ee143 f2010 lecture 24 micro-electro-mechanical systems (mems) fabrication fabrication...

42
Professor N Cheung , U.C. Berkeley Lecture 24 EE143 F2010 1 Fabrication Considerations Stress-Strain, Thin-film Stress, Stiction Special Process Modules for MEMS Bonding, Cavity Sealing, Deep RIE, Spatial forming (Molding), Layer Transfer Principle of Sensing and Actuation Beam and Thin-Plate Deflections Micromachining Process Flows MEMS-IC Integration BioMEMS, PhotoMEMS Micro-Electro-Mechanical Systems (MEMS) Fabrication

Upload: duongkhanh

Post on 14-Mar-2018

228 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

1

• Fabrication Considerations– Stress-Strain, Thin-film Stress, Stiction

• Special Process Modules for MEMS– Bonding, Cavity Sealing, Deep RIE, Spatial

forming (Molding), Layer Transfer

• Principle of Sensing and Actuation– Beam and Thin-Plate Deflections

• Micromachining Process Flows– MEMS-IC Integration

– BioMEMS, PhotoMEMS

Micro-Electro-Mechanical Systems (MEMS)

Fabrication

Page 2: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

2

Axial Stress and Strain

Stress s: force per unit area acting on a material

[unit: Newtons/m2 (pascal)]

s = F/A , A = area

s > 0 tensile

s < 0 compressive

Strain e: displacement per unit length (dimensionless)

e = L/ Lo

* Figure assumes there is no change in lateral dimensions

Page 3: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

3

E = s / e [ in N/m2 (Pascal) ]

Poisson’s Ratio

= 0.5 volume conserved

E in GPa ( 1E9 N/m2)

Si 190

SiO2 73

Diamond 1035

Young’s Modulus of a material

Page 4: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

4

Stress-Strain CharacteristicFor low stress:

• material responds in elastic fashion

• (Hooke’s Law) stress/strain = constant

sy = yield stress

Ultimate stress - material will break;

For Si (brittle) ultimate stress ~ yield stress

Page 5: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

5

Mechanical Properties of Microelectronic Materials

Page 6: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

6

Material Choices

(a) Stiffness (b) Strength

Page 7: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

7

Poly-Si For MEMS Structure

• Effect of substrate:

single-crystal substrate

(clean surface)

epitaxial layer

amorphous substrate

polycrystalline film

• Average grain size

depends on

deposition &

annealing conditions

Page 8: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

8

Stress in LPCVD Poly-Si Films

• Stress varies significantly with process conditions

– strong correlation between microstructure and stress

Str

ain

vs. t a

nn

ea

l:

Tdep~620oC

Page 9: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

9

1) Begin with a bonded SOI wafer. Grow

and etch a thin thermal oxide layer to act

as a mask for the silicon etch.

2) Etch the silicon device layer to expose

the buried oxide layer.

3) Etch the buried oxide layer in buffered

HF to release free-standing structures.

Si device layer, 20 µm thick

buried oxide layer

Si handle wafer

oxide mask layer

silicon

Thermal oxide

Use of SOI for MEMS Process

Page 10: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

10

Origins of Thin-film Stress

• Extrinsic– Applied stress

– Thermal expansion

– Plastic deformation

• Intrinsic– Growth

morphology

– Lattice misfit

– Phase transformation

stot = sth + sint + sext

Page 11: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

11

substratesubstrate

Effect of Thin-film Stress Gradient on Cantilever Deflection

substrate

z

(1) No stress gradient along z-direction

(2) Higher tensile stress

near top surface of cantilever

before release from substarte

(3) Higher compressive stress

near top surface of cantilever

before release from substrate

Cantilever

Page 12: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

12

Thin-films Stress Gradient Effects on MEMS Structures

Top of beam more tensile

Top of beam more compressive

Page 13: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

13

Stressing along the x-direction, all layers take the same strain

Ex = fA EA+ fB EB

fA and fB are fractional volumes

* Material with larger E takes the larger stress

Stressing along the y-direction, all layers take the same stress

Ey =1/ [ fA / EA+ fB / EB ] * Material with smaller E takes the larger strain

AB

Effective Young’s Modulus of Composite Layers

Page 14: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

14

PECVD silicon nitride using the SiH+ NH+ N chemistry.

Substrate RF bias is used to induce ion bombardment.

Because of the light mass, H+ ions can be assumed as the

dominant ion bombardment flux

H+ bombardment energy (eV)

Mechanical

Stress in nitride (in 1E8 Pa)

0

1000eV

Compressive

Tensile

-3

-6

+3

+6

Page 15: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

15

Use of Stressed Composite layer to reduce bending

Page 16: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

16

Thermal Strain

Page 17: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

17

Biaxial Stress in Thin Film on Thick Substrate

No stress occurs in direction normal to substrate (sz=0)

Assume isotropic film (ex=ey=e so that sx=sy=s)

* See derivation in EE143 handout

(Tu et al, Electronic Thin Film Science)

Page 18: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

18

t s

= substrate thickness

t f

= film thickness

E = Young’s modulus of substrate

n = Poisson’s ratio of substrate

Radius of Curvature of warpage

“Stoney Equation”

r = Es ts

2

( 1- )s 6 sf tf

See handout for derivation

Substrate Warpage

Page 19: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

19

Typical Thin Film stress: 108 to 5x1010 dynes/cm2

(107 dynes/cm2 = 1 MPa)

• Compressive (e <0)

– film tends to expand upon release

--> buckling, blistering, delamination

• Tensile (e >0)

– film tends to contract upon release

--> cracking if forces > fracture limit

Page 20: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

20

Page 21: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

21

The oxide stress is compressive

since r changes from 300m to

200m (Si wafer more curved)

Calculate Film Stress from change of curvature

Page 22: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

22

Deflection of Microstructures - Thin Plate approximation

Cantilever Beam with length L, width w, and thickness t

F in Newton

in N/meter

* Assumes L >> w and t, small deflection approximation

where

L = length of beam (in meter)

t =thickness of beam (in meter)

I = bending moment of inertia

= wt3/12 (in meter4) For reference only

Page 23: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

23

Deflection of Circular thin membrane

r = radius, t=thickness, P= uniform pressure (in N/m2)

For small deflections, maximum deflection in center

A more accurate

relationship

For reference only

Page 24: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

24

kHz

Page 25: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

25

Stiction

Poly-Si beam released

without stiction after

sacrificial layer etching

Poly-Si beam

with two stiction points

after sacrificial layer etching

Page 26: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

26

As the etching liquid is removed during a dehydration cycle, a liquid bridge is formed between the

suspended member and the substrate. An attractive capillary force which may be sufficiently strong

to collapse it. Even after drying, the inter-solid adhesion will not release the structure.

Solutions

• Dry etching (e.g. XeF2)

• Super-critical drying (e.g. rinse solution gradually

replaced by liquid CO2 under

high pressure)

• Hydrophobic Coatings

• Use textured surfaces

See C. H. Mastrangelo, “Adhesion-Related Failure Mechanisms in

Micromechanical Devices”, Tribology Letters, 1997

Page 27: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

27

Super-critical drying

i) release by immersion in aqueous HF;

ii) substrate and structure hydrophilic

passivation by immersion in a sulfuric

peroxide or hydrogen peroxide solution

resulting in hydrophilic silicon surfaces;

iii) thorough deionized water rinses

followed by a methanol soak to displace

the water;

iv) methanol-soaked samples placed in

the supercritical drying chamber for

drying.

Page 28: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

28

* Dry, isotropic, vapor-phase etch

XeF2 vapor pressure (~3.8 Torr at 25 °C)

2 XeF2 + Si 2 Xe (g) + SiF4

(g)

Advantages :

• Highly selective to silicon with respect to Al, photoresist, and SiO2.

• Isotropic, large structures can be undercut.

• Fast ( ~10mm per hour)

• Gas phase etching, no stiction between freed structure and substrate

Disadvantages:

• No known etch stops for Si substrate

XeF2 Etching of Si

Page 29: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

29

Page 30: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

30

Wafer Bonding

• Anodic bonding (E-field enhanced)

• Adhesive bonding (molten metal, epoxy)

• Direct wafer bonding

*can produce unique MEMS structures

Page 31: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

31

Anodic Bonding

Anodic Bonding: Low to moderate Temp, Rapid Process

glass

silicon

-1kV

T=300oC

* works mainly with alkaline-containing glass

Page 32: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

32

Example of Anodic Bonding

Pressure Transducer using membrane deflection

glass

glassglass

glass

Page 33: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

33

Bump

Chiao and Lin, UCB

Vibrating resonator

Al width=125 mm

Nitride

Water outsideAir inside

• After RTP for

750oC/10secs

• Al sealing ring

width=125mm

• Water is blocked outside

• Al does not wet glass well.

Add Cr adhesion layer

between Al and glass

Liquid Phase Bonding

Top viewCross-section

Page 34: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

34

Heat

Direct Bonding

Examples: Si-Si bonding and Si-SiO2 bonding

Page 35: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

35

Plasma TreatmentGases Used:

O2, He, N2, Ar

Pressure

200mTorr

Power

50W-300W

Time

15-30 seconds

+

O2

Bond Strengthening Annealing

Room Temp Bonding

Chemical Cleaning:

Piranha + RCA

-

Plasma Assisted Direct Bonding

Page 36: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

36

Requirements of Direct Bonding Surfaces

Surface micro-roughness ~ nm

No macroscopic wafer warpage

Minimal particle density and size: 1mm particle will give 1000mm void

Contamination free surface

Page 37: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

37

Permanent Bond Formation

O

O

O

O

Si

Si Si

O

OSi

Si Si

O

Si

Si Si

Formation of

Covalent bondHydrogen Bonding

Page 38: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

38

3-D circuit with a metal

interconnect (at top), followed by a

memory substrate, a bond

interface, then logic metal, logic

transistors and a logic substrate.

• Bond memory substrate and

logic substrate.

• Thin both substrates with

grinding and CMP.

• Etch vias and metallization to

connect the two die.

http://www.ziptronix.com

Logic substrate

Memory substrate

Metal interconnects

Page 39: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

39

Uses high density plasma to alternatively

etch silicon and deposit an etch-resistant

polymer on side walls

Polymer deposition Silicon etch using

SF6 chemistry

Polymer

Deep Reactive Ion Etching

Page 40: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

40

Lithography , electroplating, and molding processes

to produce microstructures.

Very

thick

resist

Metal platingPlastic molding

Final microstructure

MoldingExample:LIGA Process (Lithographie, Galvanoformung, Abformung)

Page 41: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

41

1) Deep silicon mold etch. 2) Sacrificial layer deposition.

3) Structural layer deposition. 4) Chemical-mechanical polish (optional).

and Deposition and patterning of a second polysilicon layer forms cross

linkages between the high-aspect-ratio molded polysilicon structures.

5) Release and extract molded part. Source: Keller and Ferrari

Page 42: EE143 F2010 Lecture 24 Micro-Electro-Mechanical Systems (MEMS) Fabrication Fabrication ...ee143/fa10/lectures/Lec_… ·  · 2010-11-17• Fabrication Considerations ... Effect of

Professor N Cheung , U.C. Berkeley

Lecture 24EE143 F2010

42

Thermal

OxidationDeposition

Sealing of Cavities