electrochemical properties of materials for electrical energy … · 2013-09-03 ·...

30
Electrochemical Properties of Materials for Electrical Energy Storage Applications Lecture Note 1, September 2, 2013 Kwang Kim Yonsei Univ., KOREA [email protected] 39 Y 88.91 8 O 16.00 53 I 126.9 34 Se 78.96 7 N 14.01

Upload: vunhan

Post on 24-Jun-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

Electrochemical Properties of Materials for Electrical Energy Storage Applications

Lecture Note 1,

September 2, 2013

Kwang Kim

Yonsei Univ., KOREA

[email protected]

39Y

88.91

8O

16.00

53I

126.9

34Se

78.96

7N

14.01

교수 소개

김광범Email : [email protected]공과대학 B관 325호

연구분야 : - Materials Electrochemistry

전기에너지 저장 장기 (리튬전지, 슈퍼커패시터)

에너지 저장소재 연구실 http://metal.yonsei.ac.kr/~echemlab/

- GS Caltex 산학연구동 411호 (02-365-7745)

공과대학 B 관 129호

강의조교 : 이석우 박사과정 대학원생

GS Caltex 산학연구동 411호 (02-365-7745)

- 강의실 강의 (A628)

월요일 6, 7 교시

수요일 1교시

- 성적평가

중간 고사 : 40%

학기말 고사 : 50%

출석률 : 10%

- 참고교재:

1) Modern Electrochemistry (Bockris and Reddy, Plenum)

2) Battery Technology Handbook (Editor H.A. Kiehne, Marcel Dekker, Inc)

3) 관련 분야의 논문

매주 강의 교재 복사물 및 PPT 자료 제공

http://metal.yonsei.ac.kr/~echemlab/

강의 소개

강의 소개

주 기간 수업내용 교재범위 및 과제 등 비고

1 2013-09-02 2013-09-08

Electrode/solution interface-1- Electrochemcial cell 강의교재-1 배부

(9.2)개강(9.4 ~ 9.6) 수강신청 확인 및 변경

2 2013-09-09 2013-09-15

Electrode/solution interface-2- Electrode Potential

3 2013-09-16 2013-09-22

Electrode/solution interface-3- Nernst Equation 강의교재-2 배부 (9.18~9.20) 추석연휴

4 2013-09-23 2013-09-29

Electrode/solution interface-4

- Electric Double layer

5 2013-09-30 2013-10-06

Ions in solution-1- Solvation 강의교재-3 배부

(10.2~10.7) 수강철회(10.3) 개천절

6 2013-10-07 2013-10-13

Ions in solution-2- Debye-Huckel Theory

(10.8) 학기 1/3선, (10.9) 한글날

7 2013-10-14 2013-10-20

Ions in solution-1- Matter transport in solution

- Diffusion강의교재-4 배부

8 2013-10-21 2013-10-27 중간고사 (10.21 ~ 10.26) 중간시험

강의 소개

주 기간 수업내용 교재범위 및 과제 등 비고

9 2013-10-28 2013-11-03

Ions in solution-2- Matter transport in solution

- Conduction

10 2013-11-042013-11-10

Electrochemical Kinetics-1- Electrochemical reaction 강의교재-5 배부

11 2013-11-11 2013-11-17

Electrochemical Kinetics-2- Chemical reaction (11.14) 학기 2/3 선

12 2013-11-18 2013-11-24

Electrochemical Kinetics-3- Butler-Volmer equation

13 2013-11-25 2013-12-01

Lithium Secondary Battery System-1강의교재-6 배부

- Electrode materials- Electrochemical reaction

- Thermodynamic data- Kinetic parmeters

14 2013-12-02 2013-12-08

Lithium Secondary Battery System-2- Electrode materials

- Electrochemical reaction- Thermodynamic data- Kinetic parameters

15 2013-12-09 2013-12-15

Electrochemical Capacitor System-1- Electric Double Layer Capacitor

강의교재-7 배부

16 2013-12-16 2013-12-22

학기말 고사 (12.16 ~ 12.21) 기말시험

It’s all about the blue marble

2004 6.5 Billion People2050 ~ 10 Billion People

1 World 6,379,157,3612 China 1,298,847,6243 India 1,065,070,6074 United States 293,027,5715 Indonesia 238,452,9526 Brazil 184,101,1097 Pakistan 159,196,3368 Russia 143,782,3389 Bangladesh 141,340,47610 Nigeria 137,253,13311 Japan 127,333,00212 Mexico 104,959,59413 Philippines 86,241,69714 Vietnam 82,689,51815 Germany 82,424,60916 Egypt 76,117,42117 Iran 69,018,92418 Turkey 68,893,91819 Ethiopia 67,851,28120 Thailand 64,865,52321 France 60,424,21322 United Kingdom 60,270,708

23 Congo, Democratic Republic of the 58,317,930

24 Italy 58,057,47725 Korea, South 48,598,17526 Ukraine 47,732,079

World Population 2004

rank country area sq.km. population2013‐08‐31 yearly growth daily increase population

today 2013‐09‐01World 510,072,000 7,175,238,082 1.10% 215,060 7,175,453,142

1. China 9,596,960 1,386,967,478 0.61% 22,966 1,386,990,4442. India 3,287,590 1,254,723,978 1.24% 42,367 1,254,766,3453. United States of America 9,826,630 320,482,898 0.81% 7,085 320,489,9834. Indonesia 1,919,440 250,371,742 1.21% 8,297 250,380,0395. Brazil 8,511,965 200,645,544 0.85% 4,649 200,650,1946. Pakistan 803,940 182,648,207 1.66% 8,289 182,656,4967. Nigeria 923,768 174,421,967 2.78% 13,223 174,435,1908. Bangladesh 144,000 156,907,178 1.19% 5,118 156,912,2969. Russian Federation 17,075,200 142,782,844 ‐0.21% ‐834 142,782,01110. Japan 377,835 127,125,728 ‐0.08% ‐293 127,125,43611. Mexico 1,972,550 122,579,779 1.21% 4,055 122,583,83412. Philippines 300,000 98,675,257 1.71% 4,618 98,679,87513. Ethiopia 1,127,127 94,501,937 2.55% 6,577 94,508,51414. Viet Nam 329,560 91,825,597 0.95% 2,391 91,827,98815. Germany 357,021 82,711,418 ‐0.11% ‐249 82,711,16916. Egypt 1,001,450 82,279,909 1.63% 3,664 82,283,57317. Iran (Islamic Republic of) 1,648,000 77,615,818 1.30% 2,765 77,618,58318. Turkey 780,580 75,085,922 1.22% 2,513 75,088,435

19. Congo, Democratic Republic of the 2,345,410 67,820,465 2.72% 5,029 67,825,494

20. Thailand 514,000 67,043,875 0.30% 547 67,044,42221. France 643,427 64,350,053 0.55% 963 64,351,01622. United Kingdom 244,820 63,195,881 0.57% 977 63,196,85923. Italy 301,230 61,011,478 0.21% 348 61,011,82624. Myanmar 678,500 53,333,963 0.84% 1,229 53,335,19225. South Africa 1,219,912 52,844,662 0.78% 1,123 52,845,78626. Korea, Republic of 98,480 49,306,168 0.53% 713 49,306,88127. Tanzania, United Republic of 945,087 49,501,301 3.02% 4,068 49,505,369

Current world population (ranked) as of 2013‐09‐01

Humanity’s Top Ten Problemsfor next 50 years

1. ?2. ?3. ?4. ? 5. ?6. ?7. ?8. ?9. ?10. ? 2004 6.5 Billion People

2050 ~ 10 Billion People

Prof. Richard E. Smalley1996 Nobel Prize Winner in Chemistry

Humanity’s Top Ten Problemsfor next 50 years

2004 6.5 Billion People2050 ~ 10 Billion People

Prof. Richard E. Smalley1996 Nobel Prize Winner in Chemistry

ENERGY

DISEASE

TERRORISM & WAR

POVERTY

ENVIRONMENT

FOOD

WATER

EDUCATION

DEMOCRACY

POPULATION

Humanity’s Top Ten Problemsfor next 50 years

1. ENERGY2. WATER3. FOOD4. ENVIRONMENT 5. POVERTY6. TERRORISM & WAR7. DISEASE8. EDUCATION9. DEMOCRACY10. POPULATION 2004 6.5 Billion People

2050 ~ 10 Billion People

Prof. Richard E. Smalley1996 Nobel Prize Winner in Chemistry

Smart Grid

World EnergyMillions of Barrels per Day (Oil Equivalent)

300

200

100

01860 1900 1940 1980 2020 2060 2100

Source: John F. Bookout (President of Shell USA) ,“Two Centuries of Fossil Fuel Energy” International Geological Congress, Washington DC; July 10,1985. Episodes, vol 12, 257-262 (1989).

Prof. Richard E. Smalley1996 Nobel Prize Winner in Chemistry

PRIMARY ENERGY SOURCESAlternatives to Oil

• Conservation / Efficiency -- not enough• Hydroelectric -- not enough• Biomass -- not enough• Wind -- not enough• Wave & Tide -- not enough

• Natural Gas -- sequestration?, cost?• Clean Coal -- sequestration?, cost?

• Nuclear Fission -- radioactive waste?, terrorism?, cost?• Nuclear Fusion -- too difficult?, cost?

• Geothermal HDR -- cost ?• Solar terrestrial -- cost ?• Solar power satellites -- cost ?• Lunar Solar Power -- cost ?

Prof. Richard E. Smalley1996 Nobel Prize Winner in Chemistry

Enabling Nanotech Revolutions• Photovoltaics -- a revolution to drop cost by 10 to100 fold.

• H2 storage -- a revolution in light weight materials for pressure tanks, and/or a new light weight, easily reversible hydrogen chemisorption system

• Fuel cells -- a revolution to drop the cost by nearly 10 to 100 fold

• Batteries and supercapacitors -- revolution to improve by 10-100x for automotive and distributed generation applications.

• Photocatalytic reduction of CO2 to produce a liquid fuel such as methanol.

• Super-strong, light weight materials to drop cost to LEO, GEO, and later the moon by > 100 x, and to enable huge but low cost light harvesting structures in space.

• Robotics with AI to enable construction/maintenance of solar structures in space and on the moon; and to enable nuclear reactor maintenance and fuel reprocessing. (nanoelectronics, and nanomaterials enable smart robots)

• Actinide separation nanotechnologies both for revolutionizing fission fuel reprocessing, and for mining uranium from sea water

• Alloy nanotechnologies to improve performance under intense neutron irradiation (critical for all of the GEN IV advanced reactor designs, and for fusion).

• Thermoelectrics or some other way of eliminating compressors in refrigeration.

Prof. Richard E. Smalley1996 Nobel Prize Winner in Chemistry

Enabling Nanotech Revolutions• Photovoltaics -- a revolution to drop cost by 10 to100 fold.

• H2 storage -- a revolution in light weight materials for pressure tanks, and/or a new light weight, easily reversible hydrogen chemisorption system

• Fuel cells -- a revolution to drop the cost by nearly 10 to 100 fold

• Batteries and supercapacitors -- revolution to improve by 10-100x for automotive and distributed generation applications.

• Photocatalytic reduction of CO2 to produce a liquid fuel such as methanol.

Nano Materials + Materials Electrochemistry

The road to success is paved

with advanced materials.

에너지저장장치 (Energy Storage System, ESS)

발 전 송 전 배 전 수용가

우리 나라의 전기 역사

조선 시대 고종이 미국에서 수학한 유길준 으로부터 전기에 대한 이야기를 듣고

에디슨에게 편지를 쓰는 것에서 시작.

편지의 내용은 조선의 궁궐에 전깃불을 설치해 달라는 요청으로 이에 에디슨은

발전설비 기술자를 조선으로 보내 경복궁 안에 발전소를 세우고 아시아에서 처

음으로 1887년 3월 6일 저녁 어둠을 밝히는 역사적인 불빛을 점등.

우리 나라에 전기가 들어온 지 126년 후, 현재 세계 10위권의 전력 강국.

에너지저장장치 (Energy Storage System, ESS)

발 전 송 전 배 전 수용가

스마트 그리드 기반 미래 에너지 시장을 선도할 핵심 기술

대규모 전력저장 송배전 효율 향상용 전략저장 수용가 전력저장

에너지 저장장치 (ESS)

전기에너지를 전력계통에 저장 후 필요할 때 공급하는 장치 (수십~수백 MW)

에너지이용 효율 향상, 신재생에너지 활용도 재고, 전력공급 시스템 안정화

안정적인 전력 공급

정전 피해의 최소화, 단기정전방지를 위한 비상용 전원

[단기 전력장애 개념]

고품질의 전력 확보

신재생 에너지 도입 확대에 따른전력의 품질 안정화 대책

[주파수 변동 보상 개념]

ESS 필요성

효율적 전력 활용, 고품질 전력 확보, 안정적 전력 공급에 대한 요구 증대

[대규모 정전사태] [원전 반대 확산] [태양광 발전] [풍력 발전] [Data 센터] [반도체 산업]

효율적인 전력 활용

전력 공급부족 사태 예방을 위한국가 차원의 전력 활용방안 재고

[Peak Shift 개념]

기 술 명 특 징

LIB(리튬이온전지)

(원리) 리튬이온이 양극과 음극을 오가면서 전위차 발생(장점) 고에너지밀도, 고에너지효율(단점) 안전성, 고비용, 수명 미검증, 저장용량이 3kW~3MW로 500MW 이상 대용량 용도에서는 불리

NaS(나트륨황전지)

(원리) 350 ℃ 에서 용융상태의 Na 이온이 β-alumina 고체전해질과 반응하며 화학에너지 저장(장점) 고에너지밀도, 저비용, 대용량화 용이(단점) 저에너지효율, 저출력, 고온시스템이 필요하여 저장용량이 30MW로 제한적

RFB(레독스 흐름 전지)

(원리) 전해액 내 이온들의 산화·환원 전위차를 이용하여 전기에너지 충·방전(장점) 저비용, 대용량화 용이, 장시간 사용 가능(단점) 저에너지밀도, 저에너지효율

Super Capacitor(수퍼 커패시터)

(원리) 활성탄 전극 소재에 전해질 이온 종의 흡탈착에 의한 전기에너지 충방전(장점) 고출력밀도, 장수명, 안정성(단점) 저에너지밀도, 고비용

CAES(압축공기

에너지저장장치)

(원리) 잉여전력으로 공기를 동굴이나 지하에 압축하고, 압축된 공기를 가열하여 터빈을 돌리는 방식(장점) 대규모 저장이 가능(100MW 이상), 저발전단가(단점) 초기 구축비용이 과다, 지하 굴착 등으로 지리적 제약

Flywheel(플라이휠

에너지 저장장치)

(원리) 전기에너지를 회전하는 운동에너지로 저장하였다가 다시 전기에너지로 변환(장점) 고에너지효율(고출력)로 UPS, 전력망 안정화용으로 적용 가능, 장수명(20년), 급속저장(분단위)(단점) 초기 구축비용 과다, 저에너지밀도, 장기간 사용 시 동력 효율 저하

ESS 기술

사용시간

용량10 MW1 MW100 kW 100 MW

10 hr

5 hr

1 hr

30 min

0 min수퍼 커패시터

리튬이온전지

레독스 흐름전지

나트륨황전지

압축공기저장장치

양수발전

ESS 기술

Future of Transportation is Electric

The Future of Transportation is Electric

Two huge industries are transformingand a new one is emerging...

Battery Industry

Electricity                               Transportation

TESLA www.teslamotors.com/

Full Electric Vehicle, 4.4 to 5.6 sec. from 0 to 100 km/h, zero tailpipe emissionTop Speed 210 km/h

TESLA www.teslamotors.com/

The battery is a rigid, high-performance structure in its own right. But when married to the state-of-the-art body structure, Model S achieves even higher torsional rigidity and a lower center of gravity. The battery itself is designed for safety. Liquid-cooled, the battery maintains consistent temperatures to prevent cells from overheating. In the event of a crash, the battery structure protects cells from impact and automatically disconnects the power supply. The battery not only protects its contents, but its position augments the overall strength of the passenger cabin.

모토롤라 3900NX국내최초 카폰 (1984)

노키아 Tanday CT-1033 아날로그 포터블폰과휴대용 가방(1985년)

SCH-100-최초CDMA폰(1996년)

Motorola DynaTAC8000x (1983)

Cell phones vs. Portable rechargeable batteries

iPhone 4G, Galaxy S (2010년)

Electrochemical Cell

• The metals in a cell are called the electrodes (electronic conductors),and the chemical solution is called the electrolyte (ionic conductor).

• The electrolyte reacts oppositelywith the two different electrodes

• It causes one electrode to lose electrons and develop a +vecharge (oxidation); and the other electrode to build a surplus of electrons and develop a –charge (reduction).

• The difference in potential between the two electrode charges is the cell voltage.

Electrochemical Cell

Battery History Rechargeable batteries highlighted in bold.

First battery, “Voltaic Pile”, Zn-Cu with NaCl electrolyte, non-rechargeable, but

short shelf lifeVolta

First battery with long shelf life, “Daniel Cell”, Zn-Cu with H2SO4 and CuSO4

electrolytes, non-rechargeable1836 England John Fedine

First electric carriage, 4 MPH with non-rechargeable batteries 1839 Scotland Robert Anderson

First rechargeable battery, “lead acid”, Pb-PbO2 with H2SO4 electrolyte 1859 France Gaston Plante

First mass produced non-spillable battery, “dry cell”, ZnC-MnO2 with ammonium

disulphate electrolyte, non-rechargeable 1896 Carl Gassner

Ni-Cd battery with potassium hydroxide electrolyte invented 1910 Sweden Walmer Junger

First mass produced electric vehicle, with “Edison nickel iron” NiOOH-Fe

rechargeable battery with potassium hydroxide electrolyte 1914 US 1800

Modern low cost “Eveready (now Energizer) Alkaline” non-rechargeable battery

invented, Zn-MnO2 with alkaline electrolyte1955 US Lewis Curry

NiH2 long life rechargeable batteries put in satellites 1970 US

NiMH rechargeable batteries invented 1989 US

Li Ion rechargeable batteries sold 1991 US Sony

Storage technology Energy density

Lead-acid batteries 100 kJ/kg (30 W-h/kg)

Lithium-ion batteries 600 kJ/kg

Compressed air, 10 MPa 80 kJ/kg (not including tank)

Conventional capacitors 0.2 kJ/kg

Ultracapacitors 20 kJ/kg

Flywheels 100 kJ/kg

Gasoline 43000 kJ/kg

Battery technology is not mature yet

Respect the process!

All the things we want in life: money, success and attention,

will not come easily and will require discipline. Learning is

difficult, slow and laborious. Mastery requires time, focus and

energy—and practice.