteriormente al curso normal del canal.

Con desnivel existente entre el canal y el curso de un río cercano: En este caso la central se instala cercana al río y se aprovechan las aguas excedentes en el canal.

A la hora de realizar un proyecto de una minicentral hidroeléctrica y dependiendo del tipo por su emplazamiento,la determinación del caudal y la altura de salto determinará la potencia a instalar, así como, el tipo de miniturbina. Existen varios tipos de miniturbinas:

De reacción

Aprovecha la energía de presión del agua en energía cinética en el estator, tanto en la entrada como en la salida, estas aprovechan la altura disponible hasta el nivel de desagüe.

Kaplan: (diseñada por Viktor Kaplan) se componen básicamente de una cámara de entrada que puede ser abierta o cerrada, un distribuidor fijo, un rodete con cuatro o cinco palas fijas en forma de hélice de barco y un tubo de aspiración.

Page 22: Edificios Inteligentes 2

Francis: caracterizada por que recibe el flujo de agua en dirección radial, orientándolo hacia la salida en dirección axial.

Se compone de:

Un distribuidor que contiene una serie de álabes fijos o móviles que orientan el agua hacia el rodete. Un rodete formado por una corona de paletas fijas, torsionadas de forma que reciben el agua en dirección radial y lo orientan axialmente. Una cámara de entrada, que puede ser abierta o cerrada de forma espiral, para dar una componente radial al flujo de agua. Un tubo de aspiración o de salida de agua, que puede ser recto o acodado y se encarga de mantener la diferencia de presiones necesaria para el buen funcionamiento de la turbina.

De flujo cruzado: también conocida como de doble impulsión, constituida principalmente por un inyector de sección rectangular provisto de un álabe longitudinal que regula y orienta el caudal que entra en la turbina, y un rodete de forma cilíndrica, con múltiples palas dispuestas como generatrices y soldadas por los extremos a discos terminales.

El caudal que entra en la turbina es orientado por el álabe del inyector, hacia las palas del rodete,produciendo un primer impulso. Posteriormente, atraviesa el interior del rodete y proporciona un segundo impulso, al salir del mismo y caer por el tubo de aspiración.

Page 23: Edificios Inteligentes 2

De acción

Aprovecha la energía de presión del agua para convertirla en energía cinética en el estator, estas aprovechan la altura disponible hasta el eje de la turbina.

Pelton: Consta de un disco circular que tiene montados en su periferia unas paletas en forma de doble cuchara y de un inyector que dirige y regula el chorro de agua que inciden sobre las cucharas, provocando el movimiento de giro de la turbina.

Energía Solar

Energía radiante producida en el Sol como resultado de reacciones nucleares de fusión . Llega a la Tierra a través del espacio en cuantos de energía llamados fotones, que interactúan con la atmósfera y la superficie terrestres. La intensidad de la radiación solar en el borde exterior de la atmósfera,si se considera que la Tierra está a su distancia promedio del Sol, se llama constante solar, y su valor medio es 1,37.106 erg/s/cm ², o unas 2 cal/min/cm ². Sin embargo, esta cantidad no es constante,ya que parece ser que varía un 0,2% en un periodo de 30 años. La intensidad de energía real disponible en la superficie terrestre es menor que la constante solar debido a la absorción y a la dispersión de la radiación que origina la interacción de los fotones con la atmósfera.

Page 24: Edificios Inteligentes 2

La intensidad de energía solar disponible en un punto determinado de la Tierra depende, de forma complicada pero predecible, del día del año, de la hora y de la latitud. Además, la cantidad de energía solar que puede recogerse depende de la orientación del dispositivo receptor.

Energía Solar Térmica

Un sistema de aprovechamiento de la energía solar muy extendido es el térmico. El medio para conseguir este aporte de temperatura se hace por medio de colectores.

Page 25: Edificios Inteligentes 2

El colector es una superficie, que expuesta a la radiación solar, permite absorber su calor y transmitirlo a un fluido. Existen tres técnicas diferentes entre sí en función de la temperatura que puede alcanzar la superficie captadora. De esta manera, los podemos clasificar como:

Baja temperatura: captación directa, la temperatura del fluido es por debajo del punto de ebullición. Media temperatura: captación de bajo índice de concentración, la temperatura del fluido es más elevada de 100°C. Alta temperatura; captación de alto índice de concentración, la temperatura del fluido es más elevada de 300°C.

Energía Solar Fotovoltáica

El sistema de aprovechamiento de la energía del Sol para producir energía eléctrica se denomina conversión fotovoltaica.

Las células solares están fabricadas de unos materiales con unas propiedades específicas, denominados semiconductores.

Page 26: Edificios Inteligentes 2

Para entender el funcionamiento de una célula solar, debemos de entender las propiedades de estos semiconductores.

Propiedades de los semiconductores

Los electrones que se encuentran orbitando al rededor del núcleo atómico no pueden tener cualquier energía,solamente unos valores determinados, que son denominados, niveles energéticos, a los que se pone nombre: 1s, 2s, 2p,3s, 3p.

Las propiedades químicas de los elementos están determinadas por el número de electrones en su última capa y por electrones que faltan para completarla. En el silicio, material que se usa para la construcción de una célula solar, en su última capa, posee cuatro electrones y faltan otros cuatro para completarla.

Cuando los átomos de silicio se unen a otros, comparten los electrones de las últimas capas con la de los átomos vecinos, formando lo que se denomina enlace covalente. Estas agrupaciones dan lugar a un sólido de estructura cristalina.

De la forma, que los electrones de un átomo no pueden tener cualquier energía, los electrones de un cristal tampoco pueden tomar cualquier energía.

Teniendo en cuenta que en el átomo sus propiedades se determinan en la última capa, ahora son agrupaciones de capas, llamadas bandas de energía, y que definen las propiedades electrónicas de un cristal.

Las dos últimas capas ocupadas por electrones reciben el nombre de banda de conducción y banda de valencia. Estas están separadas por una energía denominada gap.

Para poder entender esto describiremos los tipos de materiales existentes, eléctricamente hablando:

Conductores, disponen de unos electrones de valencia poco ligados al núcleo y que pueden moverse con facilidad dentro de la red cristalina respondiendo a un estímulo externo.

Semiconductores, sus electrones de valencia están más ligados a sus núcleos que los conductores, pero basta suministrar una pequeña cantidad de energía para que se comporten igual que estos. Aislantes, los electrones de valencia están fuertemente ligados al núcleo y la energía a suministrar para poder desprenderse del átomo sería excesivamente grande.

Llegando a este punto, podemos decir que a cierta temperatura, algunos electrones tendrán energía suficiente para desligarse de los átomos, a estos electrones libres se les denomina “electrones” y se les asocia con los niveles energéticos de la banda de conducción.

A los enlaces que han dejado vacíos se les denomina “huecos” para entender mejor este racionamiento diremos que los “huecos” se comportan de la misma forma que partículas con carga positiva.

Si pusiéramos un cristal de estas características, lo único que conseguiríamos sería calentar el cristal, ya que los electrones se moverían dentro del propio cristal, se generarían pares

Page 27: Edificios Inteligentes 2

electrón-hueco, que constan de un electrón que se mueve y deja un hueco, a ese hueco irá otro electrón próximo, generando otro hueco y así sucesivamente.

Para generar una corriente eléctrica hace falta un campo magnético, que se consigue con la unión de dos cristales semiconductores, uno de tipo “p” y otro de tipo “n”.

Estos semiconductores se obtienen con un cristal semiconductor muy puro, introduciéndoles impurezas (dopado).

Una de las regiones se dopa con fósforo, que tiene cinco electrones de valencia, uno más que el silicio, de forma que esta región dopada muestra una afinidad por los electrones mayor que el silicio puro. A esta región se le denomina de tipo n.

La otra región de dopa con boro, que tiene tres electrones de valencia, uno menos que el silicio, de forma que esta región muestra una afinidad por los electrones inferior que el silicio puro. A esta región se le denomina de tipo p.

De esta forma, teniendo un cristal semiconductor de silicio formado por una región de tipo p y otra región de tipo n, se consigue una diferencia de potencial que hace que los electrones tengan menos energía en la zona n que en la zona p. Por esta razón los electrones son enviados a la zona n y los huecos a la zona p.

Cuando inciden fotones sobre este tipo de semiconductor, unión p-n, es cuando entonces se rompen algunos enlaces, generándose de esta forma pares electrón-hueco.

Las células solares, para poder suministrar energía al exterior, van provistas de unos dedos o mallas de metalización frontal, que consisten en partes metálicas por la que circula al exterior la corriente eléctrica generada.

Si esta generación se produce a una distancia de la unión menor que lo que se denomina longitud de difusión,estos pares serán separados por el fuerte campo eléctrico que existe en la unión, moviéndose el electrón hacia la zona n y el hueco hacia la zona p. De esta forma se da una corriente de la zona n a la zona p.

Si estos electrones consiguen ser recolectados por la malla de metalización, obtendremos energía eléctrica

Si la longitud de difusión es muy corta, el par electrón-hueco, se recombinará, lo cuál dará origen a calor.

Por supuesto esto siempre que la célula esté iluminada.

De todas formas no todos los fotones incidentes generan electricidad, hay factores que hacen que existan pérdidas en esta generación.

Energía de fotones incidentes, hay veces que los fotones incidentes no disponen de la energía necesaria para romper un enlace covalente y crear un par electrón-hueco, y otras, el fotón tiene demasiada energía, lo cual se disipa en forma de calor.

Recombinación, es el hecho de que los electrones liberados ocupen un hueco próximo a ellos.

Reflexión, parte de la radiación incidente en la célula es reflejada.

Page 28: Edificios Inteligentes 2

Malla de metalización, estos contactos eléctricos en el exterior de la célula, disminuye la superficie de captación. Resistencia serie, es el efecto Joule producido por el paso de electrones a través del silicio, la malla de metalización y resistencia de los contactos de conexión eléctricas al circuito exterior. Resistencia paralelo, tiene origen en las imperfecciones de la unión p-n, creando fugas de corriente.

Estas células conexionadas entre sí, y montadas en un módulo o panel es lo que llamamos panel solar. Cuyas características eléctricas vienen determinadas por el numero y forma de conexión de las células.

Conexión serie, conexionadas de forma que el lado p sea conectado con el lado n de otra célula, así sucesivamente, quedando cada extremo con un lado n y otro p.

Las tensiones generadas de cada célula se suman, la corriente es el valor de una célula.

Conexión paralelo, conexionados todos los lados de tipo p, por un lado, y los de tipo n por otro.

La tensión generada es la de una célula y la corriente es la suma de todas.

Conexión mixta, es la conexión en serie y en paralelo de las células.

Donde la tensión generada es la suma de las tensiones de células en serie y la corriente es la suma de todas las células en paralelo.

I total = I x número de células en paralelo

Page 29: Edificios Inteligentes 2

V total = V x número de células en serie

Existen varios tipos de paneles fotovoltaicos, que se diferencian bien por su tecnología de fabricación de células o por su aplicación.

Silicio monocristalino Silicio policristalino Silicio amorfo Policristalinos de lámina delgada Paneles para el espacio Sulfuro de cadmio y sulfuro de cobre Teluro de cadmio Seleniuro de cobre e indio Arseniuro de galio o de concentración Bifaciales

Energía Geotérmica

Nuestro planeta guarda una enorme cantidad de energía en su interior. Un volcán o un géiser es una buena muestra de ello.

Son varias las teorías que tratan de explicar las elevadas temperaturas del interior de la Tierra. Unas sostienen que se debe a las enormes presiones existentes bajo la corteza terrestre; otras suponen que tienen origen en determinados procesos radiactivos internos; por último, hay una teoría que lo atribuye a la materia incandescente que formó nuestro planeta.

Page 30: Edificios Inteligentes 2

1. Perforación de extracción de vapor2. Inyección de agua fría hasta roca caliente

3. Perforación de extracción de vapor4. Intercambiador de calor

5. Edificio de la turbina6. Enfriamiento

7. Depósito de calor subterráneo, para exceso de temperatura8. Medición de perforación9. Conexión a red eléctrica

Diversos estudios científicos realizados en distintos puntos de la superficie terrestre han demostrado que, por término medio, la temperatura interior de la Tierra aumenta 3°C cada 100 m. de profundidad.

Este aumento de temperatura por unidad de profundidad es denominado gradiente geotérmico.

Se supone que variará cuando alcancen grandes profundidades, ya que en el centro de la Tierra se superarían los 20.000°C, cuando en realidad se ha calculado que es, aproximadamente, de 6.000°C.

La forma más generalizada de explotarla, a excepción de fuentes y baños termales, consiste en perforar dos pozos, uno de extracción y otro de inyección.

En el caso de que la zona esté atravesada por un acuífero se extrae el agua caliente o el vapor, este se utiliza en redes de calefacción y se vuelve a inyectar, en el otro caso se utiliza en turbinas de generación de electricidad.

En el caso de no disponer de un acuífero, se suele proceder a la fragmentación de las rocas calientes y a la inyección de algún fluido.

Page 31: Edificios Inteligentes 2

Es difícil el aprovechamiento de esta energía térmica, ocasionado por el bajo flujo de calor, debido a la baja conductividad de los materiales que la constituyen; pero existen puntos en el planeta que se producen anomalías geotérmicas,dando lugar a gradientes de temperatura de entre 100 y 200°C por kilómetro, siendo estos puntos aptos para el aprovechamiento de esta energía.

Tipos:

Hidrotérmicos: tienen en su interior de forma natural el fluido caloportador, generalmente agua en estado líquido o en vapor,dependiendo de la presión y temperatura. Suelen encontrarse en profundidades comprendidas entre 1 y 10 km. Geopresurizados: son similares a los hidrotérmicos pero a una mayor profundidad, encontrándose el fluido caloportador a una mayor presión,unos 1000 bares y entre 100 y 200°C, con un alto grado de salinidad, generalmente acompañados de bolsas de gas y minerales disueltos. De roca caliente: son formaciones rocosas impermeables y una temperatura entre 100 y 300°C, próximas a bolsas magmáticas.

Energía Eólica

La fuente de energía eólica es el viento, o mejor dicho, la energía mecánica que, en forma de energía cinética transporta el aire en movimiento. El viento es originado por el desigual calentamiento de la superficie de nuestro planeta, originando movimientos convectivos de la masa atmosférica.

Page 32: Edificios Inteligentes 2

La Tierra recibe una gran cantidad de energía procedente del Sol. Esta energía, en lugares favorables, puede ser del orden de 2.000 kW.h/m ² anuales. El 2 por ciento de ella se transforma en energía eólica con un valor capaz de dar una potencia de 1011 GW.

En la antigüedad no se conocían estos datos, pero lo que sí es cierto, es que intuitivamente conocían el gran potencial de esta energía.

Las formas de mayor utilización son las de producir energía eléctrica y mecánica, bien sea para autoabastecimiento de electricidad o bombeo de agua. Siendo un aerogenerador los que accionan un generador eléctrico y un aeromotor los que accionan dispositivos, para realizar un trabajo mecánico.

Partes de un aerogenerador:- Cimientos, generalmente constituidos por hormigón en tierra, sobre el cual se atornilla la torre del aerogenerador.

- Torre, fijada al suelo por los cimientos, proporciona la altura suficiente para evitar turbulencias y superar obstáculos cercanos; la torre y los cimientos son los encargados de transmitir las cargas al suelo.

- Chasis, es el soporte donde se encuentra el generador, sistema de frenado, sistema de orientación, equipos auxiliares (hidráulico), caja de cambio, etc. Protege a estos equipos del ambiente y sirve, a su vez, de aislante acústico.

- El buje, pieza metálica de fundición que conecta las palas al eje de transmisión.

- Las palas, cuya misión es la de absorber energía del viento; el rendimiento del aerogenerador depende de la geometría de las palas, interviniendo varios factores:

Longitud Perfil Calaje Anchura

Sistemas de un aerogenerador

Orientación, mantiene el rotor cara al viento,minimizando los cambios de dirección del rotor con los cambios de dirección de viento; Estos cambios de dirección provocan pérdidas de rendimiento y genera grandes esfuerzos con los cambios de velocidad. Regulación, controla la velocidad del rotor y el par motor en el eje del rotor, evitando fluctuaciones producidas por la velocidad del viento. Transmisión, utilizados para aumentar la velocidad de giro del rotor, para poder accionar un generador de corriente eléctrica, es un multiplicador, colocado entre el rotor y el generador. Generador, para la producción de corriente continua (DC) dinamo y para la producción de corriente alterna (AC) alternador, este puede ser sincrónico o asíncrono.

Energía del Mar

Los mares y los océanos son inmensos colectores solares, de los cuales se puede extraer energía de orígenes diversos.

Page 33: Edificios Inteligentes 2

- La radiación solar incidente sobre los océanos, en determinadas condiciones atmosféricas,da lugar a los gradientes térmicos oceánicos (diferencia de temperaturas) a bajas latitudes y profundidades menores de 1000 metros.

- La iteración de los vientos y las aguas son responsables del oleaje y de las corrientes marinas.

- La influencia gravitacional de los cuerpos celestes sobre las masas oceánicas provoca mareas.

Energía de las mareas

La energía estimada que se disipa por las mareas es del orden de 22000 TWh. De esta energía se considera recuperable una cantidad que ronda los 200 TWh.

El obstáculo principal para la explotación de esta fuente es el económico. Los costes de inversión tienden a ser altos con respecto al rendimiento, debido a las bajas y variadas cargas hidráulicas disponibles. Estas bajas cargas exigen la utilización de grandes equipos para manejar las enormes cantidades de agua puestas en movimiento. Por ello,esta fuente de energía es sólo aprovechable en caso de mareas altas y en lugares en los que el cierre no suponga construcciones demasiado costosas.

La limitación para la construcción de estas centrales, no solamente se centra en el mayor coste de la energía producida, si no, en el impacto ambiental que generan.

La mayor central mareomotriz se encuentra en el estuario del Rance (Francia). En nuestro país hay una central mareomotriz en Península de Valdéz (Chubut).

Energía térmica oceánica

La explotación de las diferencias de temperatura de los océanos ha sido propuesta multitud de veces, desde que D´Arsonval lo insinuara en el año 1881, pero el más conocido pionero de esta técnica fue el científico francés George Claudi, que invirtió toda su fortuna, obtenida por la invención del tubo de neón, en una central de conversión térmica.

La conversión de energía térmica oceánica es un método de convertir en energía útil la diferencia de temperatura entre el agua de la superficie y el agua que se encuentra a 100 m de profundidad. En las zonas tropicales esta diferencia varía entre 20 y 24 °C. Para el aprovechamiento es suficiente una diferencia de 20°C.

Page 34: Edificios Inteligentes 2

Las ventajas de esta fuente de energía se asocian a que es un salto térmico permanente y benigno desde el punto de vista medioambiental. Puede tener ventajas secundarias, tales como alimentos y agua potable, debido a que el agua fría profunda es rica en sustancias nutritivas y sin agentes patógenos.

Las posibilidades de esta técnica se han potenciado debido a la transferencia de tecnología asociada a las explotaciones petrolíferas fuera de costa. El desarrollo tecnológico de instalación de plataformas profundas, la utilización de materiales compuestos y nuevas técnicas de unión harán posible el diseño de una plataforma, pero el máximo inconveniente es el económico.

Existen dos sistemas para el aprovechamiento de esta fuente de energía:

El primero consiste en utilizar directamente el agua de mar en un circuito abierto, evaporando el agua a baja presión y así mover una turbina. El departamento de energía americano (DOE) está construyendo un prototipo de 165 kW en las islas Hawaii, con él se pretende alcanzar la experiencia necesaria para construir plantas de 2 a 15 MW.

El segundo consiste en emplear un circuito cerrado y un fluido de baja temperatura de ebullición (amoniaco, freón,propano)que se evaporan en contacto con el agua caliente de la superficie. Este vapor mueve un turbogenerador, se condensa con agua fría de las profundidades y el fluido queda dispuesto de nuevo para su evaporación.

El rendimiento de este sistema es su bajo rendimiento, sobre un 7%, esto es debido a la baja temperatura del foco caliente y la poca diferencia de temperatura entre el foco frío y caliente. Además es preciso realizar un coste extra de energía, empleado para el bombeo de agua fría de las profundidades para el condensado de los fluidos.

Energía de las olas

Las olas del mar son un derivado terciario de la energía solar. El calentamiento de la superficie terrestre genera viento, y el viento genera las olas. Únicamente el 0.01% del

Page 35: Edificios Inteligentes 2

flujo de la energía solar se transforma en energía de las olas. Una de las propiedades características de las olas es su capacidad de desplazarse a grandes distancias sin apenas pérdida de energía. Por ello, la energía generada en cualquier parte del océano acaba en el borde continental. De este modo la energía de las olas se concentra en las costas, que totalizan 336000 km de longitud. La densidad media de energía es del orden de 8 kW/m de costa. En comparación, las densidades de la energía solar son del orden de 300 W/m ². Por tanto, la densidad de energía de las olas es, en un orden de magnitud, mayor que la que los procesos que la generan. Las distribuciones geográficas y temporales de los recursos energéticos de las olas están controladas por los sistemas de viento que las generan (tormentas, alisios, monzones).

La densidad de energía disponible varía desde las más altas del mundo, entre 50-60 kW/m en Nueva Zelanda, hasta el valor medio de 8 kW/m.

Los diseños actuales de mayor potencia se hallan a 1 Mwe de media, aunque en estado de desarrollo.

La tecnología de conversión de movimiento oscilatorio de las olas en energía eléctrica se fundamenta en que la ola incidente crea un movimiento relativo entre un absorbedor y un punto de reacción que impulsa un fluido a través del generador.

La potencia instalada en operación en el mundo apenas llega al Mwe. La mayor parte de las instalaciones lo son de tierra. Los costes fuera de la costa son considerablemente mayores. En el momento actual, la potencia instalada de los diseños más modernos varía entre 1 y 2 MW. Pero todos los diseños deben considerarse experimentales.

De los sistemas propuestos, para aprovechar la energía de las olas, se puede hacer una clasificación, los que se fijan a la plataforma continental y los flotantes, que se instalan en el mar.

Uno de los primeros fue el convertidor noruego Kvaerner, cuyo primer prototipo se construyó en Bergen en 1985. Consistente en un tubo hueco de hormigón, de diez metros de largo, dispuesto verticalmente en el hueco de un acantilado. Las olas penetran por la parte inferior del cilindro y desplazan hacia arriba la columna de aire, lo que impulsa una turbina instalada en el extremo superior del tubo. Esta central tiene una potencia de 500 kW y abastece a una aldea de cincuenta casas.

Page 36: Edificios Inteligentes 2

El pato de Salter, que consiste en un flotador alargado cuya sección tiene forma de pato. La parte más estrecha del flotador se enfrenta a la ola con el fin de absorber su movimiento lo mejor posible. Los flotadores giran bajo la acción de las olas alrededor de un eje cuyo movimiento de rotación acciona una bomba de aceite que se encarga de mover una turbina.

La dificultad que presenta este sistema es la generación de electricidad con los lentos movimientos que se producen.

Balsa de Cockerell, que consta de un conjunto de plataformas articuladas que reciben el impacto de las crestas de las olas. Las balsas ascienden y descienden impulsando un fluido hasta un motor que mueve un generador por medio de un sistema hidráulico instalado en cada articulación.

Rectificador de Russell, formado por módulos que se instalan en el fondo del mar, paralelos al avance de las olas. Cada módulo consta de dos cajas rectangulares, una encima de la otra. El agua pasa de la superior a la inferior a través de una turbina.

Boya de Nasuda, consistente en un dispositivo flotante donde el movimiento de las olas se aprovecha para aspirar e impulsar aire a través de una turbina de baja presión que mueve un generador de electricidad.

Biomasa y R.S.U.

La más amplia definición de BIOMASA sería considerar como tal a toda la materia orgánica de origen vegetal o animal, incluyendo los materiales procedentes de su transformación natural o artificial. Clasificándolo de la siguiente forma:

Biomasa natural: es la que se produce en la naturaleza sin la intervención humana.

Biomasa residual: que es la que genera cualquier actividad humana, principalmente en los procesos agrícolas,ganaderos y los del propio hombre, tal como, basuras y aguas residuales.

Biomasa producida: que es la cultivada con el propósito de obtener biomasa transformable en combustible, en vez de producir alimentos,como la caña de azúcar en Brasil, orientada a la producción de etanol para carburante.

Desde el punto de vista energético, la biomasa se puede aprovechar de dos maneras; quemándola para producir calor o transformándola en combustible para su mejor transporte y almacenamiento la naturaleza de la biomasa es muy variada, ya que depende de la propia fuente, pudiendo ser animal o vegetal, pero generalmente se puede decir que se compone de hidratos de carbono, lípidos y prótidos. Siendo la biomasa vegetal la que se compone mayoritariamente de hidratos de carbono y la animal de lípidos y prótidos.

Page 37: Edificios Inteligentes 2

La utilización con fines energéticos de la biomasa requiere de su adecuación para utilizarla en los sistemas convencionales.

Estos procesos pueden ser:

Físicos, son procesos que actúan físicamente sobre la biomasa y están asociados a las fases primarias de transformación, dentro de lo que puede denominarse fase de acondicionamiento, como, triturado,astillado, compactado e incluso secado. Químicos, son los procesos relacionados con la digestión química, generalmente mediante hidrólisis pirólisis y gasificación. Biológicos, son los llevados a cabo por la acción directa de microorganismos o de sus enzimas, generalmente llamado fermentación. Son procesos relacionados con la producción de ácidos orgánicos,alcoholes, cetonas y polímeros. Termoquímicos, están basados en la transformación química de la biomasa, al someterla a altas temperaturas (300°C – 1500°C). Cuando se calienta la biomasa se produce un proceso de secado y evaporación de sus componentes volátiles, seguido de reacciones de crakeo o descomposición de sus moléculas, seguidas por reacciones en la que los productos resultantes de la primera fase reaccionan entre sí y con los componentes de la atmósfera en la que tenga lugar la reacción, de esta forma se consiguen los productos finales.

Según el control de las condiciones del proceso se consiguen productos finales diferentes, lo que da lugar a los tres procesos principales de la conversión termoquímica de la biomasa:

Combustión: Se produce en una atmósfera oxidante, de aire u oxígeno, obteniendo cuando es completa, dióxido de carbono, agua y sales minerales (cenizas), obteniendo calor en forma de gases calientes. Gasificación: Es una combustión incompleta de la biomasa a una temperatura de entre 600°C a 1500°C en una atmósfera pobre de oxígeno, en la que la cantidad disponible de este compuesto está por debajo del punto estequeométrico, es decir, el mínimo necesario para que se produzca la reacción de combustión. En este caso se obtiene principalmente un gas combustible formado por monóxido y dióxido de carbono, hidrógeno y metano. Pirólisis: Es el proceso en la descomposición térmica de la biomasa en ausencia total de oxígeno. En procesos lentos y temperaturas de 300°C a 500°C el

Page 38: Edificios Inteligentes 2

producto obtenido es carbón vegetal, mientras que en procesos rápidos (segundos) y temperaturas entre 800°C a 1200°C se obtienen mezclas de compuestos orgánicos de aspectos aceitosos y de bajo pH, denominados aceites de pirólisis.

Pudiéndose obtener combustibles:

Sólidos, Leña, astillas, carbón vegetal Líquidos, biocarburantes, aceites, aldehídos, alcoholes, cetonas, ácidos orgánicos… Gaseosos, biogas, hidrógeno.

RIESGO ELECTRICO

La creciente utilización de la energía eléctrica, en todas las aplicaciones de la vida actual, nos obliga a aconsejar al usuario de la electricidad para familiarizarlo con los medios de protección y contra los riesgos a los que está expuesto.El uso de la electricidad está cada vez más extendido en nuestro medio de vida, ya sea en la industria, en la vivienda, en el transporte, etc. Nos aporta innumerables beneficios, pero puede presentar riesgos de accidentes eléctricos para las personas, bienes y animales domésticos.Estos riesgos de origen eléctrico aumentan los accidentes mortales por las descargas eléctricas, debidas al contacto de personas con partes eléctricas bajo tensión (contacto directo) o con partes metálicas accidentalmente con tensión (contacto indirecto).Estudios realizados sobre accidentes por descargas eléctricas demuestran que, en la mayoría de los casos, los medios de seguridad previstos no fueron suficientes para garantizar la seguridad de las personas o no estuvieron correctamente aplicados (incluso, que con el paso del tiempo su capacidad protectora había disminuido).Para poder prevenir estos accidentes, es necesario adoptar medidas de protección, adecuadas a los posibles riesgos que puedan presentarse. Estas medidas dependen de la acertada elección de los elementos preventivos que hagan a las instalaciones eléctricas (de acuerdo con su tensión, tipo de instalación y emplazamiento) confiables y seguras.

Daños de origen eléctrico

En estos accidentes interviene siempre una cantidad de energía eléctrica que se transforma por ejemplo en calor. Esta transformación puede producirse directamente sobre la persona, causándole lesiones orgánicas, o desencadenar un proceso energético que dé lugar a un accidente de otra naturaleza, siendo, en este caso, la corriente eléctrica la causa indirecta.El proceso por el que una persona recibe energía eléctrica en un accidente directo puede deberse a una simple exposición a las radiaciones electromagnéticas, aunque son mucho más frecuentes y graves los casos en que la víctima queda acoplada eléctricamente a la red.

Page 39: Edificios Inteligentes 2

Por otro lado, el estudio de los efectos de la corriente eléctrica sobre el cuerpo humano tiene dos aspectos distintos pero en estrecha relación: el físico y el fisiológico.Es preciso, por tanto, examinar el grado de peligrosidad de la corriente eléctrica, en función de tres variables: intensidad, frecuencia y tiempo de duración.A la vez, deben ser analizados los valores de la impedancia que presenta el cuerpo humano. Éstos dependerán de las distintas trayectorias seguidas por la corriente eléctrica, así como de la naturaleza y el estado de los tejidos atravesados, para todos los valores posibles de la frecuencia, para que, de los datos obtenidos, se pueda establecer el grado de peligrosidad en función de la tensión para distintos valores de la corriente eléctrica.En toda electrización corporal es importante considerar el establecimiento de un régimen transitorio de corriente a través del cuerpo, cuya duración puede ser importante en función de los tiempos considerados como umbrales de peligro, por lo que los valores de intensidad, tensión e impedancia deben definirse con precisión.

Prevención de accidentes eléctricos

Analizados y estructurados los daños de origen eléctrico, el paso siguiente consiste en estudiar los procedimientos de prevención de los accidentes eléctricos.No cabe duda de que cualquier método de prevención debe fijar como objetivo final la eliminación total de las causas que originan los accidentes o, por lo menos, limitarlas a valores no peligrosos.Para limitar el tiempo de duración del acoplamiento son necesarios interruptores diferenciales rápidos, puesto que el umbral de seguridad resulta ser un tiempo muy corto. Este procedimiento de prevención es eficaz, tanto para contactos directos como indirectos, y permite controlar las corrientes de fuga o de derivación a tierra.

Efectos de la corriente eléctrica sobre el cuerpo humano

De entre los numerosos trabajos experimentales realizados para conocer los efectos de la corriente eléctrica sobre el organismo humano, se puede destacar dos aspectos:

Page 40: Edificios Inteligentes 2

Fenómenos fisiológicos de la corriente eléctrica Factores que intervienen en el accidente eléctrico

El conocimiento de estos dos puntos, y los datos que de ellos se obtiene, construyen la base para aplicar los criterios prácticos en el diseño de los elementos de protección de una instalación eléctrica.

Factores fisiológicos de la corriente eléctrica

Los fenómenos fisiológicos que produce el paso de la corriente eléctrica en el organismo humano dependen del valor de la intensidad de la corriente. Puede provocar accidentes graves e incluso la muerte.Respecto del concepto de baja o alta tensión, se debe tener en cuenta que la corriente eléctrica de baja tensión provoca la muerte por fibrilación ventricular, al contrario que la de alta tensión, que lo hace por destrucción de los órganos o por asfixia, debido al bloqueo del sistema nervioso.Estos efectos fisiológicos sobre el cuerpo humano varían en función del valor de la intensidad, de acuerdo al siguiente cuadro:

Intensidad Efectos fisiológicos

1 a 3 mA: Prácticamente imperceptibles. No hay riesgo.De 5 a 10 mA: Contracciones involuntarias de músculos y pequeñas alteraciones del sistema respiratorio.De 10 a 15 mA: Principio de tetanización muscular, contracciones violentas e incluso permanentes de las extremidades.De 15 a 30 mA: Contracciones violentas e incluso permanentes de la caja toráxica. Alteración del ritmo cardíaco.Mayor de 30 mA: Fibrilación ventricular cardíaca.

Page 41: Edificios Inteligentes 2

Lesiones importantes por electrocución

Todos estos valores y efectos pueden variar según el tiempo que dure el paso de la corriente eléctrica. Los valores máximos de intensidad y corriente son:

Para tiempos inferiores a 150 milisegundos no hay riesgo, siempre que la intensidad no supere los 300 mA. Para tiempos superiores a 150 milisegundos no hay riesgo, siempre que la intensidad no supere los 30 mA.

La fibrilación ventricular del corazón es una acción independiente de las fibras musculares cardíacas, que produce una contracción incoordinada y que entraña la supresión inmediata de la actividad fisiológica del corazón.Al no poder circular la sangre oxigenada y, en particular, no llegar al cerebro, se producen lesiones cerebrobulbares graves.Esto nos alerta sobre la rapidez con que se debe interrumpir el paso de corriente por el organismo.Existen otros fenómenos fisiológicos producidos por la intensidad de la corriente eléctrica o por el trayecto seguido por ésta que pueden conducir a la muerte: lesiones encefálicas, bloqueo de la epiglotis, laringoespasmo, espasmo coronario y shock global.Otra manifestación que puede provocar una descarga eléctrica en el cuerpo humano es la quemadura, generada de dos formas distintas:

Accidentes producidos por cortocircuitos: provocan radiaciones originadas por el arco eléctrico que dan lugar a lesiones por quemaduras. Accidentes producidos por diferentes acoplamientos eléctricos: provocan quemaduras internas y externas en el cuerpo.

Page 42: Edificios Inteligentes 2

Factores que intervienen en el accidente eléctrico

El valor de la intensidad de la corriente eléctrica. El valor de la tensión. El tiempo de paso de la corriente eléctrica. El valor de la resistencia óhmica que presente el organismo. La trayectoria que siga la corriente por el cuerpo. La naturaleza de la corriente. El valor de la frecuencia en el caso de corrientes alternas. La capacidad de reacción del organismo.

De todos estos factores se destacan:

Valor de la intensidad de la corriente eléctrica.

Se suele llamar también “umbral absoluto de intensidad” y representa la máxima intensidad de corriente eléctrica que puede soportar una persona sin peligro, independientemente del tiempo que dure su exposición a la corriente. Se fija para la corriente eléctrica alterna, de frecuencia 50 Hz entre 10 y 30 mA., según el sexo y la edad de las personas.

Valor de la resistencia óhmica del organismo.

Diversos estudios experimentales demuestran que la impedancia del cuerpo humano es siempre resistiva pura, considerándolo como un dipolo.Se ha comprobado que para corrientes alternas cuyas frecuencias sean superiores a 10 kHz., no provoca más efectos que el de calentar los tejidos por donde pasa la corriente.En lo que a baja tensión respecta, se puede considerar el comportamiento de los dipolos del cuerpo humano aproximadamente lineal. El valor de la resistencia de cada uno de ellos depende de diversas circunstancias. La más importante es la humedad de la piel, que llega a valores de 100.000 ohmios cuando está seca o desciende considerablemente en estado de humedad.

Page 43: Edificios Inteligentes 2

Tiempo de paso de la corriente eléctrica.

Se denomina “umbral absoluto de tiempo” y representa el tiempo que una persona puede soportar sin peligro el paso de corriente eléctrica en baja tensión, de cualquier intensidad, por su cuerpo.Investigaciones y estudios realizados confirman que la fibrilación ventricular es, de entre todos los efectos graves que origina la corriente eléctrica en el cuerpo humano, el que necesita menos tiempo para producirse. Sin embargo, no se produce si dicho tiempo es del orden de 0,025 segundos o inferior.Casualmente, la duración del período de la corriente eléctrica de 50 Hz., es de 0,020 segundos, por lo que se considerará como “umbral absoluto de tiempos” este valor.

Causas de accidentes eléctricos

Falta de prevención. Exceso de confianza. Fallas técnicas. Fallas humanas. Imprudencia. Ignorancia.

Resulta necesaria una toma de conciencia sobre este tema, para tomar las medidas de seguridad que permita evitar accidentes, ya que en la actualidad casi todos nuestras actividades están vinculadas con el uso de la electricidad.