高速流体制御を用いたオンチップミキシング -...

1
高速流体制御を用いたオンチップミキシング 笠井宥佑 佐久間臣耶,新井史人 名古屋大学大学院 工学研究科 マイクロ・ナノ機械理工学専攻 Background : Dynamic stimulation K. Nakatani et al, Journal of bacteriology, 2015 Volume change of Synechocystis = 0 2 4 = 20 nl Maximum volume of membrane pump = 10.21 2 0 2 2 12(1 2 ) Natural frequency of membrane pump 180 times faster than natural frequency of PDMS chip ( 2 MPa ) 192 kHz : Volume of membrane pump 0 : Radios of membrane : Displacement of membrane pump : Natural frequency of membrane pump : Thickness of membrane : Young’s modulus of material of membrane : Poisson’s ratio of material of membrane 0 Cover layer Microchannel layer Base layer Main channel crossingng area Analysis of membrane pump Benchmark Type Passive Passive Active Active Methods Narrow channel Turbulent flow Acoustic oscillation Vortex using flow control Mixing time 1 ms 6.6 ms 100 ms 1.5 ms Dimensions of cross-section (Width) x (Height) 200 x 8 µm (Width) x (Height) 500 x 10 µm (Width) x (Height) 400 x 50 µm (Width) x (Height) 200 x 200 µm Remarks Simple configuration Not on/off control Simple configuration Not on/off control On/off control Heating (+40) On/off control Few heating (+4.1) W. Buchegger, Microfluid Nanofluid, 2011 T-D. Luong et al, Microfluid Nanofluid, 2011 本研究に関するお問い合わせ先: 笠井 宥佑 (Yusuke Kasai) E-mail: [email protected], URL: http://www.biorobotics.mech.nagoya-u.ac.jp/ 464-8601 名古屋市千種区不老町 名古屋大学大学院工学研究科 マイクロ・ナノ機械理工学専攻 新井研究室 TEL: 052-789-5220, FAX : 052-789-5027 Abstract: In this paper, we propose an on-demand on-chip micromixer using local high-speed flow which generates vortices in a microchannel. The micromixer utilizes vortices for mixing by using high-speed flow control. We succeeded in generating vortices in a microfluidic chip within 28 μs. In addition, we successfully demonstrated on-demand mixing by applying various input signals to the micromixer. The mixing was about 1.5 ms, which is 66 times faster than previous mixing methods using acoustic oscillation. Input voltage to piezoelectric actuators Pump A Pump B R. Zhang et al, Scientific Reports, 2017 Protein expression of yeast Next : msec - order stimulation method On - chip dual membrane pumps with high - rigidity chip Vertical sheath inlet Horizontal sheath inlet Sample inlet Outlet 1 Outlet 2 Priming port Fixation hole Mixing time : 1.5 ms 0 50 100 150 Brightness [ - ] 0 10 2 4 6 8 Time [ ms ] Mixing principle Pump A Pump B Pump A Pump B Pump A Pump B High - rigidity chip Borosilicate glass Silicon Borosilicate glass Evaluation of mixing Vortex generation 200 µ m t = 0 µ s t = 24 µ s t = 40 µ s t = 480 µ s High speed local - flow Main flow 0 0 50 100 150 Brightness [ - ] 10 8 6 4 2 0 0 - 50 50 100 - 100 0 50 100 150 ROI : 1 x 76 pixel (3 x 200 um) 400 µ m Analysis line 200 µ m Before mixing After mixing Voltage Time 0 Main flow : 20 m/s Oscillated local - flow with 10 kHz Attachment Glass membrane Piezoelectric actuator On - chip membrane pump Chip fabrication (v) Patterning of etching mask for sandblasting (vi) Sandblasting Si Cr Au Glass SU-8 OFPR SCM250 (iii) Patterning of etching mask after anodic bonding (i) Patterning of etching mask (ii) HF etching and cleaning (iv) DRIE (vii) Anodic bonding Packaging Base/Cover layer Cover layer Channel layer V. Kumaran et al, Chemical EngineeringScience, 2016 11 times larger than volume of crossing area 62.3% 200 µ m Before mixing After mixing

Upload: others

Post on 07-Aug-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 高速流体制御を用いたオンチップミキシング - 名古屋大学...高速流体制御を用いたオンチップミキシング 笠井宥佑,佐久間臣耶,新井史人

高速流体制御を用いたオンチップミキシング○笠井宥佑,佐久間臣耶,新井史人

名古屋大学大学院 工学研究科 マイクロ・ナノ機械理工学専攻

Background : Dynamic stimulation

K. Nakatani et al, Journal of bacteriology, 2015

Volume change of Synechocystis

𝑉𝑉 =𝜋𝜋𝑟𝑟02

4𝛿𝛿 = 20 nl

Maximum volume of membrane pump

𝑓𝑓 =10.212𝜋𝜋𝑟𝑟02

𝐸𝐸ℎ2

12(1 − 𝜇𝜇2)

Natural frequency of membrane pump180 times faster thannatural frequency ofPDMS chip (𝐸𝐸 ≈ 2 MPa)≈ 192 kHz

𝑉𝑉: Volume of membrane pump𝑟𝑟0: Radios of membrane𝛿𝛿: Displacement of membrane pump

𝑓𝑓: Natural frequency of membrane pumpℎ: Thickness of membrane𝐸𝐸: Young’s modulus of material of membrane𝜇𝜇: Poisson’s ratio of material of membrane

𝑟𝑟

𝜃𝜃

𝑟𝑟0

ℎ𝑥𝑥

𝑦𝑦 Cover layerMicrochannel layerBase layer

Main channel crossingng area

𝛿𝛿

Analysis of membrane pump

BenchmarkType Passive Passive Active ActiveMethods Narrow channel Turbulent flow Acoustic oscillation Vortex using flow control

Mixing time ≈ 1 ms 6.6 ms ≈ 100 ms 1.5 msDimensions ofcross-section

(Width) x (Height)200 x 8 µm

(Width) x (Height)500 x 10 µm

(Width) x (Height)400 x 50 µm

(Width) x (Height)200 x 200 µm

Remarks • Simple configuration• Not on/off control

• Simple configuration• Not on/off control

• On/off control• Heating (≈ +40℃)

• On/off control• Few heating (≈ +4.1℃)

W. Buchegger, Microfluid Nanofluid, 2011 T-D. Luong et al, Microfluid Nanofluid, 2011

本研究に関するお問い合わせ先:笠井 宥佑 (Yusuke Kasai)E-mail: [email protected], URL: http://www.biorobotics.mech.nagoya-u.ac.jp/〒464-8601 名古屋市千種区不老町名古屋大学大学院工学研究科マイクロ・ナノ機械理工学専攻新井研究室TEL: 052-789-5220, FAX : 052-789-5027

Abstract: In this paper, we propose an on-demand on-chip micromixer usinglocal high-speed flow which generates vortices in a microchannel. Themicromixer utilizes vortices for mixing by using high-speed flow control. Wesucceeded in generating vortices in a microfluidic chip within 28 μs. Inaddition, we successfully demonstrated on-demand mixing by applyingvarious input signals to the micromixer. The mixing was about 1.5 ms, whichis 66 times faster than previous mixing methods using acoustic oscillation.

Input voltage to piezoelectric actuatorsPump A Pump B

R. Zhang et al, Scientific Reports, 2017

Protein expression of yeast

Next : msec-order stimulation method

On - chip dual membrane pumpswith high - rigidity chip

Vertical sheath inletHorizontal sheath

inletSample inlet

Outlet 1Outlet 2

Priming port

Fixation hole

Mixing time :1.5 ms

0

50

100

150

Brig

htne

ss [-

]

0 102 4 6 8Time [ms]

Mixing principlePump A Pump B Pump A Pump BPump A Pump B

High-rigidity chip

BorosilicateglassSiliconBorosilicateglass

Evaluation of mixing

Vortex generation

200 µm

t = 0 µs

t = 24 µs

t = 40 µs

t = 480 µs

High speedlocal-flow

Main flow

0

0

50

100

150

Brig

htne

ss [-

]

1086420

0-50

50100

-100

0

50

100

150

ROI :1 x 76 pixel(3 x 200 um)

400 µm

Analysis line

200 µm

Before mixing

After mixing

Volta

ge

Time0

Main flow : 20 m/s

Oscillated local-flowwith 10 kHz

AttachmentGlass membrane

Piezoelectric actuatorOn-chip membrane pump

Chip fabrication

(v) Patterning of etching mask for sandblasting

(vi) Sandblasting

Si Cr Au

Glass SU-8

OFPRSCM250

(iii) Patterning of etching maskafteranodic bonding

(i) Patterning ofetching mask

(ii) HF etchingand cleaning

(iv) DRIE

(vii) Anodic bonding

Packaging

Base/Cover layer Cover layer

Channel layer

V. Kumaran et al, Chemical EngineeringScience, 2016

11 times larger thanvolume of crossing area

62.3%

200 µm

Before mixing

After mixing