electronic conduction of mesoscopic systems and resonant states

36
Electronic Conductio n of Mesoscopic Syst ems and Resonant Sta tes Naomichi Hatano Institute of Industrial Science, Unviersity of Tok yo Collaborators: Akinori Nishino (II S, U. Tokyo) Takashi Imamura (IIS, U. Tokyo) Keita Sasada (Dept. Phy s., U. Tokyo) Hiroaki Nakamura (NIFS) Tomio Petrosky (U. Texas at Austin)

Upload: dixon

Post on 12-Jan-2016

69 views

Category:

Documents


0 download

DESCRIPTION

Electronic Conduction of Mesoscopic Systems and Resonant States. Naomichi Hatano Institute of Industrial Science, Unviersity of Tokyo. Collaborators: Akinori Nishino (IIS, U. Tokyo) Takashi Imamura (IIS, U. Tokyo) Keita Sasada (Dept. Phys., U. Tokyo) Hiroaki Nakamura (NIFS) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Electronic Conduction of Mesoscopic Systems and Resonant States

Electronic Conduction of Mesoscopic Systems and Reson

ant States

Electronic Conduction of Mesoscopic Systems and Reson

ant StatesNaomichi Hatano

Institute of Industrial Science, Unviersity of TokyoCollaborators: Akinori Nishino (IIS, U. Tokyo)       Takashi Imamura (IIS, U. Tokyo)       Keita Sasada (Dept. Phys., U. Tokyo)       Hiroaki Nakamura (NIFS)        Tomio Petrosky (U. Texas at Austin)       Sterling Garmon (U. Texas at Austin)

Page 2: Electronic Conduction of Mesoscopic Systems and Resonant States

2/342/34

ContentsContents

1.Conductance and the Landauer Fo

rmula

2.Definition of Resonant States

3. Interference of Resonant States an

d the Fano Peak

Page 3: Electronic Conduction of Mesoscopic Systems and Resonant States

3/343/34

What are mesoscipic systems?What are mesoscipic systems?

QuickTime˛ Ç∆ êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆ êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

QuickTime˛ Ç∆ êLí£ÉvÉçÉOÉâÉÄ

ǙDZÇÃÉsÉNÉ`ÉÉÇ å©ÇÈÇΩÇflÇ…ÇÕïKóvÇ≈Ç∑ÅB

T. Machida (IIS, U. Tokyo)

S. Katsumoto (ISSP, U. Tokyo)

T. Machida (IIS, U. Tokyo)

Page 4: Electronic Conduction of Mesoscopic Systems and Resonant States

4/344/34

Theoretical modelingTheoretical modelinglead

Scatterer(Quantum Dot, …)

Cross section of a lead

lead

? kT

Page 5: Electronic Conduction of Mesoscopic Systems and Resonant States

5/345/34

k

ε(k) 2πL

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

Perfect Conductor

L

Page 6: Electronic Conduction of Mesoscopic Systems and Resonant States

6/346/34

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

I = envv>0

<ε (k)<

∑ =eL

dε(k)d(hk)

=v>0

<ε (k)<

∑ ehL

∫ =e

h −

e=e

hV

k

ε(k)

2πL

G =e

hConductance of a Perfect ConductorSpin

Density

n =1/L

Voltage differenc

e

Page 7: Electronic Conduction of Mesoscopic Systems and Resonant States

7/347/34

So, what was the conductance?So, what was the conductance?

I =GV =e

hV

V =RI G =R−

G− =he

=.9 kΩ[ ]

Conductance is the inverse of the resistance.

Be aware! R =ρLS does not hold!

Page 8: Electronic Conduction of Mesoscopic Systems and Resonant States

8/348/34

Perfect Conductor

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

Contact resistance G− =he

Page 9: Electronic Conduction of Mesoscopic Systems and Resonant States

9/349/34

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

L

ScattererProbability T

I = T(k)envv>0

<ε (k)<

∑ =eL

T(k)dε(k)d(hk)

=v>0

<ε (k)<

∑ ehL

T(ε)dε

∫ ;e

hT(F )

−e

=e

hT(F )V

G =e

hT Conductance in general

Linear response

Calculates at the Fermi energy

Gate voltage

Page 10: Electronic Conduction of Mesoscopic Systems and Resonant States

10/3410/34

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

L

G− =he

T=

he+

he−T

T

Contact resistance “Raw” resistance of a scatterer

ScattererProbability T

Page 11: Electronic Conduction of Mesoscopic Systems and Resonant States

11/3411/34

Landauer formulaLandauer formulaS. Datta “Electronic Transport in Mesoscopic Systems”

V VTransmission probability: T(E)

Scatterer

Conductance (Inverse Resistance)

G =e

hT(EF )

Note R =ρ L S does not hold.

Page 12: Electronic Conduction of Mesoscopic Systems and Resonant States

12/3412/34

Example: 3-state quantum dotExample: 3-state quantum dotKeita Sasada: Ph. D. Thesis (2008)

ε0 t = 0, ε1 t = −0.3, ε 2 t = 0.5

v01 t = 0.8, v12 t = 0.4, v20 t = 0.5

tα t = tβ t = 1

⎨⎪

⎩⎪

Resonance Peak(AsymmetricFano Peak)

Trans. Prob. T

Fermi Energy

Con

duct

ance

Page 13: Electronic Conduction of Mesoscopic Systems and Resonant States

13/3413/34

ContentsContents

1.Conductance and the Landauer Fo

rmula

2.Definition of Resonant States

3. Interference of Resonant States an

d the Fano Peak

Page 14: Electronic Conduction of Mesoscopic Systems and Resonant States

14/3414/34

Definition of resonance: 1Definition of resonance: 1

Aeikx

CeikxBe−ikx

S(E)≡r(E) ′t (E)t(E) ′r (E)

⎝⎜

⎠⎟≡

B(E)A(E)

′C (E)′A (E)

C(E)A(E)

′B (E)′A (E)

⎜⎜⎜⎜

⎟⎟⎟⎟

′A e−ikx

′B eikx′C e−ikx

Pole → or , whereA(E)=0 ′A (E) = 0 E ∈£

where E =E(k)

Resonance: Pole of Trans. Prob. (S-Matrix)

G(E)=e

ht(E) =

e

hC(E)A(E)

Page 15: Electronic Conduction of Mesoscopic Systems and Resonant States

15/3415/34

Definition of resonance: 2Definition of resonance: 2

Siegert condition (1939)Resonance: Eigenstate with outgoing waves only.

a−ax

Be−iKx CeiKx

h2

2m

d 2

dx2+ V (x)

⎝⎜⎞

⎠⎟ψ (x) = Eψ (x)

V(x)

−V

Fei ′K x +Ge−i ′K x

E =

hK

m=

h ′K

m−V

Page 16: Electronic Conduction of Mesoscopic Systems and Resonant States

16/3416/34

Definition of resonance: 2Definition of resonance: 2

a−ax

Be−iKx CeiKx

Fei ′K x +Ge−i ′K x

V(x)

−V

Even solutions: B C, F G

E =

hK

m=

h ′K

m−V

F cos ′K a=CeiKa

−F ′K sin ′K a=iCKeiKa

Odd solutions: B C, F G

− ′K tan ′K a = iK

′K 2 tan2 ′K a = −K 2 =

2mV

h2− ′K 2

α =± %V cosα

α =± %V sinα

α ≡ ′K a, %V ≡

2mVa2

h2

⎝⎜⎞

⎠⎟

Page 17: Electronic Conduction of Mesoscopic Systems and Resonant States

17/3417/34

Definition of resonance: 2Definition of resonance: 2

Im Kn < 0Re Kn

><0 ⇔ ImEn

<>0

Eigen-wave-number EigenenergyBound state

a = %V =

a = %V =

Page 18: Electronic Conduction of Mesoscopic Systems and Resonant States

18/3418/34

Non-Hermiticity of open systemNon-Hermiticity of open system

ψ p2 ψΩ

= −h2 ψ (x)∗ ′′ψ (x)dx− L

L

∫ = −h2 ψ (x)∗ ′ψ (x)⎡⎣ ⎤⎦x=− L

L+ h2 ′ψ (x)∗

− L

L

∫ ′ψ (x)dx

ψ p2 ψΩ

∗= −h2 ψ (x) ′′ψ (x)∗dx

− L

L

∫ = −h2 ψ (x) ′ψ (x)∗⎡⎣ ⎤⎦x=− L

L+ h2 ′ψ (x)

− L

L

∫ ′ψ (x)∗dx

2i Im ψ Htotal ψ Ω

=−ihm

Re ψ (x)∗pψ (x)x=L+ψ (x)∗(−p)ψ (x)

x=−L( )

Im ψ Htotal ψ Ω

=−hm

Reψ pn ψ ∂Ω

N. Hatano, K. Sasada, H. Nakamura and T. Petrosky, Prog. Theor. Phys. 119 (2008) 187

H total =p

m+V(x)

2i Im ψ p ψ

Ω=−h ψ (x)∗ ′ψ (x)−ψ (x) ′ψ (x)∗⎡⎣ ⎤⎦x=−L

L=−

hm

Re ψ (x)∗pψ (x)⎡⎣ ⎤⎦x=−L

L

where ImV (x)≡0

Im En<>0 ⇔ ReKn

><0

Ω=[−L, L]

Page 19: Electronic Conduction of Mesoscopic Systems and Resonant States

19/3419/34

Non-Hermiticity of open systemNon-Hermiticity of open system

∂∂t

Ψ(t) Ψ(t)Ω

=2

hIm Ψ(t) H total Ψ(t)

Ω= −

1

mRe Ψ(t) pn Ψ(t)

∂Ω

N. Hatano, K. Sasada, H. Nakamura and T. Petrosky, Prog. Theor. Phys. 119 (2008) 187

Im En > 0 ⇔ ReKn < 0

ih∂∂tΨ(t) =Htotal Ψ(t)

∂∂t

Ψ(t) Ψ(t)Ω

= −i

hΨ(t) H total Ψ(t)

Ω− Ψ(t) H total

† Ψ(t)Ω( ) =

2

hIm Ψ(t) H total Ψ(t)

Ω

Im En < 0 ⇔ ReKn > 0Ω

“Anti-resonant state as an eigenstate“Resonant state” as an eigenstate

Page 20: Electronic Conduction of Mesoscopic Systems and Resonant States

20/3420/34

Definition of resonance: 2Definition of resonance: 2

Im Kn < 0Re Kn

><0 ⇔ ImEn

<>0

Eigen-wave-number EigenenergyBound state

Resonant stateAnti-resonant state

Page 21: Electronic Conduction of Mesoscopic Systems and Resonant States

21/3421/34

Eigenfunction of resonant stateEigenfunction of resonant stateN. Hatano, K. Sasada, H. Nakamura and T. Petrosky, Prog. Theor. Phys. 119 (2008) 187

Im En<>0 ⇔ ReKn

><0 ⇒ ImKn < 0

En =

h

mKn

⇒ ImEn =h

mReKn ImKn

CeiKn xBe−iKnx

Page 22: Electronic Conduction of Mesoscopic Systems and Resonant States

22/3422/34

Particle-number conservationParticle-number conservationN. Hatano, K. Sasada, H. Nakamura and T. Petrosky, Prog. Theor. Phys. 119 (2008) 187

En =

h

mKn

⇒ ImEn =h

mReKn ImKn

⎝⎜⎞

⎠⎟

vn =

hm

ReKn

x

NΩ = Ψ(t) Ψ(t) Ω dx−L(t)

L(t)

∫ =e−t ImEn /h ψ ψΩ

dx−L(t)

L(t)

∫ ≈e−t ImEn /h e x ImKndx−L(t)

L(t)

∫: e− ImEnt+L(t) ImKn =exp −

th

ImEn + thm

ReKn ImKn⎛⎝⎜

⎞⎠⎟=constant

L−L L(t)−L(t)

L(t)≡vnt=t

hm

ReKn

Page 23: Electronic Conduction of Mesoscopic Systems and Resonant States

23/3423/34

Bound, resonant, anti-resonant statesBound, resonant, anti-resonant states

K

Bound state

Resonantstate

Anti-resonantstate

Continuum

E

Bound state

Resonant state

Anti-resonantstate

Continuum

E =h

mK

Branch point

Branch cut

ψ n (x) ~e−iKn x

eiKn x

⎧⎨⎩

(Far left)

Im Kn < 0 Re Kn><0 ⇔ ImEn

<>0

(Far right)

Page 24: Electronic Conduction of Mesoscopic Systems and Resonant States

24/3424/34

Tight-binding modelTight-binding model−t ψ l +1 +ψ l −1( ) + Vlψ l = Eψ l

Vl =0ψ l = eiklis an eigenstate for

E =−tcoskDispersion relation:

kππ0

Continuum limit Impurity bound state

energyband

Page 25: Electronic Conduction of Mesoscopic Systems and Resonant States

25/3425/34

t t

Bound, resonant, anti-resonant statesBound, resonant, anti-resonant states

K

Bound state

Resonantstate

Anti-resonantstate

Continuum

E

Bound state

Resonant state

Anti-resonantstate

Continuum

E =−tcosK

Branch point

Branch cut

ψ n (x) ~e−iKn x

eiKn x

⎧⎨⎩

(Far left)

Im Kn < 0 Re Kn><0 ⇔ ImEn

<>0

(Far right)

π π

Page 26: Electronic Conduction of Mesoscopic Systems and Resonant States

26/3426/34

H leadH lead

Fisher-Lee relationFisher-Lee relation

T (E)∝ xL

E−H total + iη

xR

= xL

E−Heff (E)

xR

H eff (E)=Hscatterer + Veff (E)

H scatterer

H total =Hscatterer + H lead

Veff Veff

Complex effective potential: H. Feshbach, Ann. Phys. 5 (1958) 357

G(E)=e

hxL

E−Heff (E)

xR

dεL

dkdεR

dk

S. Datta “Electronic Transport in Mesoscopic Systems”

Complex potential eikx

Page 27: Electronic Conduction of Mesoscopic Systems and Resonant States

27/3427/34

Conductance and resonanceConductance and resonance

G(E)=e

hxL

E−Heff (E)

xR

dεL

dkdεR

dk

Green’s function: Inverse of a finite matrix

Conductance for real energy

Resonance from poles in complex energy plane

Page 28: Electronic Conduction of Mesoscopic Systems and Resonant States

28/3428/34

ContentsContents

1.Conductance and the Landauer Fo

rmula

2.Definition of Resonant States

3. Interference of Resonant States an

d the Fano Peak

Page 29: Electronic Conduction of Mesoscopic Systems and Resonant States

29/3429/34

N-state Friedrichs modelN-state Friedrichs model

Hd,α

Hd

Hαn

d0

Keita Sasada: Ph. D. Thesis (2008)

• All leads are connected to the site d0

• Time reversal symmetry is not broken (no magnetic field)

Page 30: Electronic Conduction of Mesoscopic Systems and Resonant States

30/3430/34

Conductance formula

N-state Friedrichs modelN-state Friedrichs model

ρleads E( ) ≡1

π t 2 4t 2 − E2

Local DOS of discrete eigenstates:

gα→ β E( ) =gα→ β

max

± −

ρeigen E( )ρleads E( )

⎝⎜⎞

⎠⎟

⎧⎨⎪

⎩⎪

⎫⎬⎪

⎭⎪

ρeigen E( ) ≡

1

d0 ψ n%ψ n d0

E − Enn=1

2 N

Local DOS of leads:

    Maximum conductnace from lead α to lead β

Sign depends on the inner structure of the dot and

E

gα→ βmax :

t 2 ≡ tα t( )

α∑(where        )

Bound st., Res. st., Anti-res. st.

Keita Sasada: Ph. D. Thesis (2008)

Page 31: Electronic Conduction of Mesoscopic Systems and Resonant States

31/3431/34

Interference of discrete statesInterference of discrete states

Bound states Resonance pair(Res. and Anti-res.)

: Interference between B and R

ρeigen E( ) ≡

1

d0 ψ n%ψ n d0

E − Enn=1

2 N

∑ = ρb E( )b

∑ + ρ rpair E( )

r∑

Keita Sasada: Ph. D. Thesis (2008)

Discrete eigenstates

G(E) ~C1 E −Er

res( ) +C0

E−Erres( )

+ Ei

res( ) =

qε + rε +

Asymmetry of a conductance peak

q: Fano parameter

ρeigen E( )( )2

→ρ r

pair E( ) × ρb E( )

ρ rpair E( ) × ρ ′r

pair E( )

⎧⎨⎩⎪ : Interference between R and R

Page 32: Electronic Conduction of Mesoscopic Systems and Resonant States

32/3432/34

T-shape quantum dot (N=2) T-shape quantum dot (N=2)ε1 t = 0

v01 t = 1

tα t = tβ t = 1

⎨⎪

⎩⎪

  Bound state: 2  Resonant state: 1

Anti-resonant state: 1

Interference between each bound state and the resonace pair determines the asymmetry of the conductance peak.

Bound state 1 Bound state 2

Anti-resonant state

Resonant state

Page 33: Electronic Conduction of Mesoscopic Systems and Resonant States

33/3433/34

3-state quantum dot (N = 3)3-state quantum dot (N = 3)Keita Sasada: Ph. D. Thesis (2008)

ε0 t = 0, ε1 t = −0.3, ε 2 t = 0.5

v01 t = 0.8, v12 t = 0.4, v20 t = 0.5

tα t = tβ t = 1

⎨⎪

⎩⎪

Bound state 1 Bound state 2

Anti-resonant state 2

Anti-resonant state 1

Resonant state 1

Resonant state 2Interference between the resonance pairs 1 and 2 determines the asymmetry of the conductance peal.

  Bound state: 2  Resonant state: 2

Anti-resonant state: 2

Page 34: Electronic Conduction of Mesoscopic Systems and Resonant States

34/3434/34

Fano parameterFano parameter

ρb E( ) ~1

E − Eb

ρ ′rpair E( ) ~

1

E − E ′rres( )

2

G(E) ~C1 E −Er

res( ) +C0

E−Erres( )

+ Ei

res( ) =

qε + rε +

Large when close

: Interference between B and Rρeigen E( )( )2

→ρ r

pair E( ) × ρb E( )

ρ rpair E( ) × ρ ′r

pair E( )

⎧⎨⎩⎪ : Interference between R and R

Page 35: Electronic Conduction of Mesoscopic Systems and Resonant States

35/3435/34

SummarySummary

- Electronic conduction and resonance scattering

- Definition and physics of resonant states

- Particle-number conservation

- Interference between resonant states

Page 36: Electronic Conduction of Mesoscopic Systems and Resonant States

36/3436/34

Discetization of Schrödinger equationDiscetization of Schrödinger equation

h2

2m

d 2

dx2+ V (x)

⎝⎜⎞

⎠⎟ψ (x) = Eψ (x)

h2

2m

ψ (x + Δx) + ψ (x − Δx) − 2ψ (x)

Δx2+ V (x)ψ (x) = Eψ (x)

−t ψ l +1 +ψ l −1( ) + Vlψ l = Eψ l

H = −t cl+†cl + cl

†cl+( ) +Vlcl†cl⎡⎣ ⎤⎦

l=−∞

Tight-binding model