quantum foundations in mesoscopic physics

43
Quantum Foundations in Mesoscopic Quantum Foundations in Mesoscopic Physics Physics Kicheon Kang ( 강강강 ) Department of Physics Chonnam National University http://meso.chonnam.ac.kr 2008. 1. 9 – 11 @ KIAS-SNU Physics Winter Camp 2008. 1. 9 – 11 @ KIAS-SNU Physics Winter Camp Mesoscopic Physics & Quantum Information Lab.

Upload: gwen

Post on 09-Jan-2016

38 views

Category:

Documents


1 download

DESCRIPTION

Mesoscopic Physics & Quantum Information  Lab.     . 2008. 1. 9 – 11 @ KIAS-SNU Physics Winter Camp. Quantum Foundations in Mesoscopic Physics. Kicheon Kang ( 강기천 ). Department of Physics Chonnam National University http://meso.chonnam.ac.kr. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Quantum Foundations in Mesoscopic Physics

Quantum Foundations in Mesoscopic PhysicsQuantum Foundations in Mesoscopic Physics

Kicheon Kang (강기천 )

Department of Physics

Chonnam National University

http://meso.chonnam.ac.kr

2008. 1. 9 – 11 @ KIAS-SNU Physics Winter Camp2008. 1. 9 – 11 @ KIAS-SNU Physics Winter Camp

    

Mesoscopic Physics & Quantum Information  Lab.       

Page 2: Quantum Foundations in Mesoscopic Physics

  

 

OutlineOutline

• 양자역학의 기묘함 

- 중첩 , 우연 , 상보성 , 비국소성 , 측정문제

• 중시계 물리학  (Mesoscopic Physics)

- Quantum transport, interference, and shot noise

• 중시계에서 양자역학의 근본문제 공부하기

- Complementarity and nonlocality test

Mesoscopic Physics & Quantum Information  Lab.       

Page 3: Quantum Foundations in Mesoscopic Physics

  

 

OutlineOutline

• 양자역학의 기묘함 

- 중첩 , 우연 , 상보성 , 비국소성 , 측정문제

• 중시계 물리학  (Mesoscopic Physics)

- Quantum transport, interference, and shot noise

• 중시계에서 양자역학의 근본문제 공부하기

- Complementarity and nonlocality test

Mesoscopic Physics & Quantum Information  Lab.       

Page 4: Quantum Foundations in Mesoscopic Physics

  

 

• 중첩  (superposition)

• 객관적 우연  (indeterminism)

• 상보성  (complementarity)

• 비국소성  (nonlocality) ~ quantum entanglement

• “ 측정문제  (measurement problem)” ~ wave function collapse

• ……

Mesoscopic Physics & Quantum Information  Lab.       

양자역학의 기묘함

Page 5: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Charles Addams, The New Yorker Magazine 1940

  

 

중첩  (Superposition)

Page 6: Quantum Foundations in Mesoscopic Physics

동동동동동

우연  = 무지  (주관적 )

(lack of knowledge)

Quantum Coin

동동 intrinsic absence of information

  

 

Mesoscopic Physics & Quantum Information  Lab.       

  

 

객관적 우연  (Indeterminism)

or

measurement

Page 7: Quantum Foundations in Mesoscopic Physics

“God does not playdice (신은 주사위 놀이를 하지 않는다 )

  

 

Mesoscopic Physics & Quantum Information  Lab.       

A. Einstein vs. N. Bohr

“Stop telling Godwhat to do!( 신에게 명령하는 것을 중단하시죠 !)”

객관적 우연  (Indeterminism)

Page 8: Quantum Foundations in Mesoscopic Physics

  

 

상보성  (Complementarity): Behavior of a Quanton

Mesoscopic Physics & Quantum Information  Lab.       

Screen

Electrongun

Interference fringe or distinguishability

rc

“detector”(environment) states

“Wave-particle duality” or “complementarity”

Interference term in the distribution at the rc:

measure of the indistinguishability

(no ‘detection’)(‘detection’)

Page 9: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

  

 

Einstein, Podolsky, Rosen (1935)

The EPR Paradox (Bohm’s version)

Entangled state (quantum correlation):

”Spooky action at a distance”(원거리에서의 ‘유령의’ 작용 )

Cf. Classical correlation

Bell’s inequality (1966) : An inequality that any local hidden variable theory should satisfy

Experiment agrees with the prediction of quantum theory (Aspect et al. (1982) etc.)

a b

There is correlation, but ‘measurement’on a particle does not affect the (probabilityof) outcome of the other

비국소성  (Nonlocality)

Page 10: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

  

 

측정문제  (Measurement problem)

Wave function(before measurement)

measurement

Collpase of the wave function

- 파동은 갑자기 어디로 갔나 ? - 그러면 ‘ waving’ 하던 것은 무엇인가 ?

A measurement cannot bedescribed in terms of

Page 11: Quantum Foundations in Mesoscopic Physics

  

 

양자역학에 대처하는 우리의 자세양자역학에 대처하는 우리의 자세

• “Shut up and calculate” interpretation - Dirac, etc.

• Copenhagen (Orthodox) Interpretation “No elementary phenomenon is a phenomenon until it is observed.” - Niels Bohr -

• Search for the hidden variable (deterministic) theory - de Brogile, Einstein, Bohm, etc.

• Matter & mind (quantum & classical) - Wigner, etc.

• Many-world interpretation - Everett, etc.

• …..

Mesoscopic Physics & Quantum Information  Lab.       

Page 12: Quantum Foundations in Mesoscopic Physics

  

 

• 중첩 • 객관적 우연• 상보성  (complementarity)

• 비국소성  (nonlocality) ~ quantum entanglement

• “ 측정문제  (measurement problem)” ~ wave function collapse

• ……

Mesoscopic Physics & Quantum Information  Lab.       

양자역학의 기묘함

** Attention! All these properties are the basic resources for quantum communication and computation.

Page 13: Quantum Foundations in Mesoscopic Physics

Mesoscopic Physics & Quantum Information  Lab.       

Screen

Electrongun

d

Disturbance of electron momentum: p > h/d required to get the which-path information (x < d)

- This “momentum kick” washes out the interference fringe

  

 

Uncertainty & Double-Slit ExperimentR. Feynman (1965)

Page 14: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Uncertainty & Double-Slit ExperimentR. Feynman (1965)

“It is impossible to design an apparatus to determine which hole the electron passes through, that will not at the same time disturb the electrons enough to destroy the interference pattern.”

Heisenberg’s uncertainty principle:

Page 15: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

‘Complementarity Beyond Uncertainty’ (?)

“No! it is possible to design experiments which provide which-path information via detectors which do not disturb the system in any noticeable way, (i.e. due simply to the establishing of quantum correlations)”

Quantum Eraser Loss of interference may not be irreversible: Which-path information can be erased by a suitable measurement on the detector.

(M. O. Scully et al. (1991))

Page 16: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Realization of Quantum Eraser with Entangled Photons

• A.G. Zajonc et al., Nature 353, 507 (1991).• P.G. Kwiat et al., PRA 45, 7729 (1992).• T.J. Herzog et al., PRL 75, 3034 (1995).• T.-G. Noh & C.K. Hong, JKPS 33, 383 (1998).• Y.-H. Kim et al., PRL 84, 1 (2000).• ……

Which-path information can be erased by a suitable measurement on the detector (i.e., its entangled twin).

Page 17: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Realization of Quantum Eraser with Entangled Photons

T.G. Noh & C.K. Hong, JKPS, JOSA (1998)

- No interference in the single photon detection (complete WP information carried by its entangled twin)

- WP information is erased by the coincidence count and the hidden coherence reappears!

Page 18: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Realization of Quantum Eraser with Entangled Photons

Y.H. Kim et al., PRL (2000)

LA

LB

LA, LB >> L0: Choice of ‘wave-like’ or ‘particle-like’behavior can be delayed after the detection of signal photon

L0

R01 R02

R03

D0 Counts

Page 19: Quantum Foundations in Mesoscopic Physics

  

 

OutlineOutline

• 양자역학의 기묘함 

- 중첩 , 우연 , 상보성 , 비국소성 , 측정문제

• 중시계 물리학  (Mesoscopic Physics)

- Quantum transport, interference, and shot noise

• 중시계에서 양자역학의 근본문제 공부하기

- Complementarity and nonlocality test

Mesoscopic Physics & Quantum Information  Lab.       

Page 20: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

What is ‘Mesoscopic’ ?

Page 21: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Fermi Wavelength (F) & Dimensionality

Page 22: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

- High mobility/coherence due to the separation of the conduction channel and doped region

- Etching/gating required to get lower dimension (wire, dot)

gates

2-Dimensinal Electron Gas (2DEG)

The best solid-state system for studying quantum physics!

Page 23: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Conductance Quantization

Conductance (G) vs. transmission amplitude (tn) (Landauer formula)

- Ballistic, coherent motion of electrons

Van Wees et al. (1988), D.A. Wharam et al. (1988)

Page 24: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Charge and energy quantization

: charging energy of single electron, : level discreteness

: Coulomb blockade, single electron tunneling

: resonant tunneling (phase-coherent)

Quantum Dots

Page 25: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Resonant Tunneling through a Quantum Dot

Coherent resonant tunneling through a single QD level (0)

Phase information cannot be extracted in this geometry

Page 26: Quantum Foundations in Mesoscopic Physics

  

 

Coulomb blockadeoscillation

Mesoscopic Physics & Quantum Information  Lab.       

Double-Slit Aharonov-Bohm Interferometer Schuster et al., Nature (1997)

Double-slit typeAB oscillation: -Very small probability of multiple reflections

Page 27: Quantum Foundations in Mesoscopic Physics

  

 

Controlled ‘Dephasing’ via Charge Detection: Heuristic Argument

Detection due to change of transmission probability

: Change in the # of electrons crossing the QPC > Quantum shot noise

Binomial random distribution: For td << tdwell , the electron will be detected!

QPC

QD

Mesoscopic Physics & Quantum Information  Lab.       

Aleiner et al., PRL (1997)

Page 28: Quantum Foundations in Mesoscopic Physics

  

 

Controlled Dephasing in a Which-Path Interferometer

Detectorsensitivity

Visibility reducedby charge detection

Buks et al., Nature (1998)

Mesoscopic Physics & Quantum Information  Lab.       

Page 29: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Detection due to change of scattering phase (not observed)

> Phase flutuation

Phase-sensitive detection

: Change in the phase of electrons crossing the QPC

QPC

QD

Phase-Sensitive Detection

Page 30: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Sprinzak et al., PRL (2000)Phase-Sensitive Detection: Experiment

Page 31: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

A Mesoscopic Two-path Interferometer- Electronic analogue of optical Mach-Zehnder interferometer

Optical Mach-Zehnder Interferometer

~100% visibility, sensitive phase measurement

M : Mirror BS : Beam SplitterS : Source D : Detector

Solid-State Mach-Zehnder Interferometer?

E

B >>0

Edge state Electron beam

B

Quantum Point Contact Beam splitter

Page 32: Quantum Foundations in Mesoscopic Physics

Optical Mach-Zehnder interferometer

  

 

Mesoscopic Physics & Quantum Information  Lab.       

A Mesoscopic Two-path Interferometer

Y. Ji et al., Nature (2003)- Electronic analogue of optical Mach-Zehnder interferometer

quantum Hall edge state Electronic beam quantum point contact (QPC) Beam splitter

Page 33: Quantum Foundations in Mesoscopic Physics

  

 

OutlineOutline

• 양자역학의 기묘함 

- 중첩 , 우연 , 상보성 , 비국소성 , 측정문제

• 중시계 물리학  (Mesoscopic Physics)

- Quantum transport, interference, and shot noise

• 중시계에서 양자역학의 근본문제 공부하기

- Complementarity and nonlocality test

Mesoscopic Physics & Quantum Information  Lab.       

Page 34: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

KK, PRB (2007)

Coulomb interactions modified trajectories Entanglement

Two particle stateat this stage:

Two particle interference:(for a symmetric BS-1, BS-2)

: visibility independent of |동 |: WP information erased by the projective measurement in the detector

Single particle interference:

Fringe visibility is proportional to ||

Measure of the indistinguishability

For symmetric BS-1 & BS-3 with ‘Bell state’

Complementarity Test in a Two-Path Interferometer I

Page 35: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

In summary:

1. Interferometer-detector entanglement through the elastic Coulomb interaction

2. The entanglement and the WP information encoded in the relative phase 동동

3. Single particle interference suppressed by the WP information

4. The WP information encoded in the phase is erased by the coincidence count, because the electron count in the detector deletes the phase information

5. The interference reappears

KK, PRB (2007)

Complementarity Test in a Two-Path Interferometer I

Page 36: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

In solid-state circuit:

“Entangled many-body transport state”:

(two input electrodes are biased with voltage V)

Current (I) and cross correlation (S) Single-pariticle detection & joint-detection probability can be obtained from the current and cross correlationmeasurement

KK, PRB (2007)

Complementarity Test in a Two-Path Interferometer I

Page 37: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Experimental Realization!

detectorinput

interferometerinput

Interferometer &detector output

• Two edge states of filling factor 2: outer channel - interferometer inner channel - detector• Coulomb interaction between the two channels phase shift entanglement• Total current fluctuations (shot noise) in D2:

Cross correlation

I. Neder et al., PRL (2007)

Page 38: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Experimental Realization!

Almost perfect WP detection

Low detector voltage High detector voltage

curr

ent

shot

noi

se

• Single particle interference is suppressed by the WP information• Interference is recovered by the cross correlation

Page 39: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Two coupled Mach-Zehnder interferometers

Output currents at lead 동동동동 are not affected by the presence of another beam splitter

Two particle interference:

+

‘Particle-like’ or ‘wave-like’ behavior can be chosen by controlling the detector

KK, PRB (2007)

Complementarity Test in a Two-Path Interferometer II

Page 40: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

A duality relation:

V: visibility of interferenceD: distinguishability

KK, PRB (2007)

Complementarity Test in a Two-Path Interferometer II

Out

put c

urre

nt a

t For upper pathFor lower path

Page 41: Quantum Foundations in Mesoscopic Physics

  

 

Mesoscopic Physics & Quantum Information  Lab.       

Nonlocality Test: Bell’s Inequality

Bell’s inequality: [CHSH inequality](Clauser et al. PRL (1969))

where

KK & K.H. Lee, arXiv:0707.1170 (2007)

BS-1,BS-2,BS-3: Symmetric beam splittersBS-4:

Phase of MZI-d fixed at some valuedepending on

Bell’s inequality is violated for anynonzero

In our case we find:

Page 42: Quantum Foundations in Mesoscopic Physics

  

 

요 약  (Summary)요 약  (Summary)

• 양자역학의 기묘함  - 중첩 , 우연 , 상보성 , 비국소성 , 측정문제

• 중시계 물리학 - Quantum transport, interference, and shot noise

• 중시계에서 양자역학의 근본문제 공부하기 - Complementarity and nonlocality test

Mesoscopic Physics & Quantum Information  Lab.       

Page 43: Quantum Foundations in Mesoscopic Physics

“If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it yet.” - Niels Bohr

  

 

Mesoscopic Physics & Quantum Information  Lab.       

결론  (Conclusion) ?결론  (Conclusion) ?

“Although quantum mechanics has profoundly shocked me, I haven’t understood it yet.” - KK