elektronika ii bv levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/elektronika...

98
MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-ELEKTRONIKAI TANSZÉK DR. KOVÁCS ERNŐ ELEKTRONIKA II. (MŰVELETI ERŐSÍTŐK II. RÉSZ, OPTOELEKTRONIKA, TÁPEGYSÉGEK, A/D ÉS D/A KONVERTEREK) Villamosmérnöki szak (BSc) Levelező tagozat ELŐADÁS JEGYZET 2008.

Upload: others

Post on 20-Sep-2019

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR ELEKTROTECHNIKAI-EL EKTRONI KA I TANSZÉK

DR. KOVÁCS ERNŐ

ELEKTRONIKA II.

(MŰVELETI ERŐSÍTŐK II. RÉSZ, OPTOELEKTRONIKA, TÁPEGYSÉGEK, A/D ÉS D/A KONVERTEREK)

Villamosmérnöki szak (BSc) Levelező tagozat

ELŐADÁS JEGYZET

2008.

Page 2: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet nappali tagozatos villamosmérnök hallgatóknak 2

3.0. MŰVELETI ERŐSÍTŐK (FOLYTATÁS)

3.5. Műveleti erősítők kapcsolóüzeme

A műveleti erősítők telítéses üzemében a kimeneti feszültség értéke nincs lineáris kapcsolatban a bemeneti feszültséggel. A telítéses tartomány jellemző paraméterei: a) statikus paraméterek

• maximális kimeneti feszültségek: +Ukimax (röviden Ûki+) és -Ukimax (röviden Ûki-). (A két feszültség különböző lehet.)

• Maximális szimmetrikus bemeneti feszültségtartomány: ±Ubesmax • Maximális közösmódusú bemeneti feszültségtartomány: ±Ubekmax

b) dinamikus paraméterek

• max. kimeneti jelváltozási sebesség (slew rate) • egyéb tranziens paraméterek

A műveleti erősítők kimeneti jelváltozási sebessége alacsony (különösen akkor, ha áramkorlátozás is be van építve), ezért speciálisan erre az üzemállapotra kifejlesztett, műveleti erősítő kapcsolástechnikán alapuló (és ezért ide sorolt) komparátor áramkörök állnak rendelkezésre, amelyek sokkal gyorsabb jelváltozási sebességgel rendelkeznek. A komparátorok esetén a transzfer karakterisztika linearítása is rosszabb, mint az általános célú műveleti erősítőknél, mivel erősítőként ezeket az áramköröket nem alkalmazzuk. A komparátorok speciális kimenetekkel is rendelkezhetnek, így TTL vagy CMOS kompatibilis és nyitott kollektoros (OC) kimenet. A legjellemzőbb alkalmazási területek:

• Komparátorok • Multivibrátorok • Hullámforma generátorok (a szakirodalom alkalmanként ezt az áramkör-csoportot nem ide

sorolja)

3.5.1. Komparátorok

A komparátorok két feszültség összehasonlítására használt áramkörök. Az egyik feszültség a referencia feszültség (UREF), amely kitüntetett feszültség és ezzel hasonlítjuk össze a másik feszültséget. A komparátor egyik kimeneti állapota az Ube>UREF, míg a másik az Ube<UREF állapotnak felel meg. Komparátor típusok:

• Hiszterézis-nélküli komparátorok • Hiszterézises komparátorok • Ablak-komparátorok

A hiszterézises komparátorok abban különböznek a hiszterézis-nélküli komparátoroktól, hogy az egyik telítési állapotból a másikba történő felfutáshoz szükséges bemeneti feszültségek eltérnek egymástól. A köztük lévő feszültségkülönbséget nevezzük hiszterézis-feszültségnek. A hiszterézises komparátorokat pozitív visszacsatolással gyorsítjuk, míg a hiszterézis-nélküli komparátorok általában nem visszacsatoltak. Az ablak-komparátorok jelzik, hogy a vizsgálandó jel bele esik-e a jel egy meghatározott tartományába.

3.5.1.1. Hiszterézis-nélküli komparátorok

A differenciál erősítő (transzfer karakterisztikája miatt) alapvetően alkalmas két feszültség kis hibával történő összehasonlítására. A műveleti erősítők (még inkább a komparátorok) pedig felépítésük alapján a szimmetrikus különbségi feszültséget erősítik, így további áramkörök nélkül is alkalmasak ilyen feladatok ellátására.

Page 3: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 3

A hiszterézis-nélküli komparátor elvi kapcsolása és transzfer karakterisztikája: Bármelyik bemenet lehet a referencia bemenet (ettől függ, hogy a kimeneti feszültséget hogyan értelmezzük).

⎪⎪⎪⎪

⎪⎪⎪⎪

−≤

+≤≤−

+≥

=

++

−+

−−

0

000

0

ˆ,ˆ

ˆˆ,

ˆ,ˆ

AU

UuhaU

AU

UuA

UUhauA

AU

UuhaU

U

kiREFbeki

kiREFbe

kiREFbes

kiREFbeki

ki

A fenti összefüggésekből látható a hiszterézis-nélküli komparátorok egyik hátránya, hogy van egy tartomány (a lineáris erősítés tartománya, uki=ubesA0), ahol az áramkör nem komparátorként, hanem erősítőként viselkedik, bár ez a tartomány a teljes bemeneti jeltartományhoz képest nagyon szűk. Az ilyen komparátorok alkalmazását megnehezíti, hogy a bemeneti jelre szuperponálódott - akár kis mértékű- zaj, zavar is a kimeneti feszültséget állandóan változtatja, így a zajos bemeneti jelet előzetesen le kell szűrni. Ezek a hibák a hiszterézis-nélküli komparátorok alkalmazhatóságát erősen bekorlátozzák. A gyakorlatban elsősorban nullpont (nullátmenet) detektorként alkalmazzuk őket. A bemenet védelme a szimmetrikus bemeneti feszültség-túlterhelés ellen: Az ellenállások helyes méretezésével a maximális szimmetrikus bemeneti feszültség ±UD lesz. A bemenet védelme a közösmódusú bemeneti feszültség-túlterhelés ellen: A kimeneti feszültségek A komparátorok két kimeneti feszültség értékkel rendelkeznek, azonban ezek a feszültségek nem stabilak, értékük a terheléstől, tápfeszültség-változástól és a hőmérséklettől függ és kismértékben változhat. Amennyiben stabilabb, vagy meghatározott feszültség-tartományú jelre van szükség, akkor a kimenetet stabilizálni kell.

A kimeneti feszültség stabilizálása Zener diódákkal:

⎩⎨⎧

+−+

=)( 2

1

DZ

DZki UU

UUU

Az R méretezésénél figyelembe kell venni a komparátor maximális kimeneti áramát, a terhelés áramát és a Zener szükséges minimális áramát is!

UREF

ube

Uki

R2

R1

UREF

ube

Uki

UZ1

UZ2

R

Uki

uki

UREF

ube

−kiU

+kiU

UREF

ube

Uki

Page 4: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 4

Speciális kimeneti feszültségek A komparátorok kimenete csatlakozhat TTL vagy CMOS áramkörökhöz, illetve meghajthat speciális terheléseket, pl. relé, LED, stb. A digitális áramkörökhöz illeszkedő kimenetnek ki kell elégíteni a szigorú bemeneti feszültségekre vonatkozó előírásokat. Így, pl. a TTL szintű kimenet előállítható:

Gyárilag TTL szintre illesztett kimenetű speciális komparátorokkal (katalógus áramkörök) Illesztő áramkörök alkalmazásával (esetleg szigetelt leválasztással, pl. optocsatolókkal) Nyitott kollektoros (OC) kimenetű komparátorokkal (katalógus áramkörök) Speciális Zener-diódás stabilizálással

A sebességigény miatt a gyors TTL kimenetű komparátor az optimális megoldás, de ezek speciális áramkörök. Egy másik lehetőség a nyitott kollektoros kimenetű áramkörök alkalmazása

Az R terhelés lehet egyéb terhelés is, pl. relé. A tápfeszültség is növelhető, pl. 15 V-ra CMOS áramkörökhöz.

3.5.1.2. Hiszterézises komparátorok

A hiszterézises komparátorok pozitív visszacsatolást tartalmaznak, amelynek előnye, hogy határozottá teszi a komparálást (a legkisebb különbség hatására - a pozitív visszacsatolás miatt- a különbségi jel folyamatosan nő és a kimenet telítésbe megy) és felgyorsítja a kimenet telítési állapotának elérését. Gyakorlatilag lineáris erősítési tartomány nem lehet. A hiszterézises komparátorok egy –elsősorban a digitális technikában használt- válfajának elnevezése: Schmitt-triggerek. A Schmitt-triggereket megvalósítják diszkrét áramkörökkel, pl. tranzisztorokkal, de gyakrabban integrált formában a Schmitt-triggeres digitális áramkörök formájában. A komparátort mind az invertáló, mind a nem invertáló bemenet felöl lehet vezérelni. Invertáló bemenet felöl vezérelt komparátor A pozitív bemenet feszültsége a szuperpozíció tétel segítségével kiszámítható:

21

1

21

2

RRRU

RRRuu REFkip +

++

=

A kimenet billenése (egyik telítési állapotból a másikba átváltása) akkor következik be, amikor az ubes előjelet vált. A váltás az ube=up feszültségnél következik be. A kimenet két értéket vehet fel, így a billenés két bemeneti állapotnál történik:

21

1

21

22

21

1

21

21

ˆ

ˆ

RRRU

RRRUU

RRRU

RRRUU

REFkibe

REFkibe

++

+=

++

+=

+

Ha az ubes pozitív, akkor a kimenet Ûki+ értéken lesz. Ez akkor áll fenn, ha a ube≤Ube1. A kimenet akkor lesz Ûki- értéken, ha ube≥Ube2. A referencia feszültség tetszőleges előjelű lehet. A fentiek alapján az áramkör transzfer karakterisztikája:

Ut=5 V

R

Uki

ubes

UREF R1

ube

uki R2

up

Page 5: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 5

A hiszterézis tartomány nagysága:

( )−+ ++= kikiH UU

RRRU ˆˆ

21

2

Neminvertáló bemenet felöl vezérelt komparátor A pozitív bemenet feszültsége a szuperpozíció tétel segítségével kiszámítható:

21

1

21

2

RRRu

RRRuu bekip +

++

=

A billenés határa: UREF=up. A billenés két bemeneti állapotnál történik:

⎟⎟⎠

⎞⎜⎜⎝

⎛++−=

⎟⎟⎠

⎞⎜⎜⎝

⎛++−=

+

1

2

1

22

1

2

1

21

RRU

RRUU

RRU

RRUU

REFkibe

REFkibe

Amennyiben az ubes pozitív, akkor a kimenet Ûki+ értéken lesz. Ez akkor áll fenn, ha a ube≥Ube1. A kimenet akkor lesz Ûki- értéken, ha ube≤Ube2. A referencia feszültség tetszőleges előjelű lehet. A fentiek alapján az áramkör transzfer karakterisztikája: A hiszterézis tartomány nagysága:

( )−+ += kikiH UURRU ˆˆ

1

2

Ûki-

Ûki+

ube

uki UREFR1/(R1+R2)

Ube1 Ube2

UH

ubes

UREF

R1 ube uki R2

up

Ûki-

Ûki+

ube

uki UREF(1+R2/R1)

Ube1 Ube2

UH

Page 6: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 6

3.5.2. Multivibrátorok

A multivibrátorok két kimeneti állapottal rendelkező impulzustechnikai áramkörök. Attól függően, hogy a két kimenet közül hány kimenet állapota stabil és hány változhat meg külső beavatkozás nélkül a multivibrátorokat három csoportra osztjuk:

• Astabil multivibrátorok (AMV): mindkét kimeneti állapot instabil, állapotát külső beavatkozás nélkül meghatározott időfüggvény szerint változtatja (szabadon futó oszcillátor).

• Monostabil multivibrátorok (MMV): egy stabil állapota van. Az áramkör ebből a stabil állapotból csak külső jel (trigger) hatására billen ki, de a kimenet áthaladva az instabil állapoton ismét a stabil állapotba jut. Különbség van a különböző MMV áramkörök között abban, hogy a már elindított multivibrátor a billenési idő alatt újra indítható-e vagy sem egy újabb indító jellel.

• Bistabil multivibrátorok (BMV): két stabil kimenettel rendelkeznek és inkább a digitális technikában alkalmazottak (tárolók). A stabil állapotokból csak indító jelek segítségével billenthetők ki. Általában két jelre van szükség a kibillentéshez és a visszabillentéshez (SET, RESET), de vannak áramkörök, ahol egy jellel is megoldható az egyszer oda- egyszer visszabillentés (T tároló)

Diszkrét kapcsolástechnikával mindhárom áramkörfajtát megvalósítják, de műveleti erősítőkkel csak az AMV és az MMV áramkörök megvalósítása szokásos. Digitálistechnikai áramkörökkel (TTL, CMOS) monostabil multivibrátor és tároló áramköröket valósítottak meg, az AMV a monostabil áramkörökkel valósítható meg.

3.5.2.1. Astabil multivibrátor műveleti erősítővel

Működése: A kapcsolás két visszacsatolást tartalmaz a) egy pozitív visszacsatolást ellenállásosztón keresztül és b) egy időfüggő negatív visszacsatolást az RC integrátoron keresztül. A (+) bemeneten a feszültség (Up) mindenkor a kimeneti feszültség egy meghatározott (leosztott) része. A (–) bemeneten a feszültség (uc) a kondenzátoros integrátor miatt exponenciálisan változik (a kimeneti feszültség közel állandó, így a töltés konstans feszültségről történik, ami exponenciális töltőáramot eredményez). Amennyiben a kondenzátor feszültsége eléri az Up feszültségét (ami konstans, ha a kimeneti feszültség konstans), akkor a kimenet az ubes előjelváltása miatt ellenkező állapotába vált. Legyen a két kimeneti feszültség abszolút értéke azonos: Ûki.!

( ) ppki

t

c

kip

UUUeu

RRRUU

−+⎟⎟⎠

⎞⎜⎜⎝

⎛−=

+=

− ˆ1

ˆ21

2

τ

A töltés (vagy kisütés) addig tart, amíg uc=Up nem lesz.

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛+=⇒−+⎟

⎜⎜

⎛−==

1

21 21lnˆ1

1

RRtUUUeuU ppki

t

cp ττ

uc

R

C it

Up Uki

R2

R1

Ûki-

Ûki+ uc

uki

Up

t

Elméleti kondenzátor feszültség

Page 7: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 7

Ha a két kimeneti feszültség azonos (feltétel volt), akkor a töltési és kisütési idő is azonos lesz, így a periódusidő T=t1+t2=2t1 Az AMV frekvenciája:

⎟⎟⎠

⎞⎜⎜⎝

⎛+

==

1

221ln2

11

RRT

A kitöltési tényező

%501 ==Ttγ

A frekvencia változtatható az R1/R2 aránnyal, a kitöltési tényező és a frekvencia együtt változtatható, ha az R töltő/kisütő ágban egy diódával különböző töltő és kisütő ellenállást állítunk be.

3.5.2.2. Monostabil multivibrátor műveleti erősítővel

Működése: A kapcsolás hasonló felépítésű, mint az AMV, csak egy indító bemenettel rendelkezik és a kondenzátor feszültsége negatív irányban egy dióda segítségével az UD feszültségen határolva van. A működés feltétele |Up|>UD Alapállapotban (stabil állapot) a kimenet uki=Ûki- értéken van (a dióda jelenlegi bekötési iránya mellett, de fordított bekötés esetén is működik a kapcsolás, csak akkor értelemszerűen minden állapot ellentétesre változik). Az R2-C1 áramkör derivátor áramkörként működik és a bemeneti jelet deriválja. A deriválás során előállított pozitív impulzus hozzáadódva az Up bemenet jeléhez a + bemenet feszültségét megemeli a dióda feszültsége fölé és így a kimenet átbillen a másik telítési feszültségre. (Ennek további feltétele, hogy a deriválás során keletkező impulzus szélessége akkora legyen, hogy a kimeneti jelváltozási sebességet figyelembe véve legyen elegendő idő az átváltásra, mielőtt az impulzusjel lecseng.) A negatív impulzus a stabil állapotot nem befolyásolja, mivel az így kapott feszültség a + bemenet feszültségét olyan irányba változtatja, hogy a stabil állapot ne változzon. Az instabil állapotban (t1) a kapcsolás úgy működik, mint az AMV kapcsolás. A tranziens lezajlása után a kimenet a stabil állapotba átbillen és ott marad, amíg újabb indító impulzus nem érkezik. Fordított stabil állapot beállítható, ha a dióda irányát megfordítjuk. Újabb indító impulzusnak csak t2 idő után szabad érkeznie, egyébként a működés bizonytalan lesz.

-Ûki

Ûki

uc

uki

Up t

UD

Elméleti kondenzátorfeszültség

t1

t2 ube

t

tderivált jel

indítás

uc

R

C it

Up Uki

R2

R1 ube

C1

D

Page 8: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 8

Legyen a két kimeneti feszültség abszolút értéke azonos: Ûki. Hanyagoljuk el a dióda feszültséget a kimeneti feszültséghez képest, mivel Ûki>>UD.

( ) DDki

t

c

kip

UUUeu

RRRUU

−+⎟⎟⎠

⎞⎜⎜⎝

⎛−=

+=

− ˆ1

ˆ21

2

τ

Az instabil állapot (billenés) addig tart, amíg uc=Up nem lesz.

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛+=⇒−+⎟

⎜⎜

⎛−==

1

21 1lnˆ1

1

RRtUUUeuU DDki

t

cp ττ

A billenési idő változtatható az R1/R2 aránnyal. Az érzéketlenségi tartomány (t2) meghatározható az előzőek szerint:

( ) ppki

t

c UUUeu ++⎟⎟⎠

⎞⎜⎜⎝

⎛−−=

− ˆ1 τ

Az érzéketlenségi tartomány addig tart, amíg uc=-UD nem lesz.

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛+

+=⎟⎟⎠

⎞⎜⎜⎝

⎛++

=⇒++⎟⎟

⎜⎜

⎛−−==−

21

2

21

212 1ln2lnˆ1

2

RRR

RRRRtUUUeuU ppki

t

cD τττ

3.5.3. Időzítők/timerek ( )

Az időzítő áramkörök a komparátorok és a logikai áramkörök olyan speciális kapcsolásai, amelyek általános célú időzítés, valamint AMV, MMV, PWM, stb. feladatok végrehajtására alkalmasak. Egy tipikus timer céláramkör: Az áramkör széles tápfeszültség-tartományban működik és mind tranzisztoros, mind FET-es technikával megvalósítják. Működése: A kimenetet alapállapotba a RESET bemenet segítségével lehet beállítani. Ha a TRIGGER bemeneten a feszültség kisebb, mint Ut/3, akkor az U2 a tárolót bebillenti Q=1 állapotba (ez a kimenet is egyben) és a kapcsoló S kikapcsol, mivel a negált kimenet állapota=0 lesz. Ha a THRESHOLD bemeneten a feszültség nagyobb, mint 2/3Ut, akkor a tároló törlődik, a Q=0, lesz és a kapcsoló tranzisztor bekapcsol. A CONTROL bemeneten keresztül lehetőség van a referencia feszültség állítására.

erősítő

R discharge kisütés

R

R

+Ut

Output kimenet

Cl _R Q S Q

Reset törlés

thresholdküszöb

Trigger indítás

tároló

U1

U2

S Control vezérlő

Page 9: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 9

Alkalmazási példa: AMV időzítő áramkörrel ( )

Töltés:

( )

( ) ττ

τ

τ

7.02ln

32

31

32

11

211

1

1

≈=

=+⎟⎟⎟

⎜⎜⎜

⎛−

+=

t

UUeU

CRR

tt

tt

Kisütés:

( ) ττ

τ

τ

7.02ln

3321

32

22

22

2

2

≈=

=+⎟⎟⎟

⎜⎜⎜

⎛−−

=

t

UUeU

CR

ttt

t

A frekvencia:

( ) ( ) ( ) ( )2ln21

2ln11

212121 CRRttf

+=

+=

+=

ττ A kitöltési tényező:

21

21

21

11

2RRRR

Tt

++

=+

==ττ

τγ

A kimeneti jel elvileg sem lehet szimmetrikus, mivel a két időállandó különböző!

3.6. Jelkondicionáló áramkörök

A jelkondicionáló áramkörök feladata, hogy alacsony jelszintű jelforrások jelét olyan szintre hozza, hogy az további feldolgozásra alkalmas legyen. A jelforrások általában alacsony jelet szolgáltató (µV...mV) nemvillamos mennyiségeket átalakító szenzoroktól (transducer) származnak, és nagy erősítést igényelnek különlegesen nagy linearitással és stabilitással alacsony zajszint mellett (ezek méréstechnikai erősítők, így a mérési hiba miatt különösen alacsony hiba engedhető meg). Gyakran egyéb járulékos feladatokat is meg kell oldani, pl. galvanikus leválasztás vagy karakterisztika linearizálás, hőkompenzáció, stb. Gyakori, hogy a jelforrás és a jelfeldolgozás helyileg jelentős távolságra van egymástól, így analóg jelátviteli és EMC zavarvédelmi problémák is felmerülnek. Ennek megoldására szolgáló erősítők a feszültség/áram átalakító erősítők. A jelkondicionáló áramkörök közé lehet sorolni a jelformáló erősítőket is, amelyekről korábban már szó esett (Elektronika I.). A további fejezetek elsősorban a méréstechnikában fontos jelkondicionáló erősítők jellemzőivel foglalkoznak. Tipikus jelforrások:

• rezisztív érzékelők • induktív érzékelők • kapacitív érzékelők • piezoelektromos érzékelők, stb.

A jelforrások (J), tápellátás (T) és a jelkondicionáló áramkörök (A) csatlakoztatásának lehetséges módjai (a jelforrás típusától függően): 1-vezetékes rendszerek: A módszer hátránya, hogy a zavarvédelmi szempontból legérzékenyebb vezeték a referencia vagy vonatkoztatási vezeték (kevésbé szabatosan a földvezeték) bizonytalan impedanciájú. Ezt a megoldást általában olyan helyen alkalmazzák, ahol a vezetékekkel való takarékosság fontos, pl. gépjárművek elektromos és elektronikai egységei.

Ut RESET

OUTCONTROL THRESHOLD

DISCHARGETRIGGER

R1

R2

C

+Ut

J A

Page 10: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 10

2-vezetékes rendszerek: A módszert elsősorban kontaktusnélküli közelítéskapcsolók (rendszerint kétállapotú) jeleinek továbbítására használjuk. A jeladó önfogyasztását egy minimális áram fedezi és az ennél nagyobb áram hordozza az információt, amelyet egy ellenállással alakítunk át feszültséggé a jelfeldolgozó számára. Szokásos, pl. a 4 mA referencia szint vagy ‘élőnulla’ és 20 mA, mint jelszint. Élőnulla alkalmazása lehetővé teszi a vezetékszakadás kiszűrését is. A módszer vezeték takarékos, de analóg átvitelre korlátozottan alkalmas. 3-vezetékes rendszerek: A megoldás közös földvezetéket használ, amely analóg jelátvitel esetén galvanikus csatolási hibákat hordozhat magában. Különösen jól alkalmazható azonban közelítéskapcsolók jelének továbbítására, ahol a jel-kimenet lehet relés, NPN vagy PNP tranzisztoros. 4-vezetékes rendszerek Különösen jól használható fél-, vagy teljes hídba kapcsolt, illetve egyéb szimmetrikus kimeneti feszültségű átalakítók esetén (pl. nyúlásmérőbélyeges híd). A jel szimmetrikus jelként kerül feldolgozásra, így a közösmódusú problémák jobban kezelhetők. A jelvezeték általában árnyékolt, mivel a jelszint alacsony és érzékeny az elektromágneses zavarokra. A módszer hátránya, hogy hosszú vezetékek esetén (amely az ipari gyakorlatban a jelforrás helye és a feldolgozás helye közötti távolság miatt jelentős lehet) a vezeték impedanciák hatását, az árammal átjárt tápfeszültség vezetékeken fellépő feszültségesések mérési pontosságot rontó hatását nem lehet kikompenzálni. 6-vezetékes rendszerek: Két –árammal nem terhelt- vezetékkel (sense+ és sense-) érzékeljük a híd tápfeszültségét a szenzor helyén és a tápegység a tápfeszültséget nem a jelfeldolgozási, hanem a jelforrási oldalra stabilizálja így a tápfeszültség vezetékek impedanciáján létrejövő feszültségesést kompenzálja. Ezzel a megoldással a 4-vezetékes rendszerre elmondott hiba jelentősen csökkenthető. A szenzor (sense) vezetékeket árammal terhelni nem szabad.

3.6.1. Mérőerősítők (Műszererősítők, Instrumentation amplifiers)

A mérőerősítők az alacsony jelszintű jelforrások jelét erősítik fel az analóg technikában szokatlanul nagy, gyakran többezer-szeres erősítéssel nagy linarítás és stabilitás mellett. Bizonyos típusaik kiegészítő elektronikaként tartalmazhatnak szűrőket is (monolitikus műszererősítők). Az alapvető probléma az, hogy a jelforrás jelszintje és a külső és belső forrásokból származó zaj és zavar, valamint a driftek (hőmérsékleti, tápfeszültség okozta és hosszúidejű alkalmazás okozta drift) a jelforrással közel azonos jelszintet eredményezhetnek, amely lehetetlenné tenni a hasznos jel és a zajok zavarások szétválasztását. Lehetséges megoldás a jel megszaggatása (chopper-stabilizált egyenáramú erősítők) és váltakozó jelként történő erősítése (ilyenkor az egyenáramú hibák hatása lecsökken), majd az egyenszint visszaállítása szűrőkkel, azonban ez a módszer jelentősen lekorlátozza a bejövő jel felső határfrekvenciáját a szükséges mintavételezés miatt. A fejezet további részei ezért csak a gyakrabban alkalmazott, szélesebb sávú egyenáramú műszererősítőkkel foglalkoznak.

T

J

A

R

T

J

A

jel

+

-

T

J

A

Jel+ Ut+

Ut-

Jel-

T

J

A Jel+

Ut+

Ut-

Jel-

Sense+

Sense-

Page 11: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 11

A mérőerősítők általános jellemzése: • szimmetrikus bemenet, aszimmetrikus kimenet • nagy erősítés • alacsony bemeneti feszültség tartomány • nagy CMRR • alacsony zaj • nagy bemeneti ellenállás • nagy linearítás • alacsony driftek (nagy stabilitás)

3.6.1.1. Három műveleti erősítős mérőerősítő (műszererősítő)

Mérőerősítőket egy- és kétműveletierősítős megoldásokkal is kifejlesztettek, de jobb megoldást eredményeznek a kifejezetten méréstechnikai célokra kifejlesztett műszererősítők, amelyeket gyakran egybe integrált formában illetve összetettebb -egyéb funkciókkal is kiegészített- esetben hibrid áramkörként gyártanak. Az áramkör alkalmas nagyobb erősítések megvalósítására (2000-2500), amely különösen alacsony jelszintű átalakítók esetén fontos. Az alacsony zaj, nagy linearítás és stabilitás, kis driftek és nagy CMRR alapkövetelmény. Integrált formájában úgy alakítják ki, hogy csak minimális külső alkatrészt igényelnek, mivel ezek tulajdonságai leronthatják az egész áramkör tulajdonságait. Gyakran beépítésre kerül a hídmeghajtó tápegység (6-vezetékes kialakításban), valamint hibrid esetben hangolható analóg szűrő kapcsolások is csatlakoznak az áramkörhöz. Alapkapcsolás: Megjegyzés: A bemeneten lévő RC tagok (szaggatottan rajzolva) a zajok, zavarok szűrését szolgálják, illetve a bemeneti ellenállást állítják be optimális értékre, alkalmazásuk opcionális. Az erősítés meghatározása:

IIIu AAA ⋅= , ahol AI az első, az AII a második fokozat erősítése, Au az eredő erősítés.

Az első fokozat erősítését abból kiindulva határozhatjuk meg, hogy a műveleti erősítők két bemeneti kapcsa között a feszültség elhanyagolhatóan kicsi lineáris üzemben. Ezt figyelembe véve az R4 ellenállás feszültsége meg kell, hogy egyezzen közelítőleg a bemeneti feszültséggel. Figyelembe véve azt, hogy elhanyagolható a műveleti erősítőbe folyó bemeneti áram, így az R3 ellenállásokon folyó áramoknak meg kell egyezni az R4 ellenálláson folyó árammal.

⎟⎟⎠

⎞⎜⎜⎝

⎛+=⎟⎟

⎞⎜⎜⎝

⎛+=+⋅⋅=

=⇒=

4

3

4

333

4

2121244

4

44

RR

uRR

uuiRU

Ru

iuu

beRRIki

RRbeR

4

321RR

uUA

be

Iki

I +=

A második fokozat egy már korábban ismertetett kivonó vagy differencia-erősítő, amelynek már ismert az erősítése:

2

1

RRAII −=

uki

R2

R1

R1

R2 ubes

R3 R3

R4U4

I4

I. fokozat II. fokozat

Page 12: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 12

Az eredő erősítés tehát:

⎟⎟⎠

⎞⎜⎜⎝

⎛+−=

4

3

2

1 21RR

RRAu

A kapcsolásból látható, hogy az R4 az egyetlen olyan ellenállás, amelyet nem párban kell állítani és hatása van az erősítésre (a fenti összefüggés alapján) így a professzionális áramkörökben az ellenállás két kapcsát kivezetik és kívülről lehet ellenállást vagy potenciométert rákapcsolni (néhány gyakori erősítésértékre gyárilag beintegrált ellenállások is rendelkezésre állnak, így azokra kívülről nem kell ellenállást kapcsolni.). A jelkondicionáló működését befolyásoló hatások és kompenzálásuk: A jelkondicionáló és a feldolgozási pont közötti vezeték ellenállás hatásának kiküszöbölése A műszererősítő kimenete és a jelfeldolgozási pont távol lehet egymástól, így a vezeték ellenállás jelcsökkentő hatását nem lehet figyelmen kívül hagyni. Ez a hatás csökkenthető, ha a vezetéket az ábra szerint a kapcsolás részévé tesszük. A SENSE és a REF ág impedanciája azonos, mivel ugyanolyon vezetékből épülnek fel, így az erősítés nem a mérőerősítő kimenetei pontjára van definiálva, hanem a feldolgozási pontra (a terhelésre). Ez a megoldás továbbá lehetővé teszi, hogy külső meghajtó erősítővel a kimenet terhelhetőségét megnöveljük a feszültségerősítés változtatása nélkül. Ezek a lehetőségek legtöbb integrált műszererősítőbe beépítésre kerülnek.

3.6.2. Szigetelt erősítők

A szigetelt erősítők feladata a ki- és bemeneti pontok galvanikus elválasztása zavarvédelmi vagy életvédelmi megfontolások miatt nagy linearítás mellett. Elsősorban ipari környezetben a különböző forrásokból származó jelek okozta zavarok és a jelfeldolgozó egység védelmében alkalmazzuk, de vannak területek, ahol az elválasztást szabványok írják elő, pl. orvostechnikai alkalmazások. Az áramkörnek a stabilitás és linearítás mellett rendelkeznie kell nagy leválasztási feszültséggel (átütési szilárdsággal), amelynek előírt nagysága a környező feszültségektől függ és általában 1.5-3.75 kV közé esik. A teljes galvanikus leválasztás érdekében gyakran a tápfeszültséget is leválasztják az erősítőktől mind a primer mind a szekunder oldalon. A leválasztás történhet transzformátorosan vagy optoelektronikai úton. A szigetelt erősítők áramköri jelölése:

3.6.2.1. Transzformátoros leválasztású szigetelt erősítők

Az elektronikához általában a transzformátor -mérete miatt- nem illeszkedik, azonban mivel az indukció a frekvenciával arányos, különösen kisméretű transzformátorok szükségesek magasabb frekvenciákon. Előnyös, hogy az átviteli láncnak feszültséget kell átvinnie, így teljesítmény átvitelre nincs szükség.

uki

R2

R1

R1

R2 ubes

R3 R3

R4U4

I4

uf

OUT

REF

SENSE

Meghajtó (opcionális)

– +

PSD -Ut

Tápfeszültség a szekunder oldalon nem szigetelt

– +

+Ut -Ut

Tápfeszültség a szekunder oldalon szigetelt

Page 13: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 13

A leválasztás alapja az, hogy a jelet megszaggatva (szaggatós modulátorral) a kapott váltakozó jelet transzformátoron átvihetjük, majd a szekunder oldalon szinkron szaggatást alkalmazva (szaggatós demodulátorral) az eredeti jel visszaállítható. A módszer hátránya, hogy a szaggatás mintavételezésnek számít, így vonatkozik rá a mintavételezési törvény, ami a jel felső határfrekvenciáját bekorlátozza. Ez azonban az ipari gyakorlatban nem okoz gondot, mivel a mérendő jelek általában alacsony frekvenciásak. A kapcsolás alapelve: Megjegyzés: szigetelt szekunder-oldali tápellátás esetén a szekunder kör elektronikája nem közvetlenül, hanem egy AC/DC konverteren keresztül kapja a tápellátást. A modulátor és a demodulátor ugyanarról a frekvenciáról működik és fázisban szinkronban szaggat. A demodulátor jelét szűrőn engedik át, hogy az egyenáramú komponenst kiszűrjék. Néhány tipikus jellemző:

A szaggatás frekvenciája 25-250 kHz között van, amely kis fizikai méreteket tesz lehetővé. A transzformátoros leválasztással elérhető linearítás: >10-4

A szigetelési feszültség: 1.5-2.5 kV Alacsony drift: <10ppm/1000 óra A jelátvitel sávszélessége: DC-100 kHz. A primer oldali tápfeszültség alacsony terhelhetőségű és alapvetően a bemeneti szenzor meghajtására szolgál.

3.6.2.2. Optoelektronikai leválasztású szigetelt erősítő

Az optoelektronikai leválasztás elve:

+

tápfeszültség

bemeneti erősítő modulátor demodulátor kimeneti erősítő

oszcillátor

Ube+

Ube-

+Ut

-Ut

Uki +Ut

-Ut

külső oszc.

jel

AC/DC konverter

DC/AC konverter

AC/DC konverter

DC/AC konverter

+

tápfeszültség

bemeneti erősítő VFC optocsatoló FVC kimeneti erősítő

oszcillátor

Ube+

Ube-

+Ut

-Ut

Uki +Ut

-Ut

külső oszc.

jel

V

f

f V

fo

Page 14: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 14

Az optoelektronikai leválasztás egy feszültség/frekvencia átalakítást (VFC) tartalmaz, majd az ily módon frekvencia modulált jelet optikai leválasztással visszük át szekunder oldalra, ahol a visszaállítást frekvencia/feszültség átalakító (FVC) végzi. Az átalakítás lassúbb, mint az előbbi esetben, mivel a konverzió több időt igényel, amely behatárolja a bemeneti jel frekvencia tartományát. Úgyszintén behatárolt a frekvencia löket nagysága, így a bemeneti jel dinamika tartománya is. A tápfeszültséget itt is szigetelten kell átvinni, illetve független forrásokból biztosítani. Az ilyen kialakítású leválasztás linearítása rosszabb, mint a transzformátorosé, kb. <0.1….0.5%. Az eljárást, mint elvet alkalmazzák forgó alkatrészekről történő információ átvitelre is.

3.6.3. Töltéscsatolt erősítők

A töltéscsatolt erősítőket a piezoelektromos szenzorok jeleinek kondicionálására használjuk. A jelforrás sajátossága, hogy nagyon alacsony jelszintet (töltést) szolgáltat és ennek megfelelően igen nagy bemeneti ellenállású erősítőt kell alkalmazni. A töltés önkisülése, elszivárgása miatt a mérésnek dinamikusnak kell lenni. Külön gondot okoz a csatlakozó kábel, mivel annak kapacitása valamint az erősítő bemeneti kapacitása is befolyásolja a mérés pontosságát. Az erősítővel szemben támasztott követelmények:

• nagy bemeneti ellenállás • rendkívül kicsi bemeneti áram • nagy stabilitás • igen alacsony driftek • alacsony bemeneti kapacitás

A feltételeknek speciálisan kialakított MOSFET erősítők felelnek meg. Az elvi kapcsolás: A bekötő kábel és a bemeneti kapacitás hatása és kompenzálása: Az erősítő és a kábel a kristály jelét leosztja a bemenetre, ami hibát eredményez. Az átviteli függvény:

( )2)(1

)()(Tkbe

Tbe

T

be

cbek

CCR

CRU

jUjY

CCC

++==

+=

ω

ωωω

Az összefüggés alapján megállapítható, hogy a hiba csökkentése érdekében olyan erősítőt kell alkalmazni, ahol: Rbe→∞ és Ck<<CT, ami azt jelenti, hogy kapacitás-szegény kábelt és kapacitás-szegény bemenetű erősítőt kell alkalmazni igen nagy bemeneti ellenállás mellett.

– + uki

CF

UT

kristály kábel erősítő

CT CC

Cbe RbeUbe

Page 15: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 15

4.0. OPTOELEKTRONIKA Az optoelektronika jelentősége a szórakoztató és az ipari elektronikán belül egyaránt gyorsan növekszik. Az iparban alkalmazott optoelektronikai szenzorok, mérőeszközök, az informatikában elterjedt megjelenítők, adattárolók, adatátviteli eszközök vagy videó képalkotók aránya az egyéb elektronikai eszközökhöz képest jelentősen növekszik, kihasználva az ilyen eszközökben rejlő sebességi, miniatürizálási és zavarvédettségi tulajdonságokat. Egyes becslések azt prognosztizálták, hogy az optoelektronikai ipar a teljes elektronikai iparból legalább 20%-os részt fog elérni 2010-re, de a tendenciákból látható, hogy ezt is jelentősen meg fogja haladni. A fejezet célja a jelentősebb optoelektronikai eszközök és alkalmazásaik bemutatása. Klasszikus értelemben a termikus elven működő detektorokat (pl. hőelem, hőellenállás, bimetál, gázérzékelők, stb.) illetve az adott hullámtartományban sugárzó –nem foton emisszión alapuló- egyéb eszközöket is ide kellene sorolni, mivel pl. a hő is elektromágneses sugárzás más spektrummal (az infravörös tartományban jelentős a hősugárzás, így speciális IR tartományú érzékelők alkalmasak hőmérséklet-detektálásra). A továbbiakban azonban az optoelektronikai eszközök alatt elsősorban a foton emittálókat és detektorokat értjük kibővítve a nem feltétlenül az optoelektronikához sorolható megjelenítőkkel (pl. CRT. Plazma, LCD, stb.)

4.1. Optoelektronikai alapfogalmak

4.1.1. Fénytechnikai alapfogalmak

a) Fényáram (Φ) A fényáram az időegység alatt F felületen áthaladó fénykvantumok száma. Mértékegysége lumen [lm]. b) Fényforrás fényerőssége/fényessége (I)

Egy fényforrás fényerősségét nem lehet a fényárammal jellemezni, mivel annak értéke függ a távolságtól (r) és a gömbfelület nagyságától (A). Pontszerű fényforrás esetén:

2rA

=Ω , mértékegysége steradián [sr]

ΩΦ

=ddI , mértékegysége candela [cd]

Definíció szerint 1 cd= 1/60 cm2 felületű, a platina dermedési hőmérsékletével azonos hőmérsékletű feketetest kisugárzása. c) Fénysűrűség (B)

dAdIB = , mértékegysége stilb [sb]

d) A megvilágítás erőssége (E)

dAdE Φ

= , mértékegysége lux [lx]

Az a, b és c paraméterek a sugárzóra (emittálóra) a d paraméter a vevőre (detektorra) jellemző érték.

4.1.2. Az optoelektronikai eszközök hullámtartománya (optikai spektrum)

A fény, mint elektromágneses sugárzás az alábbi hullámhossz tartományban értelmezett: 100 nm-380 nm ultraibolya (UV) 380 nm-760 nm látható fény 760 nm-50 µm infravörös (IR) tartomány

A gömbfelület

r fényforrás

Page 16: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 16

Az infravörös tartomány széles, ezért azt további tartományokra bontják: 0.76-1 µm nagyon közeli IR 1-3 µm közeli IR 3-8 µm rövidhullámú IR 8-14 µm hosszúhullámú IR 14-50 µm távoli IR

A legtöbb optoelektronikai eszköz csak a nagyonközeli és a közeli IR tartományban érzékel, illetve sugároz, így ez a tartomány kiemelten fontos az optoelektronikában.

4.1.3. Az emberi szem érzékenysége

A teljes látható fény tartományban a szem relatív érzékenysége nem egyenletes. Látható az alábbi görbéből, hogy a szem kb. 540 nm hullámhossz környékén a legérzékenyebb, ami a sárga/zöld szín határának felel meg. A vörös és kék színek felé haladva a szem érzékenysége jelentősen csökken. A szemnek ez a tulajdonsága leginkább a képalkotó szenzoroknál okoz nehézséget (pl. zöld-környéki túlsúlyozás a jelben, lásd CCD.)

4.1.4. Hőmérséklet hatása, öregedés

Hőmérséklet hatása: a becsapódó fotonok hatására lyuk-elektron párok generálódnak. Ugyanez a folyamat játszódik le a hőmérséklet hatására is. A két jelenség nehezen elválasztható egymástól, ráadásul pl. a detektorok a kiürített rétegüket használják detektálásra, ahol eleve kevés szabad töltéshordozó van, és az is a hőmérséklet hatására keletkezett- ezért az optoelektronikai eszközök erősen hőmérséklet-függőek (különösen igaz ez a detektorokra). Öregedés jelensége: az optoelektronikai eszközök jelentős részénél megfigyelhető a paraméterek változása (romlása) az idővel. Ezt a jelenséget nevezzük öregedésnek (karakterisztika degradációnak). Az öregedés általában nem jelent műszaki problémát, mert az eszközök jelentős részénél a berendezések erkölcsi élettartama lényegesen rövidebb, mint a fizikai élettartam, így az eszközöket nem használjuk fel az érzékelhető paraméterromlás (karakterisztika degradáció) határáig.

4.2. Fotovevők/detektorok

A detektorok feladata az optikai spektrum tartományába eső fényjelek átalakítása villamos jellé. Több- különböző elven működő szenzor is ide sorolható lenne, azonban a fejezet csak a legismertebb félvezetős foton-detektorokat tartalmazza. Az átalakítás során zaj lép fel, amelynek forrása lehet:

a) a foton zaj (elsősorban háttérsugárzás miatt) b) a detektor zaja (termikus zaj, sörétzaj, flicker zaj) c) a jelkondicionáló által termelt zajok (termikus zaj, sörétzaj, flicker zaj).

Detektálási küszöb: A detektorok a rendszerben fellépő zajok feletti jeltartományt tudják csak detektálni. A detektálási küszöb meghatározására szolgál a NEP (noise equivalent power, zajjal egyenértékű jelteljesítmény), amely azt a hasznos jelet mutatja, ami felett a detektálás már végrehajtható. Ez a paraméter azonban nem tartalmazza a sávszélesség (B) és a detektálási felület (Ad) hatását, ezért csak azonos elven működő szenzorok jellemzésére alkalmas. A NEP-ből meghatározható a detektálási küszöb:

[ ]11 −= WNEP

D

100%relatív érzékenység

λ [µm] 0.43 0.54 0.7

1%ké

k

zöld

sárg

a

vörö

s

Page 17: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 17

A különböző fajtájú szenzorok összehasonlítására a normalizált detektálási küszöbérték (D*) alkalmas, amely figyelembe veszi a fent jelzett paramétereket is.

dABDD ⋅=* [mHz1/2W-1]

A detektorok detektálási tartománya: A detektor a detektálási küszöbérték felett, egy meghatározott hullámhossz- tartományban képes a jelet detektálni.

4.2.1. Fotoellenállás (Light Dependent Resistor, LDR)

Áramköri jelölése: A foto-konduktivítást már 1873-ban felfedezték, azaz, hogy egyes anyagok ellenállása a fény hatására megváltozik. A becsapódó fotonok hatására lyuk-elektron párok keletkeznek. Az így keletkezett szabad töltéshordozók növelik az anyag vezetőképességét, azaz csökkentik az ellenállását. A vezetőképesség változása függ az abszorpciós tényezőtől (azaz a befogott fotonok aránya a detektor felületet érő összes fotonhoz viszonyítva) és a megvilágítás idejétől. A hőmérséklet hatására is hasonló jelenség játszódik le, ezért az így keletkezett jel fotonzajt okoz. A fotoellenállások lehetnek:

• Intrinsic (sajátszennyezésű) • Extrensic (szennyezett félvezető alapanyag)

Az extrensic fotoellenállások jelentősége egyre növekszik. A különböző anyagok különböző hullámhosszúságú fényre érzékenyek, pl. ( ):

Alapanyag Relatív érzékenység maximuma Hullámhossz-tartomány ZnS ∼0.32 µm UV CdS ∼0.5 µm láthatófény GaAs ∼1.2 µm IR PbS ∼2.3 µm IR

A fotoellenállás ellenállása a megvilágítás függvényében nagy értéktartományban változik. A kis megvilágítások tartományában a fotoellenállás különösen hőmérsékletfüggő. Az ellenállás-változás mértéke tipikusan:

64

1000

0 10...10=RR

A fotoellenállás transzfer karakterisztikája: A fotoellenállás dinamikus viselkedése: A fotoellenállás nagy fel- és lefutási időállandókkal rendelkezik, különösen a világosról sötétre váltásnál. Ennek az az oka, hogy a saját belső melegedés korlátozása érdekében csak nagyon kicsi áram engedhető meg a fotoellenálláson. Ahogy a megvilágítás csökken, a felhalmozott szabad töltéshordozókat ki kell üríteni, de az alacsony áram -amely a sötétre váltás miatt még tovább csökken (lásd transzfer karakterisztika)- nagyon lassan tudja csak kiüríteni azokat. Természetesen sötétről világosra váltáshoz is jelentős idő kell (bár kisebb), mivel a töltéshordozókat létre kell hozni. A tipikus időállandó ~ms nagyságrendű, de extrém esetekben a ~100 ms is lehetséges.

Ro sötét ellenállás

E [lx]

R [Ω]

1000 lx

R1000

100%relatív érzékenység

λ [µm] λmin λmax

Detektálási küszöb

Page 18: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 18

Detektálási küszöb: A fotoellenállások detektálási küszöbértéke magas, mivel jelentős zaj keletkezik a nagy ellenállások miatt (a termikus zajfeszültség egyenesen arányos az ellenállás gyökével). A detektálható minimális jel D=10-9...10-12 W (értéke a frekvenciától függ). A detektor gyakorlati kiképzése: A detektor működési elvéből következik, hogy tetszőleges nagyságú és alakú vezető felületek alakíthatók ki, így az eszköz felületi érzékelésre alkalmas. Felhasználási területek: Nagy érzékelési felületeket, de dinamikus viselkedést nem igénylő alkalmazások, pl. fényerő, alkonykapcsolók, magasabb hőmérsékletek érzékelése, pl. összsugárzás-mérők, stb. Alkalmazási feltételek: A detektor árammal nem terhelhető, mivel a veszteségi teljesítmény a belső hőmérsékletet növeli, ami a detektálási küszöböt megemeli (rontja). Olyan ellenállás-változáson alapuló mérő kapcsolásokban használható, amelyek nem árammal terhelik a szenzort, pl. feszültség híd-kapcsolások.

4.2.2. Foto-elektromos jelenségek a pn átmenetben

Modellezzük a két réteget a félvezetőknél megszokott módon: Szabad töltéshordozók a kiürített rétegben találhatók jelentős számban. Vizsgáljuk meg a kiürített rétegben a töltéseloszlást, a belső térerőt és a diffúziós potenciált (a folytonos vonal a fénnyel történő gerjesztés előtti, míg a szaggatott vonal a gerjesztés utáni állapotot jelzi): A beeső foton hatására a kiürített rétegben (átmeneti tartomány, tértöltési tartomány) lyuk-elektron párok generálódnak, amelyek a réteg határához mozogva csökkentik a kiürített réteg határát. A keletkező lyuk-elektron párok mennyisége a beeső fotonok számától függ (eltekintve a hőmérséklet hatására keletkező lyuk-elektron pároktól). Természetesen a többségi töltéshordozókat tartalmazó rétegben is lejátszódik hasonló jelenség, itt azonban a keletkező szabad töltéshordozók száma a többségi töltéshordozókhoz képest elhanyagolhatóan kicsi, így detektálni sem lehet azokat. A beeső fotonok hatására megváltozott kiürített réteg az alapállapotban kimeneti kapcsain villamosan semleges (nem mérhető kimeneti feszültség) alkatrésznél a kimeneti kapcsokra UL=Ud2-Ud1 feszültséget generál, anélkül, hogy külső segéd energiaforrást alkalmaznánk.

x p réteg kiürített réteg n réteg

p többségi n többségi p kisebbségi n kisebbségi töltéshordozók

ρ a szabad töltéshordozók eloszlása

x

E belső térerő x

Ud belső (diffúziós) feszültség

x

+ -

Ud1

Ud2

Page 19: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 19

A fenti elven két eszközt is készítenek: fotoelem fényelem

A kimeneti karakterisztika Si alapú szenzorok esetén: Az ábrán az Ifoto a fény hatására keletkező töltéshordozók árama, ULo az üresjárási feszültség, Iz a zárlati áram.

4.2.2.1. Fotoelem

A kimenetet üresjárásban használva a keletkező feszültség detektálható, így a beeső fény mennyisége is meghatározható. Az üresjárási feszültség:

⎟⎟⎠

⎞⎜⎜⎝

⎛+=

o

fotoLo I

Iq

kTU 1ln

Io a kisebbségi töltéshordozók árama (maradék áram) 0 lx megvilágítás esetén. Ebben az üzemállapotban detektorként használjuk az alkatrészt. Előnye:

nem igényel külső tápellátást jó detektálhatóság (a rekombinációs zaj elmarad)

Hátránya: lassú működés 1-100 µs (nincs áram, így a töltéshordozók kiürítése lassú, lásd fotoellenállás) öregedésre hajlamos

Gyakran alkalmazzák kisteljesítmény-igényű fogyasztók energia ellátására pl. kalkulátorok, LCD digitális órák, stb. ahol mW vagy µW teljesítmény igény lép fel.

4.2.2.2. Fényelem

Az eszközt közel rövidzárásban működtetve energia-termelésre lehet felhasználni (napelem, szolárcella). Ilyenkor a detektor speciális felületi kialakítású, a minél nagyobb foton abszorpció miatt. Az egyes cellák soros-párhuzamos kapcsolásával lehet az áramot, illetve a feszültséget növelni. Szokásos anyagok és az elért gyakorlati hatásfok ( ):

Si kb. 16%, GaAs kb. 21%, CdTe kb. 6% elért hatásfok.

4.2.3. Fotodióda

A dióda jelölése: A fotoelemeknél a detektáló felület a kiürített réteg. Ennek nagysága növelhető, ha a pn átmenetre záró irányú feszültséget kapcsolunk. A zárt áramkörben keletkező fotoáram detektálható. A relatív érzékenység maximuma Si fotodióda esetén kb. 0.85 µm hullámhossznál van. A tipikus felfutási/lefutási idő < 1 µs. A fotodióda karakterisztikája: Az ábra tartalmazza a pn átmenet külső

Ifoto

UL 0.5 V ULo

Iz

IF

UF

IR

UR

E1

E2

Iz1 Iz2

UL2 UL1

RL terhelés

fotodióda üzem fotoelem üzem

Eo

P

UL 0.55-0.6 V

Pmax

Page 20: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 20

feszültséget nem igénylő üzemállapotát is (fotoelem üzemmód), ahol a detektor eset UL1 ésUL2 valamint a fényelem üzemállapot IZ1 és IZ2 került bejelölésre két különböző gerjesztés valamint a sötét állapot esetén (Eo=0 lx, E1<E2 esetén). A 0 lx-hoz tartozó karakterisztika (Eo) gyakorlatilag megegyezik a normál dióda karakterisztikájával, figyelembe véve, hogy a fotodióda speciális kialakítású és szennyezettségű. Az ábrában feltüntettük egy gyakorlati RL terhelés esetére a valóságos lezárás esetén fellépő feszültség és áram viszonyokat is. A fotoáram képlete megegyezik a fotoelem esetén felírtakkal (a záróirányú feszültség a detektálási felületet növeli, de az áramra közvetlenül nem hat ki.) Alkalmazás detektálásra: A fotodióda esetén a fotoáramot detektáljuk, így egy áramvezérelt feszültségerősítést

kell felépíteni. A műveleti erősítő ubes feszültsége közel nulla, ebből következik, hogy a dióda közel rövidzárásban üzemel. A műveleti erősítő nagyon kicsi bemeneti árama miatt a teljes áram az R ellenállás felé folyik. A kimeneti feszültség:

REiu fotoki ⋅−= )( A fotodiódák előnyei:

• gyors, kis jelterjedési idő • jó detektálhatóság

Hátrányai: • alacsony jelet szolgáltat, amelyet erősíteni kell • a pn átmenet miatti zaj • a lezárt pn átmenet erős hőmérsékletfüggése

Felhasználás terület: általános célú detektor, elsősorban gyors jelek detektálására.

4.2.3.1. PIN dióda

A PIN dióda a normál pn átmenetes diódáktól annyiban különbözik, hogy a két réteg közé beintegrált sajátvezetési (intrinsic) rétege van. Az elvi felépítés: Az intrinsic réteg megnöveli a kiürített réteg szélességét. A kiürített rétegben található kevés szabad töltéshordozó fel tud gyorsulni a maximális sebességre anélkül, hogy ütközne (nagy a töltéshordozók szabad úthossza). A nagy töltéshordozó sebesség miatt az eszköz gyors lesz (a jelterjedési idő ns nagyságrendű). A sebességet elsősorban a nagy kiürített réteg miatt kialakuló feszültséggel vezérelhető kapacitás korlátozza, ezért a két folyamat között kell optimálisan tartani a viszonyt. A PIN diódát elsősorban gyors, impulzusszerű jelek detektálására használjuk, pl. lézer dióda jelének detektálására. Az elérhető jelterjedési idő ∼10-50 ps. A PIN dióda készülhet Ge alapanyagra is nagyfrekvenciás alkalmazások esetén.

4.2.3.3. Lavina dióda (APD, Avalanche Photo Diode)

Az eddigi detektorok a fotonok számával arányos áramot bocsátottak ki, ami kicsi, ezért további erősítést igényel. A lavina diódák az első erősítő típusú alkatrészek, amelyek árama jelentősen nagyobb, mint az a beeső fotonok számából következne. Az alapelv hasonló, mint a PIN diódáknál, azaz a kiürített réteg megnövelése a sebességnövelés céljából, azonban ezeknél az eszközöknél ezt a rákapcsolt záró irányú feszültség megnövelésével érik el nem pedig beiktatott intrinsic réteggel. A nagy záró irányú feszültség hatására megnövekedett kiürített rétegben a töltéshordozók nemcsak felgyorsulnak és nagy mozgási energiára tesznek szert, hanem a kötött elektronoknak is át tudják adni energiájukat és így további elektronokat szakítanak ki (másodlagos és további elektronok) és növelik a szabad töltéshordozók számát. A sokszorozásnak az egyre növekvő számú töltéshordozó szab határt, mivel ekkor növekszik az ütközés valószínűsége és csökken a szabad úthossz. A működési módból következik, hogy ez az eszköz elsősorban a

Uki

R iz

i n-

n+

SiO2 szigetelés

p+

Page 21: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 21

fény jelenlétét és nem a megvilágítás nagyságát detektálja. A nagy töltéshordozó sebesség miatt az eszköz gyors (jelterjedési idő ns-ps nagyságrendű). A sokszorozási tényező:

( )o

foto

IUI

M =

A sokszorozási tényező feszültség-függése: Az alkatrész erősen hőmérsékletfüggő, mivel a jelenség a termikus gerjesztés miatt töltéshordozó párokra is ugyanígy zajlik le. A letörési feszültség változása kb. 200-300 mV/C°. A hőkompenzáláshoz egy az APD-vel egy tokban levő referencia diódát használnak, amelynek hőfokfüggése közel azonos. Megoldást jelent a szabályozott hőmérsékletű tokban elhelyezett APD is.

Előny: • gyors, az elérhető jelterjedési idő ∼20-50 ps • erősítő jellegű, már nagyon gyenge jelet is tud detektálni

Hátrány:

• nagy zaj a lavina-hatás miatt • erősen hőmérsékletfüggő működés

A pn, pin és a APD közel azonos sebességet elérő eszközök, az alapvető különbség a szükséges fényintenzításban van. Az APD nagyon gyenge jeleket is tud detektálni (akár egy fotont is, ekkor SPAD Single Photon Avalanche Diode-nak nevezik), azonban analóg lineáris jelátvitelre nem alkalmas, mivel a kimeneten a jel nemcsak a beeső fotonokkal arányos. Az APD felhasználási területe nagyon hasonló a fotosokszorozó csövekhez. A különösen vékony impulzusok tartományában (<10 ns, lézer impulzus) azonban a fotosokszorozók még jobb detektálási tulajdonsággal rendelkeznek.

4.2.4. Fototranzisztor

Áramköri jelölés: Helyettesítő kapcsolás: A fototranzisztor –bár ugyanazokat a rétegeket tartalmazza- különbözik a hagyományos tranzisztortól a detektálásra használt C-B átmenet kiképzésében. Detektálásra a lezárt átmenet alkalmas, ami tranzisztornál normál üzemben a C-B átmenetnél áll fenn. Az E-B átmenet nyitott állapotra van előfeszítve normál üzemben, ami a nagyszámú töltéshordozó miatt nem alkalmas a hozzá képest jelentősen kisebb számban fotonok által generált töltések detektálására. A kollektor réteg nagy felületű a jó detektálhatóság érdekében. A tranzisztor kimeneti karakterisztikája: A foton hatására az átmenetben keletkező töltéshordozók a bázisba jutva ugyanúgy vezérlik a tranzisztort, mint az a normál tranzisztornál külső forrásból származó bázis árammal történik. A lezárt átmeneten azonban nemcsak a foton-gerjesztette áram (if) folyik, hanem a kisebbségi töltéshordozók árama (io) is. Ezt az áramot sötétáramnak nevezzük, mivel E=0 lx megvilágítás esetén is folyik. A két áram összege a tényleges bázisáram.

UR [V]

M 1000

1

U1000

IC

UCE

E1 E2 E3 E4 E5

E1>E2>E3>E4>E5

Page 22: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 22

( )ofec iihi += 21 A maximális relatív érzékenység Si detektor esetén kb. 0.87 µm hullámhossznál van (nagyon közeli IR tartomány). Az elérhető áramerősítési tényező h21e=100…800. A fototranzisztor lehetséges üzemmódjai: a) Fototranzisztor kivezetett bázis nélkül Elvi kapcsolás:

Ez a leggyakoribb alkalmazási mód. Ebben az üzemmódban a fény meglétét kell detektálni, nem pedig annak abszolút értékét. A tranzisztort külső tápforrásból előfeszítjük, de nem állítjuk munkapontba, így lineáris erősítésre nem alkalmas. Fő felhasználási területe: optocsatolók, közelítéskapcsolók, vonalkód leolvasók, stb.

Megjegyzés: a fototranzisztort alkalmanként két kivezetéses eszközként gyártják, azaz közvetlenül ebben az üzemmódban használhatók csak. Ez kisebb méretű eszközök gyártását teszi lehetővé. Különösen tömbbe foglalt detektoroknál gyakori megoldás a két kivezetés. b) Fototranzisztor kivezetett bázissal Egy lehetséges elvi kapcsolás kétfokozatú közvetlencsatolt erősítővel:

A tranzisztort külső tápforrásból –az analóg erősítőkhöz hasonlóan- előfeszítjük (munkapontba állítjuk), és a szokásos munkapont-beállító kapcsolásokkal munkapontba állítjuk, így lineáris erősítésre korlátozottan alkalmas. A fototranzisztor linearitása továbbra sem lesz a teljes jeltartományban megfelelő, ezért az információt nem közvetlenül, hanem moduláltan visszük át. A moduláció lehet bármely alapsávi AM (amplitúdó -), FM (fázis-) vagy PM (impulzus-) moduláció. Fő felhasználási területe: alapsávi jelátvitel üvegszálas kábelen, jelátvitel forgó detektorokon, stb.

c) Fotodióda üzemmód A tranzisztort külső tápforrásból előfeszítjük, de csak a C-B átmenetet, mint diódát használjuk fel. A fotodióda sebessége lényegesen nagyobb, mint a fototranzisztoré. Egy fotodióda (vagy tranzisztor dióda üzemmódban) és egy Shottky tranzisztor együttesen sokkal gyorsabb eszközt eredményez, mint egy fototranzisztor. Felhasználási lehetőségek ugyanazok, mint a fototranzisztor kivezetett bázis nélkül. d) Fotoelem üzemmód Ez egy elvi lehetőség, mivel a detektálási felület sokkal kisebb, mint egy fotoelemnél, így a hatásfoka rosszabb. A C-B átmenetet felhasználva fény hatására mérhető kimeneti feszültség alakul ki, amely (nemlineárisan) arányos a beeső fotonok számával.

4.2.4.1. Foto-Darlington

Áramköri jelölés: A foto-Darlington kapcsolásnak ugyanolyan tulajdonságai vannak, mint a Darlington kapcsolásnak, figyelembe véve azt a különbséget, ami a tranzisztor és a fototranzisztor működése között van. Alkalmazása –a nagy áramerősítési tényező miatt- elsősorban kis jelek erősítésére, illetve kapcsolóüzemben.

+Ut

RL uki

uki

+Ut

Page 23: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 23

Ekvivalens helyettesítő kapcsolás:

4.2.5. Foto-FET

Működési elvét tekintve egy fotodióda és egy MOSFET kombinációjának tekinthető, ahol a fotodióda által generált töltéshordozók építik fel a növekményes MOSFET csatornáját. A MOSFET vezérlő elektródájával előfeszítve elérhető, hogy sötétben éppen ne folyjon áram a drain és a source között és így az eszköz már rendkívül kicsi megvilágítások esetén is detektálható jelet adjon. Előnyök:

• alacsony zaj (nincs sörétzaj) • nagyon jó detektálhatóság, D*≅3.108 mHz1/2W-1 (λ=900 nm, IR tartomány) • nagyfokú linearitás, különösen alacsony megvilágítások tartományában

Az erősítés növelhető, ez azonban a határfrekvencia csökkenésével jár. A foto-MOSFET kategóriába több eszköz is tartozik, így a CCD, CID, stb.

4.2.5.1. Képérzékelők

A modern képleképező és videó technika alapvető eszköze a fényérzékelő egység. A szilárdtest képérzékelők között két fő csoportot különbözetünk meg: CCD és CMOS. Leggyakrabban a CCD-t alkalmazzák, de egyre jobban terjed a CMOS (Complemetary Metal Oxide Semiconductor) alkalmazása is. A CCD és a CMOS közötti legfőbb különbség a gyártási eljárásból származik. Míg a CCD-k gyártása bonyolultabb és költségesebb, addig a CMOS áramkörök előállítása egyszerűbb és olcsóbb. A CMOS érzékelőkben minden képponthoz elhelyezhető a foton(elektron)-feszültég átalakító, ennek köszönhetően sor- és oszlopcímzéssel rendelkezik. Vagyis az érzékelő minden egyes képpontja külön címezhető. Ennek felhasználásával kisebb felbontások esetén nagyobb sebességű sorozatfényképezésre van lehetőség. A MOS gyártástechnológia előnyeit kihasználva (kevert analóg és digitális áramkörök építése egy lapkán) a CMOS további előnye még, hogy a lapkán belül az időzítéseket megvalósító áramkörökön kívül még az A/D átalakítás is elvégezhető. A CCD esetében viszont az elemi érzékelők értékeit sorosan kell kiolvasni, így egy pixel megcímzésé csak bonyolultan oldható meg (lásd optikai félvezetős tárolók) az érzékelőn belül. Az analóg - digitális átalakítót és az összes vezérlőáramkört külsőleg, az érzékelőn kívül kell elhelyezni. A soros kiolvasás azt jelenti, hogy csak a sor végén lehet érzékelni a képpontok töltését. Ahhoz, hogy az egész sor értékét megkapjuk, az egyes töltéseket el kell juttatni a sor végére. A CCD-k nagy előnye, hogy nagyobb érzékenységűek, hátrány viszont a jelentős fogyasztás. Egy CCD érzékelő 5-6 W fogyasztású is lehet, míg CMOS kivitelben a 0,5 W is elegendő lehet. Az alcsonyabb fogyasztás kisebb melegedést és így alacsonyabb zajt eredményezhet. A CMOS hátránya az egyértelműen rosszabb jelterjedési sebesség, bár az egy lapkán kialakított (és így kisebb jelterjedési idővel vezérelhető) külső áramkörök javítanak a teljes átalakító sebességén. A másik jelentős probléma, hogy a kiolvasás ideje alatt is megvilágítás érheti az érzékelőt, ami a képet rontja, ezért a kép élességéhez gyors és hatékony képzár (blende) kell. Ez lehet mechanikus pl. fényképezőgépekben, de

SiO2 szigetelés

n p+

D S G

optikailag átlátszó, fémesen vezető réteg

szubsztrát

fémes hozzávezetés

n+

kiürített réteg csatorna kialakulása

Page 24: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 24

kamerákban csak az elektronikus jöhet szóba. A CCD esetében az elektronikus zár kialakítás egyszerűbben megoldható (lásd CCD architektúrák) és hatékonyan működik (kivéve a nagyobb felbontású, de elektronikus zárnak nem alkalmas FT megoldást). A CMOS érzékelőknél nagyobb problémát jelent a gyors elektronikus zár kialakítása. Ez történhet a váltott-soros kiolvasáshoz hasonló elven, melynek hátránya, hogy az egymás alatt lévő sorok kiolvasása eltérő időkben történik (bemozdulhat). A teljes kép kiolvasása nagy sebességgel viszont csak akkor valósítható meg, ha az elemi érzékelők méretét lecsökkentik (hogy a kiegészítő alkatrészek is elférjenek). Olcsó CMOS érzékelővel ellátott gépeknél, ha átmeneti tárolót se építenek a gépbe, jelentkezhet az úgynevezett térelhajlás. Ezt elsősorban mozgó tárgyak fényképezésénél lehet észrevenni, amikor a kiolvasás ideje alatt a fotózott tárgy elmozdul a helyéről. Ilyenkor az elkészült képen a téglalapok paralelogrammának látszanak.

4.2.5.1.1. Töltéscsatolt eszközök (Charge Coupled Device)

A CCD eszközöket 1969-ben a Bell Laboratories-nál fejlesztették ki. Eredetileg a buborék RAM-ok kiváltására memóriának fejlesztették ki. Egyszerűsítve azt mondhatjuk, hogy felépítésük egy sok vezérlőelektródás MOSFET kapacitás struktúrának felel meg és alapvetően a töltések áttöltését végzik egyik MOS kapacitásból egy másikba irányított módon (analóg léptető regiszterkent). A töltések forrása a foton (optoelektronikai alkalmazásban, MOSFET szenzorral) vagy a közvetlenül betáplált elektromos töltés (analóg vagy digitális léptetőregiszter/soros tároló felhasználásban), maga a CCD a töltések egy vagy kétdimenziós léptetését végzi. Egyszerűsített CCD struktúra (3-fázisú): Több vezérlő elektróda (valóságban több ezer/millió) helyezkedik el elszigetelten (SiO2) az egyenletesen szennyezett félvezető (n) felett. A vezérlő elektródákra lépcsőzetesen változó pozitív feszültséget kapcsolva a kiürített réteg nagysága a rákapcsolt feszültséggel lesz arányos. A Φ1,Φ2,Φ3 a három –eltérő alakú- vezérlőfeszültség, amely a kiürített rétegben a lépcsős struktúrát biztosítja. Az elektronok, amelyek keletkezhetnek optikailag átlátszó vezetőket alkalmazva a foton-gerjesztésből (optoelektronikai CCD) vagy a drain vagy source elektródán bejuttatott töltésekből (analóg vagy digitális soros RAM) a minimális potenciális energia szinten fognak elhelyezkedni (amely a rajzon a töltéssel jelölt helyen van). Egymáshoz szinkronizáltan változtatva a vezérlő elektródákra kapcsolt feszültséget a kiürített réteg is halad vagy balra, vagy jobbra. A töltéseket a drain elektródán csatoljuk ki. Az egyes vezérlőelektródák egymáshoz nagyon közel helyezhetők el, így nagy felbontás érhető el. Lehetséges egyéb fázisszámú vezérlés is. A vezérlőelektródák a szigetelő rétegen belül is kialakításra kerülhetnek (térbeli szétválasztás), így már kevésbé bonyolult vezérlő feszültség esetén is kialakítható többfázisú vezérlés (pl. 2 szint és 2 fázis esetén négy lehetséges kiürítési szint van). A vezérlés frekvenciája sohasem lehet nulla, mert töltésvesztés lépne fel. Általában a minimális frekvencia 10 kHz és 10 MHz közé esik. A felső határfrekvenciát a MOS-kapacitások korlátozzák. Egy másik megoldás, ha az elektródákra meghatározott sorrendben pozitív feszültséget kapcsolnak, így az elektródák az előzőtől veszik át a töltéseket. Az egyes léptetések hatása látható az ábrán:

szubsztrát

p+

D

p

fémes hozzávezetés S SiO2 szigetelés

G1 G2 G3 G4 G5 G6 G7 G8 G9 Φ1 Φ2 Φ3

kiürített réteg

megvilágítás

a b c d

0 + ++ 0 0 + + 0 0 + 0

Page 25: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 25

A jel kiolvasása: különböző struktúrák alakultak ki az egyes pixelek kiolvasására. Mindegyik elrendezésnél probléma, hogy a kiléptetés alatt is fény éri a szenzort, ami meghamisítja a képet. Különböző megoldásokkal csökkentik a képelmosódás veszélyét, pl. zárszerkezet (kamerák), fedett tárolók, amelybe átléptetik a jelet és innen történik a kiléptetés (frametransfer), több kiolvasó regisztersor (fésűs elrendezés), stb. Több CCD architektúrát különböztetünk meg, ezek a következők: FF (Full-Frame) teljes képes, FT (Frame-Transfer) kép-átviteli, IL (InterLine) köztes soros. Néhány 2D CCD struktúra: A különböző hullámhosszúságú jelek különböző mértékben hatolnak be Az érzékelő rétegbe. Pl. a kék fény csak rövid behatolási mélységgel rendelkezik, míg a piros akár 500 µm mélységig is behatolhat. Ez a tulajdonsága a fénynek meghatározza a megvilágítás irányát illetve az ez alapján nyert kép spektrális tulajdonságait. A CCD megvilágítása történhet a vezérlőelektródák vagy a szubsztrát (hordozó) felöl. Ez utóbbi dinamikai szempontból jobb eredményt mutat. Vékonyabb (~15 µm) és jobb hatásfokú érzékelők készíthetők, de mechanikailag instabilabbak. Elsősorban a vörös és a közeli infra tartományban érzékenyek. Ez a megoldás egyben lehetőséget ad arra, hogy IR kamerák (éjjel látó) esetén a látható fényt a félvezető réteg kiszűrje, mert a hordozó réteg vastagsága miatt nem tud a foton behatolni a kiürített rétegig. Reflexiós réteg kialakítható, a mi növeli a hatásfokát, előállítása azonban drágább. Látható fényt detektáló CCD kamerák esetén viszont nagyon vékony hordozó réteget kell kialakítani. Az elölről történő megvilágítás esetén a fotonnak át kell hatolni az elektródákon is, ami nagyobb veszteséget eredményez, de a hordozó vastagabb lehet (~625 µm). Elsősorban a kékre érzékenyek ezek az eszközök.

4.2.5.1.2. CMOS érzékelő

A korszerű CMOS integrált áramköri gyártástechnológiával egy szilícium chipre logikai és analóg áramköröket lehet előállítani. Ez egy igen előnyős tulajdonság, amelyet a képérzékelők megvalósításánál is felhasználtak. A CMOS képérzékelő lapkára nemcsak magát az érzékelő cella mátrixát integrálják, hanem az általa szolgáltatott képjel-feldolgozó bonyolult áramkörkészletét, valamint a gép vezérlő funkcióit ellátó egységet is.

CMOS chip felépítése (a jelfeldolgozó egységek nélkül, forrás: www.pixinfo.com) ( )

Videojel (töltés kiléptetés)

CCD tároló

CCD képleképező

CCD képleképező

videojel

Sor cím-zés

videojel

FT IL FF

Page 26: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 26

A fény érzékelését a fotodiódák végzik. A fotodiódában gerjesztett töltéseket egy miniatűr kondenzátor segítségével alakítják feszültséggé. Minél több fényt kap a fotodióda, annál több (Q) töltésmennyiség keletkezik, és annál jobban töltődik fel a C kapacitású kondenzátor. A kondenzátoron keletkező U feszültség: U = Q/C. Mivel U nagyon kicsi, a további jelfeldolgozás céljából erősíteni kell és ezért a cellákat feszültségerősítővel is ellátják. Az ilyen típusú érzékelő cellát, amely a fotodiódán kívül, egy a kondenzátoros töltés/feszültség átalakítót és egy feszültség erősítőt is tartalmaz, aktív érzékelő cellának nevezik. A cellaerősítők kimenetei, oszloponként közös jelvonalakra csatlakoznak. A sorkiválasztó vonal az erősítő kimenetét vagy engedélyezi, vagy letiltja. A sorkiválasztó vonalakat az oszlopdekódoló áramkör hajtja meg és az érzékelő mátrix összes sorai közül egyidejűleg csak egy sort engedélyez. A jelvonalak egy sorkiválasztó vonal által engedélyezett cellasor feszültségét kapják. A kiolvasási szekvencia alatt a sordekódoló a képérzékelő teljes cellamátrixát soronként tapogatja végig. Az oszlopdekódoló és a jelkiolvasó áramkör a kiválasztott sorban levő cellák feszültségét egyenként olvassa ki, és az így kapott analóg képjelet az analóg/digitális átalakító bemenetére helyezi. A további jelfeldolgozás digitális módszerekkel történik. A jelfeldolgozó áramkörkészlet az analóg/digitális átalakító után található. A CMOS –az olcsóbb gyártási költségek és az egyre kifinomultabb gyártási technológia miatt- folyamatosan szorítja ki a CCD-t az alkalmazásokból, még a nagyfelbontású, precíziós képleképező alkalmazásokban is.

4.2.5.1.3. Színes képérzékelők

Az érzékelő fotodiódák a fény színét nem, csak az erősségét képesek érzékelni, ezért a színeket szétválogatva külön-külön kell érzékelni, amelyet a végén digitálisan egy kép-ponttá kell átalakítani. Színes CCD érzékelők működése több eljáráson is alapulhat. Alkalmazzák a színes filmeknél alkalmazott 3-rétegű szűrővel történő jelszétválasztást, így a kép tulajdonképpen vörös (R), kék (B) és zöld (G) képekre bomlik. Egy másik megoldás, hogy pixelenként van R, G és B színre érzékeny elem. Az ilyen szűrőket is kétféleképpen helyezik el: egy síkban mozaik-szerűen (Bayer-szűrő) vagy egymás alá rétegesen. Az első megoldás egyszerűbb, de sok hátránya van: alacsonyabb valódi pixel-szám (mivel egy képpont négy elemből áll össze), Moire-effektus (amennyiben az érzékelt kép hasonló mintával rendelkezik, mint a színszűrő háló). Mind a CMOS, mind a CCD esetén a fény érzékelése fotodiódákkal történik. A jelenlegi képérzékelők csak a fény erejét képesek érzékelni, a színét nem. Ahhoz, hogy színes képet érzékeljünk, szükség van színszűrőkre (Colour Filter Array - CFA). A színszűrők csak egyféle hullámhosszú fényt engednek át a többit a szűrő elnyeli. A képérzékelő felületére különböző színszűrőket helyezhetnek. Általában a három alapszínt használják a szűrőknél, vagyis a vörös, zöld és kék (Red Green Blue - RGB) színeket. Ritkább esetben a CYGM (Cyan Yellow Green Magenta) szűrőket alkalmazzák, amely kékes-zöld, sárga, zöld és bíborvörös színeket engedi át. A színszűrőt úgy helyezik fel az érzékelőre, hogy egy-egy pixel ezáltal a zöld, vörös és kék színösszetevők fényerejét érzékelje (RGB esetén). A végső képben egy-egy pixel színét a szomszédosan elhelyezett pixelek által felfogott fény erősségéből számítják ki, a színszűrők által átengedett színek figyelembevételével. RGB színszűrő esetében a 2x2 pixelben elhelyezett szűrőkben két zöld szűrő található. A zöld szín duplázására két indok hozható fel. Az egyik, hogy az emberi szem is sokkal érzékenyebb a zöld színre, a másik, hogy a kontraszt növelése érdekében célszerű az egyik színből két szűrőt elhelyezni. CYGM színszűrő esetén a cián és sárga színek összegéből szintén megkapható a zöld értéke, vagyis tulajdonképpen ebben az esetben is két pozícióban található zöld szűrő. A legnépszerűbb színszűrő elrendezés a Bayer minta (GRGB). Ehhez hasonlít még az RGBE, amely nem két zöldet, hanem negyedik színként (Emerald ≈ Cyan) kékes-zöldet használ. A superCCD kialakítás esetén a mintákat átlósan helyezik el, míg ClearVidCMOS esetén nyolcas csoportokat alkotnak, amelyben a Bayer-hez képest több zöld érzékelő elemet helyeznek el. Bayer színszűrő felépítése:

zöld piros

kék

megvilágítás

színszűrő

érzékelő

Page 27: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 27

Háromréteges színes érzékelő felépítése: A különböző színek különböző behatolási mélységét használják ki ennél a megoldásnál (piros a legnagyobb behatolási mélységű, míg a kék a legrövidebb behatolási mélységgel rendelkezik). Ennél a megoldásnál nagyobb pixel felbontás érhető el és nincs Moire-hatás, mert nincs rácsos színszűrő. A színszűrők alkalmazása rossz hatással van a kép élességére, mivel a képen egy képpont tulajdonképpen az érzékelő három képpontjának értékeiből jön létre (Bayer-megoldás). A jobb kép elérése érdekében az elemi képpontokba minél több fényt kell juttatni, ennek elősegítése érdekében a pixelek, illetve a színszűrő fölé úgynevezett mikrolencséket helyeznek, melyek nagyobb fénymennyiséget fókuszálnak az elemi fényérzékelőkre, mint amelyet a mikrolencsék nélkül felfognának. További lehetőség, hogy a beérkező fényt három alapszínre bontják és párhuzamosan három chip érzékeli a jelet (3CCD, itt azonban nehéz a kép élességének biztosítása).

4.2.6. Egyéb félvezetős optoelektronikai detektorok

4.2.6.1. pin-diódás pozíció-érzékelő (PSD)

Kis elmozdulások, távolságok nagypontoságú (µm-pontosságú) mérésére szolgálnak a PIN-fotodiódás egy- és kétdimenziós érzékelők: A beeső fény hatására keletkező lyuk-elektron párok megváltoztatják a vezetőképességét a rétegben attól függő mértékben, hogy melyik kivezetéshez közelebb történt a foton becsapódás. Az eszköz hőmérséklet hatására ugyanúgy lyuk-elektron párt generál, ezért ez befolyásolja a mérést. Úgyszintén hatása van a mérés pontosságára a beeső fény intenzitásának is, ezért nem az áramok abszolút értékét, hanem az áramok arányát mérjük.

LX

II

B

A 21+=

További két irányban kivezetve a dióda rétegeit (Ix és Iy) síkbeli pozíció meghatározás is lehetséges. A PSD elemek leggyakoribb felhasználási területe a lézeres letapogatók, amelyekben a lézerfény pozíciójának érzékelésére vagy PSD-t vagy lineáris CCD-t használnak (a CCD egyre terjed).

4.3. Fotoadók (emittálók)

Optikai lumineszcenzia jelensége a félvezetőkben A félvezetők azon tulajdonságaik alapján, hogy a töltéshordozók gerjesztésekor hullámszámvektor változás is bekövetkezik-e vagy sem, két csoportra oszthatók: direkt és indirekt félvezetőkre. A direkt félvezetők elsősorban fotont sugároznak ki, még az indirekt félvezetőknél a fonon kisugárzás a jellemző. A fénytartományba sugárzó eszközök a direkt félvezetők, amelynek jellemző alapanyagai a GaAs, GaN. Az indirekt félvezetők a hőtartományban sugároznak elsősorban. Az indirekt félvezetők közül a GaP használt -elsősorban, mint szennyező anyag- a fotoadók területén. Természetesen a direkt félvezetőknek is van fonon

felső

érzé

kelő

réte

g megvilágítás

érzékelő

érzékelő

érzékelő

SiO2 szigetelés

i p+

IB IA

optikailag átlátszó,fémesen vezető réteg

közös

fémes hozzávezetés

n+

X L

Page 28: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 28

kisugárzásuk, így az eszközön hő alakjában távozó veszteségi teljesítmény is fellép. A direkt félvezetők által kisugárzott fény spektruma eshet a láthatófény tartományba vagy az IR tartományba. A fotoadók legjellemzőbb típusai: IRED (InfraRed Emitting Diode, IR tartományban sugároz), LED (Light Emitting Diode, látható fény tartományban sugároz), szilárdtest dióda lézer (Solid State Diode Laser, IR tartományban sugároz).

4.3.1. IRED

A leggyakrabban alkalmazott GaAs anyagok a közeli IR tartományban sugároznak. Jellemzőik:

• Az elérhető hatásfok 1..5%-a a bevezetett villamos teljesítménynek. • A kisugárzott fény spektruma szűk sávban mozog monochromatikus fényforrás. • A kapcsolat a bevezetett villamos áram és a kisugárzott fény intenzitása között egy sávban lineáris, de

kis és nagy jelek tartományában eltér az ideálistól. • A hőmérséklet növekedésére a relatív fényerő csökken. • A kisugárzás irányfüggő, a sugárzási kúp keskeny nyílásszögű.

Az IRED és a hagyományos LED karakterisztikája: Az ábrán látható, hogy a nyitóirányú feszültség szín- (szennyezés) függő. Az IRED karakterisztikája meredek, azaz a dinamikus ellenállás kicsi (rD≅10 Ω), a Zener diódáéhoz hasonló. A nyitóirányú feszültsége kb. 1.0-1.2 V közé esik. A zöld LED nyitásához, kb. 2.2-2.4 V feszültség szükséges. A nagyfényerejű LED-ek (InGaP, InGaN) nyitásához magasabb feszültség kell: a vörös 2.2-2.4 V, a kék/fehér 3.5-4 V. A sugárzási kúpszög a legtöbb alkalmazáshoz nem elegendő, ezért azt külső reflektorral jelentősen megnövelik. Ez különösen fontos a szórakoztatóelektronikai felhasználásoknál. (pl. távvezérlők.), de az informatika számára is (IrDA). A relatív fényerő a hőmérséklettel csökken.

4.3.2. LED

A LED-eket csoportosíthatjuk: • hagyományos kisteljesítményű LED • nagyfényerejű kisteljesítményű LED • nagyfényerejű nagyteljesítményű LED

Az egyes csoportok eltérő anyagúak, illetve konstrukciójúak. A hagyományos LED-ek esetén az IR tartományból a láthatófény tartományba a spektrumot szennyezéssel tolják el, így GaAsP vörös diódát, GaAsP:N sárga és GaP:N zöld diódát eredményez. A hideg színek felé haladva a hatásfok egyre romlik, zöld dióda esetén a hatásfok <0.05%-a is lehet a bevezetett villamos teljesítménynek. Az ilyen LED-ek jelenleg is gyártásban vannak, gyakran nevezik őket 5 mm-s LED-nek is bár méretük ettől eltérhet. A hagyományos LED-ek hűtést nem igényelnek. A hagyományos LED-eket általában információ kijelzésre használjuk, -pl. vörös vészjelzés, sárga veszélyre figyelmeztető jelzés, zöld normál üzemállapot jelzés- akkor gondoskodni kell, hogy azonos gerjesztés estén

UF

IF IRED

vörös sárga zöld LED

T

relatív fényerő

100 %

25 C°

90°

0° ϕ

sugárzási kúpszög

Page 29: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 29

azonos legyen a fényérzet. A szem maga is gondoskodik a fényérzet különbség kiegyenlítéséről azáltal, hogy relatív érzékenysége –az egyébként gyengébb fényű- zöld/sárga határon van, de ez nem teljes mértékben kompenzálja a hatásfok különbözetből származó fényerő különbséget. A fényerő különbséget a vörös illetve a sárga és zöld között úgy védik ki mesterségesen, hogy a vörös LED-be abszorpciós réteget (epoxy), míg a sárga és zöld LED-be reflexiós réteget helyeznek el. Az új nagyfényerejű LED-eknél, amelyek alapanyaga AlInGaP, a fénykibocsátás azonos gerjesztés esetén 40-50-szeres a hagyományoshoz képest (pl. GaAsP hagyományos vörös LED esetén 20 mA gerjesztés esetén a fénykibocsátás 120 mcd, míg ugyanilyen gerjesztés esetén egy AlInGaP LED fénykibocsátása 5300 mcd.) A megnövelt fényerő és a gazdaságosan előállítható fehér szín tette lehetővé, hogy világítási célokra is elkezdjenek fejleszteni teljesítmény LED-eket. Ez a terület a LED-ipar leggyorsabban fejlődő területe jelenleg. Fehér és kék LED A kék LED-et –bár a kék alapszín , így szűk spektrumú-, de gazdaságosan nehezen lehetett előállítani, míg a fehér esetén a széles spektrum okozott jelentős problémát. Ezek a problémák a 90’s évekig visszavetették az ilyen LED-ek alkalmazását. A 90’s években a fehér LED fejlődése különösen nagy léptékű volt. Elsősorban a wolfram izzóhoz képest jobb hatásfok (kripton izzónál 20-25 lumen/W, a fehér LED-nek 50-150 lumen/W), alacsony hőkibocsátás, rendkívül nagy élettartam (60000-100000 óra) miatt már sok alkalmazásban felváltották vagy folyamatosan felváltják a hagyományos izzókat. Nagyobb darabszámú LED felhasználásával lámpák állíthatók elő. Az elérhető hatásfok (amely napról-napra változik) jelenleg 65% fehér teljesítmény-LED (LumiLED) esetén. A lumen/ár viszony azonban még mindig a hagyományos megvilágításoknak kedvez. A kék színű LED indium-gallium nitrid alapanyagú. A kék színű LED kifejlesztése adott nagy lökést a fehér színű LED-k gazdaságos megvalósíthatóságának is. A fehér szín előállítása bonyolult, mert a fehér összetett szín, spektruma szélesebb, mint amit egy LED elő tud állítani. Fehér LED vagy a kék foszfor-jellegű anyaggal (ez sárga fény kibocsátását eredményezi) történő borításával (abszorpciós réteg) azt széles spektrumúvá téve (ez közel nappali fénynek megfelelő szint ad), vagy a zöld, kék és vörös LED-ek kombinációjával (RGB LED, 5500K fehér szín) állítható elő (a monitoroknál megszokott módon). Jelenleg inkább a kék LED-es eljárást alkalmazzák, ahol a fehér színhőmérséklete a sárga foszfor anyag vastagságával állítható. A fehér és a kék LED fénykibocsátása a fenti példa alapján 20 mA gerjesztés esetén 700 mcd kék esetén 1200 mcd fehér esetén. Ez azt jelenti, hogy a hatásfok a hideg színek felé haladva az új típusú LED-ek esetén is jelentősen romlik, bár sokkal jobb, mint a hagyományos LED-ek esetén. A kék LED fénye az áram függvényében kis mértékben változtatja a hullámhosszát, így a fehér színhőmérséklete is változik, ezért meghajtásuk általában áramgenerátorral történik. Az idővel a fehér LED színhőmérséklete a sárga irányában eltolódik. Kék-sárga színkombinációs fehér LED sugárzási tulajdonságai (spektruma): A teljesítmény LED-ek konstrukciósan jelentősen különböznek az elsősorban jelzésre használt többi LED-től. A működés során jelentős hőenergia szabadul fel kis térfogatban (a hatásfok jó, de a hőforrás kis térfogatban koncentrálódik, ráadásul az alacsony tápfeszültség miatt 300-1000 mA áram folyik), ezért az ilyen LED-eket mindig hűtőfelülettel együtt állítják elő. Az eltérő alkalmazások miatt a kisugárzási karakterisztikájuk is változó lehet (oldalsávos kisugárzás, denevérszárny, Lambert-karakterisztikájú sugárzó), amely lencsékkel tovább módosítható.

100

0

Relatív érzékenység [%]

λ [nm] 470 560-580

InGaN LED (kék)

Foszfor (sárga, de van spektrum a zöld és a vörös tartományban is)

Page 30: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 30

4.3.3. OLED

Új irányzatot jelentenek az organikus LED-ek (OLED), amelyek elterjedése folyamatos részben kiváltva a ma használt LCD kijelzőket. Sok előnnyel rendelkeznek az LCD kijelzőkhöz képest: pl. sajátfény-kibocsájtással rendelkeznek, így nem kell háttérvilágítás (alacsonyabb fogyasztás), magasabb fényerő azonos gerjesztés esetén, igen nagy láthatósági szög, nagyon vékony kialakíthatóság, akár hajlékony kivitel is. Jelenleg az eszközök élettartama rövidebb (különösen a kék OLED esetén, mint az LCD-k várható élettartama, de ez folyamatosan javul. (már létezik 62000 óra várható élettartamú OLED kijelző is). Az eszköz egyes polimerek azon tulajdonságait használja ki, hogy molekuláris szinten gerjesztve a látható fény tartományban bocsátanak ki fényt. Gyakorlatilag a gyorskapcsoló LED nem félvezetővel, hanem speciális polimerrel épül fel. Bár a piacon is elérhetők, szerkezetük jelenleg is gyorsan változik a kutatások függvényében. Az OLED-ek hatásfoka rosszabb, mint a LED-ek hatásfoka, ezt ellensúlyozza azonban az olcsóbb gyártás. Vannak egyrétegű, kétrétegű és újabban ennél is többrétegű struktúrák. Egy kétrétegű OLED struktúrája és működése: Az emissziós és a vezető réteg is elektromosan vezető polimerekből áll. Ha a diódához hasonlóan nyitóirányú feszültséget kapcsolunk rá, akkor az anód és a katód között folyó áram hamarosan töltésmegoszlást hoz létre. A katódhoz közeli oldalon negatív, míg az anódhoz közeli oldalon pozitív (azaz elektronhiány) töltések halmozódnak fel, amelyek a koncentrációkülönbség miatt egy rekombinációs áramot indítanak meg. Ellentétben a félvezetőkkel a lyukak mozgékonysága az organikus félvezetőkben sokkal nagyobb, mint az elektronok mozgékonysága, így a rekombináció az emissziós rétegben jön létre. A rekombináció során felszabaduló energia fény formájában sugárzódik ki. Az emisszív réteg készülhet elektrolumineszcenz vezető rétegből (PLED), így a fényt tetszőleges színre lehet az anyagban konvertálni. Léteznek sokkal több rétegű konstrukciók is, amelyek kedvezőbb elektromos és optikai tulajdonságokkal rendelkeznek. A kilépő fény miatt speciális elektródát használnak (ITO=indium ón oxid), amely elektromosan jó vezető, de optikailag átlátszó. Az OLED-eket elsősorban kijelzőkben (a mobiltelefontól a nagyméretű TV képernyőkig, kivetítőkig) alkalmazzák. Lehetnek passzív mátrixos vagy aktív mátrixos működésűek az LCD-hez hasonlóan.

4.3.4. Lézer dióda (SDL)

A LED és IRED optikai spektruma széles, a kilépő fotonok fázishelyzete véletlenszerű, összehasonlítva a lézer diódákkal. A pn átmenetnek azonban van olyan koherens, irányított kimeneti jele, amely nagyon keskeny sávban fordul elő. Optikai visszacsatolás segítségével a koherens jelet erősíteni lehet. A visszacsatolást vagy dielektromos tükör-réteggel vagy reflektor réteggel (pl. arany) érik el. A dióda lézerek lehetnek egy rétegűek vagy több rétegűek. Ez utóbbiak elterjedtsége egyre nő. Lézer fény tulajdonságú eszközöket különböző anyagokból és eljárással építenek, pl. rubin lézer, CO2 lézer, He-Ne lézer, stb. A félvezető technikában GaAs-alapú lézerek az elterjedtek, amelyek méréstechnikában, információ átvitelben és kisenergiájú alkalmazásokban használatosak. A dióda-lézer a LED diódák elvén működik, kiegészítve reflektor réteggel és hullámvezetővel, amely az elektron-sokszorozódást biztosítja. Az alapvető fizikai elv azon alapul, hogy amennyiben gerjesztett elektronok vannak a vezetési sávban akkor a beeső fotonok másodlagos elektronokat gerjesztenek, amelyek fizikai tulajdonságai azonosak lesznek a már gerjesztettel (populációinverzió), míg ha az elektronok a vegyértéksávban gerjesztetlen állapotban vannak, akkor a foton elsősorban abszorbeálódik. A gerjesztést külső energiaforrásból biztosítják. A külső elektromos tér hatására létrejövő emissziót indukált emissziónak, míg az attól független emissziót spontán emissziónak nevezzük. A lézerek az indukált emisszió elvén működnek.

katód átlátszó elektróda (ITO)

emissziós réteg (polimer) vezető réteg (polimer)

átlátszó (ITO) vagy reflektív(fém) elektróda anód

Page 31: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 31

A homogén struktúrájú dióda lézerek kialakításának elvi elrendezése: A külső energiaforrásból hozzuk létre azt a töltéshordozó sűrűséget, ami a lézer emisszióhoz szükséges: A lézer emisszió eléréséhez egy küszöb áramsűrűséget (Jth) kell meghaladni. A modern lézerek heterogén struktúrájúak, amely a rétegek és a reflexiós felületek térbeli kialakításában nyilvánulnak meg a minél nagyobb hatásfok elérése érdekében. A lézer diódákat a nagypontosságú hosszméréstől, az információátvitel üvegszálas kábeleken keresztül a vonalkódos rendszerekig alkalmazzuk.

4.4. Optolektronikai adó-vevő eszközök

Az optoelektronikai eszközök terén kiemelt helyet foglalnak el az optoelektronikai adót és vevőt tartalmazó összetett eszközök. Két alapvető típusuk azon alapul, hogy a két eszköz között a fény útjába kívülről be lehet-e avatkozni vagy sem. Teljes mértékben zárt a fény útja az optocsatolókban, és teljes mértékben nyitott az opto-érzékelőkben, közelítés-kapcsolókban, fénysorompókban, míg az üvegszálas átviteli eszközök pedig bontható, de alapvetően zárt átviteli lánccal rendelkeznek. Az átvihető információ lehet a fény jelenléte vagy hiánya, lehet alapsávi digitális vagy modulált analóg. A tisztán analóg átvitelt -a nemlineáris karakterisztika miatt- csak korlátozott körülmények között és egyszerűbb követelmények esetén lehet alkalmazni. Az adó általában IRED (optocsatolók, érzékelők, közelítéskapcsolók) vagy lézer dióda (üvegszálas átvitel). A vevő azonban bármely ismert optoelektronikai detektor, bár leginkább fotodióda (és alfajai, pl. APD) vagy fototranzisztor. Gyakran a vevő oldal már egybeintegráltan tartalmazza a jelfeldolgozó részt is.

4.4.1. Optocsatolók

Az optocsatolók zárt fényúttal rendelkeznek. Kívülről a fény útjába nem lehet beavatkozni. Alapvető feladatuk a galvanikus elválasztás és a szigetelt jelátvitel. Mindkét alkalmazás nagy átütési szilárdságot igényel. Tipikusan az átütési feszültség 1.5-3.75 kV tartományban van. Alapvetően a fény meglétét vagy hiányát detektálja a vevő, de korlátozottan megoldható a szigetelt információ átvitel is. Az eszköz egy tokban szerelt adót és vevőt tartalmaz. Az egy tokba szerelés azonban rontja a szigetelési tulajdonságokat, különösen a parazita kapacitások okozta csatolás miatt. Ez a probléma még jelentősebb, ha egy tokban több optocsatoló van kialakítva, mert így az optocsatolók között is csatolás (áthallás) jöhet létre. A fény útjának kialakítása lehet közvetlen, vagy reflexiós kialakítású. A reflexiós kialakítás előnye az alacsonyabb csatolókapacitásokban van, hátránya a nagyobb méret. Csatolókapacitások hatása: A két oldal közé egy nagyfeszültségű impulzus-generátort kapcsolva azt tapasztaljuk, hogy a kimeneten a gyors jelváltozások ideje alatt hibajel jelenik meg. Ennek oka az adó és vevő között konstrukciós és szigetelési

J (áramsűrűség)

emisszió intenzítás lézer

emisszió

Spontán emisszió

Jth

n

p

kiürített réteg

félig reflektáló réteg

lézer fény emisszió

Page 32: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 32

okok miatt fellépő csatolókondenzátor okozta csatolás. Amennyiben a két rendszer között ilyen mérvű szintváltozás nem következik be, akkor a csatolás hatása elhanyagolható. Mérőelrendezés: Az optocsatolók átviteli karakterisztikája az alkalmazott adó-vevő kombinációtól függ, pl. IRED-fototranzisztor páros esetén: A lineáris átvitel hatásfoka (csatolási tényező a fenti elrendezés esetén):

( ) 25,0...2,0, == TIfdIdI

FF

c

Az optocsatolók paraméterei –akárcsak minden optoelektronikai eszköz paraméterei- időben romlanak (öregedés, karakterisztika-degradáció). Az optocsatoló dinamikus tulajdonságait az adó-vevők dinamikus tulajdonságai szabják meg. (pl. a fototranzisztor lassúbb eszköz, így gyakran fotodióda-Shottky tranzisztor párost használunk a nagyobb sebesség eléréséhez). Néhány gyakoribb optocsatoló kialakítás: Néhány tipikus optocsatolós alkalmazás a) Digitális kimenete illesztése nagyobb teljesítményű fogyasztóhoz Az eltérő tápfeszültség, a TTL szintnél (még a meghajtó áramkörökre megengedett szintnél is) nagyobb kimeneti áram igény és zavarvédelmi okokból fontos galvanikus elválasztás indokolja az optocsatolós leválasztást. A Darlington tranzisztor alkalmazásának indokoltsága a terhelés áramfelvételétől függ. Az elektromechanikus elemmel (jelen esetben relé, de egyéb egyenáramú behúzó mágnes, solenoid, stb. is lehet) párhuzamosan kapcsolt dióda az induktív terhelésen

fototranzisztor fotodióda TTL áramkörökhöz illesztett vevő vevő optocsatoló

&

áram erősítő

engedélyezés (strobe)

IF

Ic

lináris átvitel tartománya

1

+5 V +24 V

ICD ICO IFO

Ut2 Ut1 uki

Ug

Ug

uki

t

t

Page 33: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 33

szükségszerűen fellépő negatív feszültség-csúcsok levágására szolgál. Alkalmazása induktív terhelés esetén kötelező. Legyen ILmax a digitális áramkör maximális L-szintű árama. Akkor az elérhető maximális terhelőáram:

BdIdIII

F

CFCD maxmax =

Pl. ILmax=16 mA (standard TTL áramkörnél), B=600, dIC/dIF=0.25, akkor a maximális terhelőáram ICDmax=2.4 A b) Kétállapotú kapcsoló vagy egyéb elektromechanikus illetve elektronikus kontraktor illesztése digitális áramkörhöz

Az S kapcsoló lehet bármilyen mechanikus működtetésű kapcsoló, elektromechanikus kontraktor, elektronikus vagy elektromechanikus szenzor kimeneti kapcsoló, végállás-kapcsoló, vagy egyéb kétállapotú állapotjelző kapcsoló. A C kondenzátort abban az esetben alkalmazzuk, ha a kontaktus mechanikus, mivel ebben az esetben pergés (prell) fordul elő, amelyet a digitális áramkörök képesek feldolgozni. A kondenzátor a gyors pergés okozta feszültség-változásokat kiintegrálja (folytonos vonal: áram a kapcsoló kikapcsolt állapotában, szaggatott vonal: áram a

kapcsoló bekapcsolt állapotában). Az ellenállások értékeit a digitális áramkör L és H-szintű áramai szabják meg). A Schmitt-trigger a nem megfelelő meredekségű, de digitális jeltartományú jel formálására alkalmas. c) Optikai leválasztású szilárdtestrelé (SSR) A szilárdtest relé –a vezérlő oldaltól galvanikusan elválasztva- elektronikus hoz létre kapcsoló kontaktust. A kapcsolást egy triac végzi, amelyik a hálózati szinusz mindkét félperiódusában bekapcsolhat. Amennyiben az optocsatoló adó-oldalára jelet adunk, akkor a diac bekapcsolhat, amennyiben az anód-katód között elegendően nagy feszültség van (kb. 30-35 V). A bekapcsolást követően a triac megkapja a gyújtó feszültséget és szintén bekapcsol (az anód-katód feszültség megvan, mert enélkül a diac sem tudott volna bekapcsolni). A bekapcsolás a hálózati nullátmenetekhez szinkronizáltan következik be. Mivel mind a diac, mind a triac nullátmenetnél kikapcsol (ohmos terhelés esetén), ezért minden gyújtás a nullátmenetet követően jön létre. Ez lehetővé teszi, hogy a terhelésen kis du/dt és di/dt alakuljon ki, amelyik kíméli a félvezetőt és csökkenti a hálózati zavarások mértékét. További zavarás-csökkentést eredményez az R-C áramkör, amely a kapcsolást követő tranzienseket csillapítja, a fojtó pedig a nagyfrekvenciás zavarokat szűri a kimeneten.

4.4.2. Opto-érzékelők

Az opto-érzékelők (inicializátorok) olyan adót és vevőt tartalmazó eszközök, amelyek kiképzése lehetővé teszi a fény útjába történő külső beavatkozást. Alapvető típusai: a) rés-inicializátor, amelynél az adó és a vevő egymással szemben, egy közös optikai tengelyen van elhelyezve. A résben forgó perforált tárcsát elhelyezve fordulatszámot vagy az elfordulás mértékét lehet mérni, míg lineáris mozgást végző lemezt alkalmazva a helyzetet lehet jelezni.

+24 V

1

+5 V

S C

tárgy

adó vevő

tartószerkezet

vezérlés

ZL AC terhelés

zavarszűrők ’szikraoltó’ nagyfrekv.

diac triac

+Ut

Page 34: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 34

b) reflexiós (diffúziós) közelítéskapcsoló (proximity switch) Az adó és a vevő eltérő optikai tengelyen van, de a két tengely metszi egymást egy meghatározott térbeli pontban. Amennyiben a tárgy ezt a pontot eléri vagy megközelíti, akkor a visszaverődő jel a vevőbe jut és így a tárgy helyzete meghatározható. Külön reflexiós réteget a tárgyon ez a kialakítás általában nem igényel, de létezik olyan kialakítás is, amikor ilyen kerül elhelyezésre a tárgyra (prizma, Fresnel lencse, stb.). Ekkor reflektoros közelítéskapcsolóról beszélünk. Nagyobb távolságok áthidalására használják a fénysorompókat, amelyek lehetnek:

a) Reflexiós vagy diffúziós (lásd fent) b) Reflektoros (lásd fent) c) Transzparens d) Pásztázó

A pásztázó típusok alkalmasak életvédelmi vagy vagyonvédelmi feladatok ellátására is. Az ipari gyakorlatban gyakran alkalmaznak egy szerkezeti egységben elhelyezett, párhuzamos fényúttal ellátott optikai érzékelőket, amelyek célja egy korlátozott alakfelismerés, méretellenőrzés, mozgó alkatrészek pozíciójának érzékelése.

4.4.3. Üvegszálas átvitel alapjai

Az optikai jelek zavartűrő képessége az elektromágneses zavarokra (EMC) lényegesen nagyobb, mint a feszültség vagy áramátvitellel dolgozó alapsávi analóg vagy modulált jelátvitel esetén, sőt még a hagyományos alapsávi digitális átvitelhez képest is jobb tulajdonságokat mutat. A jel csillapítása is kedvezőbb, terjedési tulajdonságai pedig jobbak, mint a Cu vezetőben terjedő jelek esetén. Villamosan könnyebb szigetelni az egyes rendszereket egymástól, ha közöttük a jelátvitel (pl. villamos hajtás és vezérlése) üvegszálon keresztül történik, bár azt a jel sebessége és csillapítása egyébként nem indokolná. A fentiek miatt az üvegszálas átvitel egyre jobban terjed, még olyan területeken is, mint egylapkás multiprocesszoros rendszerek belső vezetékezése. Gyakran kerülnek felhasználásra erősen EMC-zavaros ipari környezetben, pl. PLC-k kommunikációjára az egyes terminál elemek között. Az alfejezet célja olyan mértékig bemutatni az üvegszálas technikát, ameddig az optoelektronikai adók/vevők ilyen célú felhasználásához szükséges. Gyakran az üvegszálas jelátvitel egyéb kábelekkel együtt kerül kialakításra, pl. telekommunikációs és energetikai kábelek, amely a kábelek mechanikai szilárdságát növeli. Ennek hiányában mechanikailag erősítik a kábeleket, mert maga az üvegszál a borítással együtt fizikailag nagyon kis átmérőjű, pl. 125 µm külső átmérő. Jelterjedés az üvegszálon:

tartószerkezet

adó

vevő tárgy

adó

vevő

tárgy

adók

vevők

transzparens pásztázó

n2

n1

AD

ÓK

VEV

ŐKm

unka-darab

Page 35: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 35

Az üvegszál alapvetően három részből áll: maga az üvegszál, a határfelületi bevonat és a védő burkolat. Az üvegszál (n1 törésmutató) és a bevonat (n2) törésmutatója eltérő értékű, de homogén a sugár irányában (n1>n2). A különböző szögben beeső fény a határfelületről visszaverődik és szóródik. Snellius törvény (összefüggés a törésmutató és a visszaverődés szöge között):

( ) ( )2211 sinsin αα nn = Az üvegszálban terjedő fény egyenes irányban és visszaverődve eltérő fázishelyzetben halad, így interferenciák alakulhatnak ki. A megoldást a minél vékonyabb üvegszálak jelentik, pl. 125 µm-es üvegszálas kábel esetén 5-50 µm az üvegszál átmérője. Az üvegszál nem tökéletesen henger alakú kialakítása miatt még helikális pályák is kialakulnak. További gondot okoz a törésmutató változása a hossz mentén, valamint az elhajló kábelből a határfelületen kilépő fény. Mindezek a problémák egyrészt a jelterjedésben (pl. megváltozott impulzus szélesség a diszperzió miatt, jitter, stb.), másrészt a kábel csillapításában jelentkeznek. Az alkalmazott fényforrás hullámhossza, a kábel anyaga és a csillapítás között összefüggés van. A veszteség mértéke 0.2 dB/km…3 dB/km között van. Kábelt készítenek műanyagból is, de annak átmérője és a csillapítása is jelentősen nagyobb (250 dB/km), mint a valódi üvegszálas kábeleknél. Az alkalmazható fényforrás általában LED. Ezeket a kábeleket nagytávolságú jelátvitelre nem alkalmazzák, de ez a csillapítási érték közvetlen ipari vezérlési feladatok (PLC, gépkocsik belső buszai, stb.) megoldására elfogadható, mivel ott a csillapítás kevésbé játszik szerepet és a távolságok m-ben mérhetők, az ára azonban jelentősen alacsonyabb, mint az üvegszálnak. Jelátviteli megoldások: A fény közvetlen analóg átvitele a vonali diszperzió miatt nem szokásos. A jeleket modulálni kell. Ritkábban alkalmazzák az analóg modulációt, a leggyakrabban vagy alapsávi digitális modulációkat alkalmazunk (pl. PAM, PCM, ASK, FSK, PSK) vagy nagyobb tömegű információ átvitele esetén időmultiplex vagy hullámhossz multiplex rendszereket pl. TDM, WDM. Tipikus adó-vevő kialakítás üvegszálas átvitelre: A jó átvitel feltétele, hogy az adó és a vevőelemek optikai tengelyének és az üvegszál tengelyének egybe kell esnie.

4.5. Optoelektronikai elven működő mérőeszközök

Optoelektronikai eszközök felhasználásával különböző mérőeszközök építhetők fel. Klasszikus és nagyon gyakran alkalmazott mérőeszközök az optikai jeladók/enkóderek és optikai mérőlécek/lineáris jeladók a forgó és lineáris elmozdulások mérésére.

4.5.1. Forgó jeladók

A forgó jeladók lehetnek abszolút vagy inkrementális jeladók. Az abszolút jeladók az elmozdulás mindenkori aktuális szögének a kódját szolgáltatják, míg az inkrementális jeladók a relatív elmozdulást reprezentáló impulzusokat bocsátanak ki. Az abszolút jeladók szerepe a modern ipari elektronikában csökkent a bonyolultabb felépítés, az alacsonyabb felbontási érték és a jelentősen magasabb ár miatt. Előnyük, hogy esetleges tápfeszültség-kimaradás esetén is mindig az aktuális pozíciót mutatják, valamint gyakori irányváltás esetén sem nő a pozíció hiba impulzusvesztés miatt (mint az inkrementális jeladóknál történhet).

&

+5 V

R +5V

adó vevő

Page 36: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 36

Az abszolút jeladók esetén egy állandó fényforrásból (LED/IRED megvilágított forgótárcsa van, amelyen az alkalmazott kódnak megfelelő optikailag átlátszó körívek vannak kiképezve (annyi, amennyi a pozíció jellemzésére alkalmazott digitális kód hossza). A vevő oldalon levő félvezető detektorok a kapott jelet négyszögesítik és a kimeneten közvetlenül a pozíció digitális kódját kapjuk. Tápellátás szüneteltetése után azonnal a tényleges abszolút pozíciót tudjuk mérni. Nagyobb felbontás esetén túl sok körívet kellene kialakítani, ami technikai problémákat eredményez. Ez behatárolja a felbontást 8-10 bit bináris ábrázolás esetén. Pl. 10 bit bináris kód esetén a felbontás 360°/210=0.351°. Gyakori még a BCD-kódú abszolút jeladó is. Az inkrementális jeladók esetén nincs a pozíció kódokat tartalmazó tárcsa, hanem helyette van egy forgó tárcsa (kódtárcsa) egyenletes résnyílásokkal (üveglapra maratással felvitt opálos és átlátszó rések), vele szemben pedig egy álló réslemez, amelyen annyi nyílás van kiképezve ahány optikai adó (IRED) van a kódtárcsával szemben. A réslemez mögött helyezkednek el az optoelektronikai detektorok, minden rés mögött egy. A kódtárcsa mozgása közben az érzékelő detektorok közel szinuszosan változó fényt érzékelnek. A fényforrások és fényérzékelők valamint a kódtárcsa és a réslemez megfelelő elrendezése következtében a Moire-effektus hatására egymástól 90°-ban eltolt szinuszos jelek jelennek meg a kimeneten. A szinuszos jelek négyszögesítésével kapjuk az egymáshoz 90°-ban eltolt kimeneti impulzus jeleket. A kimeneti impulzus jeleket még további műveleteknek (aláosztás) lehet alávetni. A fel és lefutó él deriválásával impulzus-kétszerezést vagy négyszerezést illetve egyéb elektronikai megoldásokkal ötszörözést valamint húsz-szorozást is el lehet érni. Természetesen az így kapott többlet impulzusok a két valódi impulzus közötti időben csak akkor mutatják a tényleges elmozdulásnak megfelelően a mozgást, ha a mozgás az adott szakaszon egyenletes volt. Az ilyen jeladókkal jó felbontás érhető el (100-6000 imp/fordulat aláosztás nélkül). A jeladó impulzusvesztésének ellenőrzése érdekében a fenti csatornákon kívül van egy körülfordulást jelző referencia impulzus is, amelyet egy további adó/vevő párossal és optikai réssel állítanak elő. Ismerve két referencia impulzus közötti elméleti impulzus számot a mért érték és az elméleti érték összehasonlításával az un. szervo-hiba meghatározható, a berendezés leállítható még mielőtt a hiba miatt végzetes pozíciótévesztés lépne fel. Az egyes feladatok ellátására alkalmazott adó-vevők száma eltérő. A réslemezen és a kódtárcsán alkalmazott optikai rések fázishelyzete eltérő, ez okozza a szinuszos lefolyású jelet a vevőkön. A szinuszos és koszinuszos jelek előnyösek a forgásirány meghatározására. Mindkét impulzusjelnek van ponált és negált kimenete, amely a külső elektromágneses zavarok hatásának csökkentésére hasznos (a zavar azonos fázisban keletkezik mindkét jelen, ami a két jel kivonása után kiesik). Tipikus inkrementális adó kimeneti jelek: Jellemzők: maximális fordulatszám

• maximális felbontás • megengedett gyorsulás • kimenet típusa (szinusz/koszinusz vagy TTL,

nyitott kollektoros/OC)

4.5.2. Lineáris jeladók

A lineáris jeladók felépítése hasonló, mint a forgó jeladóké azzal a különbséggel, hogy lineárisan mozgó kódlemez van, vele szemben egy lineáris réslemezzel. A két lemez adók és vevők között helyezkedik el. A lineáris mozgás miatt a kódlemezen több referencia rés van kialakítva meghatározott távolságokra. Az elérhető

A A

B B

forgó tengely

Kódtárcsa (üveglap egyenletesen elosztott opálos maratott és átlátszó részekkel

optikai jeladók: elmozdulás és referencia jeladók

elmozdulás és referencia jelek vételére optikai detektorok

réslemez fényútja

Page 37: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 37

hossz nagyon függ az alkalmazott adótól-vevőtől és a kívánt felbontástól. IRED adók esetén az elérhető pontosság 1-2 µm, míg lézeres kialakításnál ennél jobb (0.1-0.01 µm, de függ az alkalmazás körülményeitől is). Jellemzők: maximális elmozdulási sebesség

• maximális felbontás • maximális gyorsulás • kimenet típusa (ugyanaz, mint az enkódereknél).

4.5.3. Háromszögeléses elven működő lézeres távolságmérők

A háromszögeléses elven működő pozícióérzékelők főbb részei: lézerdióda (SLD), pozícióérzékelő szenzor (PSD). A lézerdióda által kibocsátott fényt lencsék fókuszálják. A kibocsátott és fókuszált fény visszaverődik a tárgyról a pozíció érzékelő szenzorra. A szenzor elhelyezkedése és az érzékelt jel alapján a tárgy pozíciója nagy pontossággal meghatározható mikroprocesszoros jelfeldolgozó egység segítségével. A pozíció érzékelő általában 1D foto-PIN dióda. Az 1D PIN-dióda előnye a nagyon gyors működés (10-50 ps) és kis távolságokon nagy elérhető pontosság. Az optikai háromszögeléses elven működő érzékelők működési elve az, hogy egy lézer-forrásból kilépő fényt fokuszálás után a céltárgyra irányítunk közel párhuzamos lézer nyalábot feltételezve. A párhuzamosság érdekében a lézerfényt a mérési tartományon túlra fókuszálják. Az objektum felületét elérő lézersugár egy része visszaverődik, a többi része szóródik. A szóródó nyaláb egy része is visszajut az érzékelőbe, mert egy lencse összegyűjti és az érzékelő felületére fokuszálja azt. A főnyaláb útja is a lencsén keresztül (amelyik az érzékelő felületére van fókuszálva) vezet az érzékelő szenzorra. Az érzékelő lehet PSD (position sensitive device, röviden PSD, pozíció-érzékeny eszköz) vagy fotodióda tömb (PDA) vagy egyre inkább lineáris CCD szenzor. A lineáris CCD szenzorok a tárgy helyzetét pontosabban határozzák meg, mint a PSD eszközök. A PSD-k hajlamosak a tárgy helyzetéhez képest kis eltolódással mérni a fény maximumot, azaz a pozíciót, igaz ez részben korrigálható a jelfeldolgozó elektronikával még magán a szenzoron belül. A tárgypont távolsága határozza meg azt a háromszöget, amin a fény a vevő egység felé vezető utat megteszi. A háromszögeléses elv hátránya, hogy csak egy meghatározott távolságon belül ad megfelelő pontosságot. Ez az ábra alapján attól függ, hogy a PSD milyen tartományban tud visszavert jelet érzékelni. A céltárgy anyagától, felületi minőségétől, a felület kialakításától és a színétől is függ, hogy a közeli és a távoli határ hol helyezkedik el. Két további tényező is meghiúsíthatja a visszavert jel képzését a) amennyiben a tárgy abszorbeáló tulajdonságú az adott hullámhosszúságú fényre, b) különösen tükröző felületek, amelyek túlvezérlik az érzékelőt vagy nem képeznek értékelhető jelet a PSD-n. Ez utóbbi ellen a fej egy kb. 5°-os elforgatásával lehet védekezni (ez elsősorban fémekre jellemző), míg a felület tulajdonságait a felületet befedő festékanyag alkalmazásával kompenzálhatjuk (ez különösen jellemző műanyag céltárgyak esetén).

4.6. LED alapú kijelzők

A világító diódákkal felépített kijelzőknek nagy előnyük: hosszú élettartam aktív fényforrás jellegük, amely sötétben is látható fényt eredményez

Hátrányuk: alacsony hatásfok (bár az új eszközökkel jobb hatásfok érhető el, mint hagyományos izzókkal) még magas áruk (főleg LED display-k, fényforrások esetén), bár ez egyre csökken.

Lézer meghajtó áramkör

Jelfeldolgozó

lencsék

SLD

PSD távoli közeli

határ

moz

gó c

éltá

rgy

Page 38: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 38

A kijelzők alaptípusai: Pontszerű kijelzők Skála/vonal-szerű kijelzők Numerikus vagy alfanumerikus szegmenses kijelzők Pontmátrix kijelzők (beleértve az intelligens kijelzőket is)

Az egyes kijelző fajtákban a LED-ek folytonos vagy impulzusos üzemmódban dolgoznak. A folytonos üzemmód (A, B és részben C alkalmazás) előnye az állandó fényerő, míg impulzusos üzemmódban (részben C, D) a jelentősen nagyobb áramterhelhetőség. A LED-eket impulzusos üzemmódban multiplexált kijelzésre használjuk.

4.6.1. Folytonos üzem

A LED áramvezérelt alkatrész. Folytonos üzemben a LED folyamatosan vagy üzemel, vagy ki van kapcsolva és a váltási frekvencia megegyezik a kijelezni kívánt információ váltási frekvenciájával. A LED-ek közös jellemzője a viszonylag alacsony nyitóirányú áram terhelhetőség (tipikusan 40-50 mA max.) és kicsi záró irányú feszültség (tipikusan 4-5 V max. a hagyományos és 10-20V nagyfényerejű típusoknál ). A láthatóság optikai szögfüggő, tehát a 0°-tól eltérő optikai szög mellet nagyobb áram szükséges a minimális láthatóság beállításához, így a LED szükséges áramát a minimális áram és a megengedhető maximális áram közé kell beállítani. A fényesség-érzet egy adott áramérték felett nem nő arányosan a gerjesztő árammal ezért nem célszerű feleslegesen nagy áramokat beállítani. Fehér és kék LED esetén az áramot különösen stabilizálni kell, hogy a kijelző színhőmérséklete ne változzon meg. A) Pontszerű kijelzők

A pontszerű kijelzők egyedi meghajtást használnak. Pl. TTL TP vagy TS kimenettel (ha az áram nem haladja meg a maximális L szintű áramot) esetleg TTL meghajtó nagyobb áramra, TTL nyitott kollektoros kimenettel (OC), meghajtó diszkrét tranzisztor vagy FET. Az eltérő színű LED-ek meghajtása alkalmanként eltérő áramértékek beállítását tehetik szükségessé, különösen a minimális láthatóság tartományában

RUUUI DCEsatt

D−−

=

A hagyományos LED-vel felépülő pontszerű kijelzőket általában valamilyen jelzésre használjuk, pl. ki- és bekapcsolt állapot (zöld, sárga), veszélyforrás (sárga), ritkábban veszély kialakulása (vörös), stb. A színeket ennek megfelelően választjuk ki. A fényerőt úgy kell beállítani, hogy a láthatóság minden irányból biztosítva legyen. Léteznek egy tokban különböző színt előállító LED-ek is. A magas fényű LED-eket általában nem egyedileg, hanem csoportosan alkalmazzuk fehér színű lámpa, gépjármű világítás, a pirosat jelzőtábla, stb. alkalmazásokban. Meghajtásukra céláramkörök szolgálnak, amelyek biztosítják a külső hőmérsékletnek megfelelő áramkompenzációt, illetve a csoportos működés esetén az azonos gerjesztést. B Skála (vonal)-szerű kijelzők Az elektronikus skálák lehetnek lineárisak vagy logaritmikusak. A kijelzés lehet skálaszerű vagy futó-pontszerű, ami azt jelenti, hogy a kijelzendő értéket rúd formájában (bar-kijelzők) vagy csak a maximális érték kijelzésével valósítják meg. A LED-sorok egyszerűbb megvalósítására kaphatók egy sorba foglalt LED áramkörök is. A gyakori kijelzési feladat miatt az ilyen LED-ek meghajtására külön cél-integrált áramkörök állnak rendelkezésre. A kijelzők fényereje általában szabályozható, így a LED-ek meghajtása vezérelt áram-generátorokon keresztül történik. A LED-ek vezérlése a közvetlen A/D átalakítás elvén alapul. A referencia ellenállásosztó logaritmikus beállításával dB skála is beállítható.

R +Ut

ID

vezérelt áramgenerátor

+Ut ube

UREFmax

UREFmin

fényerő vezérlés

céláramkör

Page 39: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 39

C Szegmens kijelzők A szegmens kijelzők elsősorban numerikus értékek, de –főleg a nagyobb szegmensszámú kijelzők- korlátozottan alfanumerikus (szűkített ASCII-kód) kijelzésére is alkalmasak. A legelterjedtebb megoldás a 7 szegmenses kijelző, de léteznek nagyobb szegmensszámú kijelzők is, pl. 16 szegmensű kijelzők. A szegmenses kijelzőket gyakran kijelző tömbökben állítják elő, mert általában egy nem elég egy adott feladat megoldásához. A vezetékszám csökkentése érdekében az egyes szegmensek valamelyik elektródája közös, így vannak közös anódos és közös katódos kijelzők. Szegmens-kijelzők folytonos vezérlése: A szegmens kijelzők vezérlése folyamatos üzemben úgy történik, mint a pontszerű kijelzőknél, azaz szegmensenként egyedileg vezéreljük. A feladat gyakorisága miatt rendelkezésre állnak céláramkörök, amelyek tartalmazzák általában a BCD/bináris dekódolót is, kiindulva abból a tényből, hogy a leggyakoribb 7-szegmenses kijelzők alapvetően szám-karakterek kijelzésére szolgálnak. Az R ellenállások állítják be a LED-ek áramát. A fenti megoldás a kijelzendő karakterek számával egyre nagyobb mértékben növekvő vezetékigényt jelent, ami miatt egy karakterszám felett nem gazdaságos megoldás, ekkor a multiplexált kijelzést alkalmazzuk. A kijelzők méreteit befolyásolja, hogy a sugárzás a pn-rétegben keletkezik, ezért a pontszerű fényforrás jelét optikailag diszperziós anyagokkal alakítják át vonalszerű vagy egyéb ábra–szerű alakra. A fényerő a szegmensenként sorba kötött diódák számával növelhető, bár figyelembe véve a TTL tápfeszültség szintet is, a két sorba kötött dióda a leggyakoribb.

4.6.2. Multiplex-üzem

A multiplex üzem azt jelenti, hogy –kihasználva a szem tehetetlenségét- a kijelzőt nem egyszerre, hanem részenként, a részeket folyamatosan váltva oly módon vezéreljük, hogy minden részegység azonos ideig kapjon vezérlést egy meghatározott periódusidőn belül. Az alkalmazott multiplexálási frekvenciának elegendőnek kell lenni, hogy a szem a kijelzőt folyamatos működésűnek lássa, vibrálása a megfigyelőt ne fárassza. A LED esetén a multiplex üzemet az teszi lehetővé, hogy a LED-et impulzus üzemben jelentősen túl lehet vezérelni, akár a folyamatos üzemű áram maximumának három-esetenként négyszeresével is. Multiplex üzemben gondoskodni kell róla, hogy a kijelzendő adat és az éppen meghajtott karakter szinkronban legyen egymással. a) Szegmens kijelzők Három-négy karakter felett –az áramkör bonyolultsága ellenére- gazdaságos a szegmens kijelzők multiplex vezérlése. A minimális frekvenciát a villódzás szabja meg. A kiválasztó áramkör -a MUX áramkörön túl- egyéb megoldású is lehet, pl. RAM. A karakterszámban felső korlátot jelent, hogy a fényerő jelentősen csökken a karakterszám növekedésével, mivel az átlag LED-áram (ILED)is arányosan csökken az ábra szerinti módon.

közös anód

kivezetettkatód

a

b

c d e

f g 7-szegmenses

kijelző

16-szegmenses kijelző

a

g

+Ut közös

BCD

7-szegm.

BCD/7-szegmenses konverter és meghajtó

ABCD

R

Page 40: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 40

Egy karakter egy szegmensének árama

nI

nTTII LED

oszc

oszcLEDLED

))

==

n a karakterszegmensek száma 8 karakter esetén egy lehetséges multiplex kijelző megoldás b) Pontmátrix kijelzők A pontmátrix kijelzők jól olvasható szöveg karakterek és egyéb szimbólumok kijelzésére is alkalmasak. A nagyszámú egyedi LED meghajtása miatt csak multiplex-vezérlés jöhet szóba. A pontmátrix kijelzők különböző pontszámot (egyedi LED) tartalmaznak karakterenként (pl. 5x7-s mátrix). A kurzort is tartalmazó kijelzők esetén további sorok is rendelkezésre állnak a kurzor kialakítására. A kijelzők vezérlése a szegmenses kijelzőkhöz hasonlóan történik, de itt a nagyszámú oszlop miatt a kiválasztásnak egy intelligensebb megoldását kell választani, pl. tárolóból, mikrovezérlő alkalmazásával.

4.6.3. Intelligens kijelzők

Az intelligens kijelzők belső felépítése a multiplex-kijelzőkkel egyezik meg, a különbség a külvilággal való kommunikációban van. Az intelligens kijelzők kifelé adat- és címbusszal rendelkeznek, és vezérlő vezetékeken keresztül egyéb funkciók is elérhetők. Vezérlésük nem nagyon különbözik a többi periféria egységtől. Érdekessége, hogy a karaktereknek megfelelő kódot (ált ASCII, vagy annak grafikai elemekkel bővített változatát) tároló belső RAM kétoldali hozzáférésű (dual-port RAM), amelyet az tesz szükségessé,

a

g

+Ut

BCD

7-szegm.

ABCD

R

bináris számláló

oszcillátor

3/8

DEMUXA B C

T0 T7

4x8x1 MUX

Szinkronizált adat kiválasztás

nxToszc Toszc

t

ILED ^

ILED

ILED

Y0 Y1 Y2 Y3 Y4

X0

X1

X6

+Ut

Page 41: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 41

hogy mind a kijelzőt meghajtó vezérlőnek, mint a külső adat- és címbuszoknak hozzá kell tudni férni a tartalomhoz. Általános vázlat a külső interfész elemekről: A parancs/adat vezeték jelzi, hogy az adatbuszon milyen információ van, a kiválasztás vezeték jelzi az

egységnek, hogy az információ ennek az egységnek szól. Lehetőség van speciális parancsok végrehajtására is, pl. léptetés balra-jobbra, képernyő-görgetés fel és le, aláhúzás, kiemelés, stb. A 4 bites adatbusz esetén az adatok és a parancsok beolvasása két lépcsőben történik, ami lassítja a kommunikációt, de csökkenti a szükséges vezetékek számát, amely a gyakran távolabb elhelyezett kijelző miatt fontos.

4.6.4. LED-Display

A LED-ek fényerejének növekedésével lehetővé váltak akár a nagyfelületű, dinamikus ábrákat vagy éppen mozgó képeket vetítő kijelzők megvalósítása. A kijelzők egyedi LED-eket tartalmaznak vagy R-G-B szín kialakítású pixelek formájában, vagy egy tokban integrált RGB-LED-ek formájában. A LED-megjelenítők előnye a nagy elérhető képváltási sebesség, elvileg korlátlan méret és felbontás, javuló hatásfok, egyéb megvilágítást nem igényelnek. Hátránya a jelentős költség, ami azonban a nagyfényerejű LED-ek gyártásköltségének csökkenésével csökken. A LED-megjelenítők ígéretes fajtája az OLED (organikus LED) alapú megjelentő, amelyet tiszta, dinamikus képalkotás jellemez. Bár elérhető ipari termék, fejlesztése még intenzíven tart. Előnyei:

bármilyen szín előállítható rendkívül vékony kijelzők építhetők fel (pl. vékonyabb, mint 1 mm) nagy fényerő alacsony vezérlési feszültség mellett a képernyő tetszőleges irányból megfigyelhető (nincs megfigyelési szög probléma, mint az LCD-nél) hosszú élettartam egész 10000 óráig nagy működési sebesség, jó minőségű videó lejátszás

4.7. Folyadékkristályos kijelzők (LCD)

A folyadékkristályos (LC) tulajdonságokat már több mint száz éve felfedezték (1888-ban Reinitzer osztrák biokémikus felfedezi a folyadékkristályokat. Felismeri, hogy egyes anyagoknak két olvadáspontja van), azonban technikai megvalósításra csak az utóbbi időben került sor. 1963-ban Williams (RCA) felfedezi, hogy a fény másképpen halad át a folyadékkristályon, ha elektromos tér hatásának tesszük ki, 1968-ban Heilmeyer (RCA) elkészül egy LCD prototípussal, 1973-ban a Sharp cég piacra dobja az első LCD-s számológépét. A folyadékkristályok felhasználása az élet minden területén elterjedt és különösen jelentősek az informatikai alkalmazásokban, pl. display, TV képernyő, stb.

4.7.1. Működése, tulajdonságai

A folyadékkristályok fizikai tulajdonságaikat tekintve a szilárd anyagok és a folyadékok között helyezkednek el. Halmazállapotukat tekintve folyadékoknak tekinthetők, de a molekulák rendezettséget mutatnak, bár nem olyan mértékűt, mint a szilárd anyagok. Az optikai és az elektromágneses tulajdonságaik a szilárd anyagokhoz állnak közel, azaz kettőstörők, az optikai fénytörés mutató értéke két dimenzióban eltérést mutat. Úgyszintén eltérő a dielektromos állandójuk a két tengely irányában. Jellemzően a szerves anyagok egy csoportja viselkedik a fenti módon, de csak egy meghatározott hőmérséklet tartományban (metafázis/mezamorf állapot). Az elektronika számára azok az anyagok jelentősek, amelyek a folyadékkristályos állapotukat a -25…+85 C° tartományban veszik fel. Molekuláris szinten a folyadékkristályos anyagokat óriásmolekulák alkotják, amelyek alakja egy tengely irányában megnyúlt (pálca alakú). Az óriásmolekulák jellemezhetők a tengely irányába mutató vektorral, amelyet direktornak nevezünk.

Kijelző a meghajtó elektronikával.

Dual-port RAM

4-8 bit adatbusz

címbusz

írás/olvasás (R/W) parancs/adat

kiválasztás (CS,CE,EN,stb.)

Page 42: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 42

Három alapvető típusuk van a direktorok rendezettsége szerint1: • Szmektikus: a molekulák párhuzamosan helyezkednek el, de egymáson elcsúszva.

Viszonylag nagy rendezettséget mutatnak a direktorok irányultságát tekintve. A gyakorlat számára legfontosabb képviselőjük a ferro-elektromos kristályok (Sc osztály).

• Nematikus: alacsony rendezettségű, többé-kevésbé egy irányba mutató direktorokkal, a molekulák nagy mozgékonyságot és rugalmasságot mutatnak. Az anyag optikailag egytengelyűnek tekinthető. A direktorok hő hatására a főtengely körül véletlenszerű mozgást végeznek. Külső elektromos térrel vagy sík anyagok által keltett felületi hatással a direktorok helyzete könnyen befolyásolható. A dielektromos állandója a tengellyel párhuzamosan és arra merőlegesen eltér és a különbség lehet pozitív vagy negatív (ε=ε||-ε⊥).A leggyakrabban alkalmazott LC- anyag.

• Koleszterikus: a molekula rétegek egymáshoz képest elfordulnak, a

direktorok irányultsága spirál (helikális) alakot vesz fel. Gyakran alkalmazzák őket szennyező anyagként a nematikus LC anyagoknál.

A továbbiakban elsősorban a nematikus anyagok tulajdonságait tárgyaljuk, mivel ezek gyakorlati jelentősége nagyobb. A nagysebességű kijelzőkben alkalmaznak ferroelektromos (FLC) és felülettel stabilizált ferroelektromos (SSFLC) anyagokat. A nematikus anyagokat lemezek közé helyezve (amelyek távolsága rendszerint 1-20 µm) a direktorok a felületi hatás miatt orientálódnak (kezdeti állapotot vesznek fel): Úgyszintén befolyásolja a molekulák elrendezését a felületi érdessége is. Amennyiben az üveglapon túl felületi érdesítő anyagot is alkalmaznak, akkor elérhető, hogy az érdességnek megfelelően álljanak be a molekulák. Pl. egymásra merőleges kialakított érdesített felületek között alakítható ki a leggyakrabban alkalmazott folyadékkristályos struktúra a csavart nematikus (TN), amelynél a szokásos csavarási szög 90°, vagy újabban a nagy kontrasztú monitoroknál a 270° (szuper csavart nematikus struktúra, STN). Egy 90°-os forgatású TN kristály szerkezete, a direktorok irányai különböző metszeti síkokban: A helikális csavarmenet egy menetének hossza: λ. Az ábrán a direktorokat, illetve azoknak a sikfelületre vett vetületét ábrázoltuk 90°-os csavarmenet esetén. Az optikai szórás megjelenítéséhez a beeső természetes fényből egy meghatározott polarizációjú komponenst kell kiszűrni (a fény kör-körösen poláros, így alkalmatlan eredeti formájában a változások megjelenítésére). A polarizálást egy szerves anyagból készülő szűrő a polarizátor valósítja meg. A belépő fény a folyadékkristályon történő áthaladáskor egyrészt a direktorok másrészt a törésmutató által meghatározott mértékben megváltoztatja a polarizációját, azonban egy kis része a fénynek egyéb irányokban is szóródik (a törésmutató a direktorra merőleges irányban sem nulla, a fény kis mértékben abba az irányba is szóródik). A kilépő fény a szórás miatt szélesebb tartományban poláros, ezért a jobb képmegjelenítés miatt ezt a fényt is polarizátor szűrőn kell átengedni (a nem megfelelő irányban szórt fényt ki kell szűrni). A kimeneten alkalmazott szűrőt analizátornak nevezzük. A polarizátorok és az analizátorok vagy párhuzamosan vagy egymásra merőlegesen polarizáltak. Ennek megfelelően alapállapotban az LCD vagy világos vagy sötét.

1 A képek forrása: http://www.wikipedia.org

üveglap

folyadékkristály

λ/4

Page 43: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 43

Az ábrán a 90°-os forgatási szögű TN folyadékkristályon áthaladó fény útját és polarizációjának változását ábrázoltuk, ha a P⊥A. Mivel a fény főnyalábja is 90°-ot fordul polarizációban a folyadékkristályon történő áthaladáskor, ezért ebben az elrendezésben az LC világos lesz (van kilépő fény). Ha P||A lenne, akkor sötét képet kapnánk. A világos vagy sötét alapállapot elérése érdekében a molekulákat orientálni kell, amihez képest vezérléskor a struktúra megváltozik. Gyakori megoldás, hogy az üveglemez felületének megfelelő érdesítésével hozzák létre az alapállapotban csavarodó molekula szerkezetet. Az alapállapotban a fentiek szerint orientált molekulákat, amely a beállítástól függően világos vagy sötét képet eredményez, külső elektromos térbe helyezve, azok elmozdulnak és a kép kontrasztja ellentettjére változik. A nagy pixelszámú nagy felbontású monitorok esetén a TN-módban működő kijelzők nem adnak elég éles képet, mivel a nem tökéletes fényforgatás miatt a szomszéd pixeleket megvalósító molekulákat is gerjesztik. Ennek ellensúlyozására alkalmazzák az STN-módot, amikor a forgatás 270°. Ez egy lényegesen élesebb képet eredményez, de sok hátránya is van, aminek kivédése jelentős árfelhajtó tényező: lasúbb működés, rosszabb szürke-skála, nagy fényveszteség a folyadékkristályon, sárga és kék fény kisugárzás, ami szinrontó hatású, bár ezt többrétegű kiegészítő rétegekkel meg lehet akadályozni. A kijelzők lehetnek transzparens jellegűek (a fenti magyarázó ábra szerint), azaz a megvilágítás és a fénykilépés ellenkező oldalon történik, vagy reflexiós jellegűek, amikor mind a megvilágítás mind a fénykilépés azonos oldalon van. Ez utóbbi esetén használják a 45°-os forgatású folyadékkristályt, mivel a visszavert fény szintén 45°-ot fordul, így eredőben 90° polarizációs fázis forgatás. A reflexiós kijelzők elvi szerkezete: A megvilágítás lehet maga a természetes fény (pl. karóra), vagy mesterséges (pl. műszerek, autoelektronikai termékek, stb.), ahol elsősorban fehér LED-et vagy hidegkatódos csöves megoldást használunk. Mivel az LCD maga fényt nem emittál ezért sötétben mesterséges megvilágítás nélkül nem látható a kijelző. A folyadékkristályos kijelzőket váltakozó feszültséggel vezérlik (egyenfeszültség esetén galvanizációs hatás lép fel). A feszültség alakja nem befolyásolja az LCD működését csak az amplitúdó és a frekvencia. Jellemző karakterisztikák: a) Transzfer karakterisztika (Kontraszt-feszültség karakterisztika) Az LCD-knél a fényerő nem értelmezhető csak a fekete és a fehér viszonyított aránya (kontraszt). Jellemző érték az 50% kontraszt eléréséhez szükséges váltakozó feszültség effektív értéke. Az ábrából látható, hogy egy adott feszültség felett már nem javul a kép minősége. Problémát okoz, hogy a kép világos-sötét átmenete nem egy határozott érték, hanem fokozatosan megy át az ábra szerint a kép világosból sötétbe és vissza. Ez különösen a multiplex vezérléseknél okoz gondot.

megvilágítás

kilépő fény

félig áteresztő A P üveg folyadékkristály

Reflexiós háttérlemez

belépő fény üveglemez üveglemez kilépő kör-körösen poláros fénypoláros

polarizátor (P) folyadékkristály analizátor (A)

A fény terjedési útja

kontraszt

100

50

Uv U50

Page 44: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 44

b) Működési tartomány (U-f) Az fmin frekvenciát a szem felbontóképessége határozza meg 30-50 Hz. Az fmax frekvenciát a molekula dinamizmusa szabja meg, azaz ez az a legnagyobb frekvencia, amit a molekula elmozdulásával még követni tud. Az Umax a maximális feszültség, ami nem okoz helyrehozhatatlan folyamatokat a folyadékkristályban (nagyon nagy térerő a kis távolság és a nagy feszültség miatt). Az Umin feszültséget a minimális kontraszthoz szükséges feszültség szabja meg.

A keletkező szórt kapacitások áttöltéséhez szükséges veszteségi teljesítmény és az általa okozott melegedés korlátozza a biztonságos működési terület nagyságát. c) A folyadékkristály dinamikus tulajdonságai: A különbözőképpen kialakított folyadékkristályos kijelzők és az alkalmazott vezérlési eljárások eltérő jelterjedési időt eredményeznek. A bekapcsolási állapot eléréséhez szükséges idő (ton) lényegesen kisebb, mint az alapállapotba visszatéréshez szükséges idő (toff). A szükséges vezérlési feszültség is jelentősen eltér az elvek különbözősége szerint. A különbözőképpen kialakított folyadékkristályos kijelzők és az alkalmazott vezérlési eljárások eltérő jelterjedési időt eredményeznek. A bekapcsolási állapot eléréséhez szükséges idő (ton) lényegesen kisebb, mint az alapállapotba visszatéréshez szükséges idő (toff). A szükséges vezérlési feszültség is jelentősen eltér az elvek különbözősége szerint. Néhány – a gyakorlatban alkalmazott anyag és vezérlési elv tranziens viselkedése ( ):

elv ton toff U50 Dinamikus szórás ~10-20 ms ~100-500 ms 20 V Csavart nematikus ~1 ms ~200 ms 5 V Koleszterikus-nematikus fázisváltásos ~30 µs ~100 ms 100 V Ferroelektromos (SmC) ~10 µs ~10 µs nincs adat

A ferro-elektromos elven működők a leggyorsabbak (szmektikus C osztály), azonban ez még új technikának számít, gyakorlati alkalmazása most van fejlesztés alatt (FLC kijelzők). Az FLC kijelzők tovább gyorsíthatók, ha a csavarmenetet előfeszítjük kontrollált nyomással (SurfaceSupressFerroelectricLC kijelzők, SSFC) A dinamikus szórás a legrégebbi elvek közé tartozik, a gyakorlat számára már túl lassú. d) A folyadékkristály villamos helyettesítő-képe:

Az LCD gyakorlatilag feszültséggel vezérelt eszköznek tekinthető, mivel a folyadékkristály, mint dielektrikum ellenállása rendkívül nagy R= 2…6x1010 Ω. A fegyverzetek közötti kapacitás C~100 pF. A nagy τ miatt érthető a nagy jelterjedési idő.

4.7.2. Vezérlési megfontolások

Az LCD-k vezérlése alapvetően eltér a LED alapú kijelzőknél alkalmazottól. A legfontosabb eltérések: • Az LCD feszültségvezérelt eszköz, így az áram megszakításával ki- és bekapcsolni nem lehet. • Az alkalmazott vezérlőjelnek váltakozó feszültségű jelnek kell lennie, amely még csekély

egyenfeszültségű komponenst sem tartalmazhat (ez nehézséget okozhat digitális vezérlés esetén). • A szomszédos szegmensek között a nagy elektromos tér miatt áthallás jöhet létre, ezért az LCD

szegmenseket mindkét állapotukban aktívan kell vezérelni. Ez különösen a multiplex-kijelzéseknél nagyon kritikus.

Kontraszt [%]

100

t

R

C

Uv

fmin f [Hz]

fmax

Umax

Umin

veszteségi teljesítmény miatt

biztonságos működési terület

Page 45: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 45

A vezérlés során az addig kialakított molekula elrendezést úgy bontjuk meg, hogy az eddig világos felület sötétre vált és vissza. Alapvető vezérlési módok gyakorlati megvalósításai:

A. Amplitúdó vezérlés B. Fázis vezérlés C. Amplitúdó - fázis vezérlés D. Frekvencia vezérlés

Fázisvezérlés Egyedi, kis karakterszámú kijelzők vezérlésére alkalmas módszer. Gyakran nevezik statikus vezérlésnek is.

A fázisvezérlésnél mind a szegmens, mind a közös elektródát digitális jellel vezéreljük. A két elektróda között kialakuló feszültség vezérli a folyadékkristályt. Bár a vezérlő jelek

digitális jelek, a különbségi jel nulla lineáris középértékű váltakozó jel lesz. A szegmens bekapcsolásakor a szegmens elektróda feszültségét egy ∆ϕ-fázisszöggel az eredeti állapotához képest eltoljuk (leggyakrabban ∆ϕ=180°, mivel ez digitálisan könnyen előállítható), így a különbségi feszültség alakul ki, amelynek akkorának kell lennie, hogy az meghaladja az U50 feszültséget. Egy gyakorlati kialakítás ∆ϕ=180° esetére kizáró-VAGY kapuk felhasználásával:

A fenti elven megvalósított vezérlésekre céláramkörök állnak rendelkezésre a CMOS áramkörcsaládban.

Amplitúdó-fázisvezérlés Az ábra a 2:1 amplitúdó arányú vezérlést mutatja, bár ettől eltérő arányú megoldások is vannak. A kikapcsolt állapotban a szegmensre jutó feszültség nem nulla, így a be- és kikapcsolt állapot közötti feszültségarány a közös elektródára jutó feszültség periódusidejével arányos. A kis feszültségkülönbség azt eredményezi, hogy a kontraszt romlik, az elvileg nem vezérelt szegmensek is elfordulnak valamennyit, így 0°-tól eltérő optikai szögben történő megfigyelés esetén a be nem kapcsolt szegmensek is úgy

1

1

ab

c

d

e

f g

közös

Uk

Uv(g)

Uv(a)

Use(g)

Use(a)

közös elektróda

Szeg

men

s el

ektró

dák

üveglapok

∆Usz=Uk-Use

Use

Uk

Uv

bekapcsolt állapot

fázisváltás

bekapcsolás

t

t t

t

2U

U

Vezérlő jel

Közös elektródafeszültsége

Szegmens elektródafeszültsége

Egy szegmensfeszültsége

∆Usz=Uk-Useszegmensre jutó

feszültség

Ukközös elektróda

feszültsége

Uv vezérlőfeszültség

bekapcsolt állapot

fázisváltás

bekapcsolás

t

t

t

t

Useszegmens elektróda

feszültsége

Page 46: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 46

látszanak, mintha be lennének kapcsolva. Nagyobb amplitúdó-arány javít a képélességen. Az ábrán látható, hogy a bonyolult vezérlés ellenére a lineáris középérték nulla. Az amplitúdó-fázis vezérlést (dinamikus vezérlés) elsősorban a multiplex kijelzőkben alkalmazzák. A multiplex vezérlés kialakítása eltér folyadékkristályok esetén. A korábban felsorolt különleges követelmények miatt a LED-nél alkalmazott eljárás itt nem alkalmazható. Az LCD-knél alkalmazott multiplex eljárás a topológiai multiplex. A kikapcsolt állapotban is aktív vezérlés miatt itt nem elegendő egyetlen közös elektróda, hanem minden szegmenst egyedileg kell vezérelni, megtartva mégis a multiplexelés nyújtotta előnyöket. Topológiai multiplex vezérlés elve a) 7 szegmenses kijelzők esetén A kijelző hossza (n, karakterszám) és a feszültségarányok (A), valamint a kontrasztosság (S) között összefüggés van:

ki

be

UU

S =

Az optimális arány:

nS = .

A fenti összefüggések megszabják az egy X vezérlőjelhez tartozó gazdaságosan vezérelhető karakterek hosszát. b) Pontmátrix kijelzők: A nem display méretű és jellegű pontmátrix kijelzőket a topológiai multiplex elvén vezéreljük figyelembe véve, hogy a karakter pontmátrixos kiképzésnek megfelelően több sor van (amit tovább növelhet a kurzor kialakítására felhasznált sorok száma), mint a karakter kijelzőknél. Az amplitúdó-fázis vezérlést a szakirodalom -amennyiben azt display-k vezérlésére alkalmazzák- passzívmátrixos vezérlésnek nevezi. Újabban a ferro-elektromos folyadékkristályok (SmC) jelentenek egy alternatívát az igen gyakori nagy felbontású pontmátrix kijelzők kialakítására. A pontmátrixos kijelzők és a folyadékkristályos monitorok (LCD) sok szempontból hasonló módon kezelhetők, ezért további ismeretek az LCD fejezetnél találhatók.

4.7.3. Intelligens kijelzők

Az LCD alapú intelligens kijelzők felépítése nagymértékben hasonló, mint a LED alapú intelligens kijelzőké. A különbség elsősorban a nagy felbontású grafikus képességekben és az azt támogató parancs készletben van, amely nem igényel különleges hardver kialakítást.

4.7.4. Folyadékkristályos monitorok (LCD)

A lapos méret és az alacsony energiafelhasználás miatt az LCD-k elterjedése minden területen rohamosan nő. Különösen jelentős szerepet játszanak a számítástechnikában és az ipari vezérlések területén. Alaptulajdonságaik jelentősen különbözhetnek egymástól (méret, felbontás, színes vagy monochrom, színmélység és kontraszt, felhasználási területek), amely a vezérlés bonyolultságában, a felépítésben és természetesen az árban is tükröződik. A legegyszerűbbek a kis méretű monochrom LCD-k, amelyek általában TN kialakításúak. A közös és szegmens elektródák kialakítására egy fényáteresztő, de villamosan jól vezető anyagot használnak (Indium-ón oxid, ITO). Ez a fénynek kb. 70-80%-t átengedi. A folyadékkristályos réteg tipikus vastagsága 10 µm. Az összetettebb kijelzők meghajtására a passzív mátrixos megoldás helyett a különböző aktív mátrixos (AMLCD) megoldások terjedtek el. A passzív megoldás esetén minden rácspontot X-Y koordinátával úgy jelölünk ki, hogy az X és Y kijelölő vezetékek egyben a vezérlő jeleket is szolgáltatják. Ez azzal a következménnyel jár, hogy nagy az áthallás veszélye a pixelek között és korlátozza a nagy meredekségű pixel-váltások lehetőségét is (lásd topológiai multiplex). Aktív mátrixos esetben a kijelölő vezetékek egy segéd

Közös elektróda

Szegmens elektróda

X1 X2 X3

Y1 Y2 Y3 Y4 Y5 Y6

1. karakter 2.karakter

további karakterek

Page 47: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 47

elektronikus kapcsolót (leggyakrabban tranzisztor, de egyéb kapcsoló is szóba jöhet, pl. a MIM nemlineáris elem) vezérelnek és az gerjeszti a mátrix pontban levő folyadékkristály molekulákat. A legelterjedtebb megoldás a vékonyréteg tranzisztoros (Thin-Film Transistor) aktívmátrix kijelző. A sor oszlop aktiválása után a két MOSFET bekapcsol és az analóg vezetéken levő feszültséget a szegmens elektródára vezeti. A közös elektróda be van kapcsolva, így gerjesztés esetén a megfelelő képet kapjuk. A fény attól függően, hogy milyen mértékben áteresztő a folyadékkristály (az analóg jeltől függ) átengedi a megfelelő pixel fényét és a színszűrő, amelynek elrendezése hasonló a színes TV képcsöveknél megszokotthoz az RGB színkódnak megfelelően gerjesztett állapotba kerül az adott rácspont helyen. Az alapszínek keverésével, az egyébként nem színes folyadékkristály színes képcső vagy TV képcső funkciót tud ellátni (igen nagy szín-mélységben). A vezetékezés itt is elektromosan vezető, de fényre áttetsző anyaggal (ITO) történik. A folyadékkristály rendszerint 270°-os csavarmenetű STN kristály. Egy színes TFT LCD elvi szerkezete A kijelző működtetéséhez nagyszámú tranzisztor kell, pl. 1024x768-as kijelző esetén min. 1024x768x3. A TFT kialakítása történhet egy integrált áramköri lapkán is, ahol az egyik elektródát maga a lapka képviseli és a folyadékkristály (amelynek vastagsága mindössze 6 µm) fölötte helyezkedik el. Az ilyen kijelzőket integrált áramkör-hátlapos kijelzőknek (SLM) nevezzük. A színes LCD-vel külső tükrök és erősebb fényforrások felhasználásával nagy kivetítőket lehet előállítani. Ugyanez az alapja az LCD-projektoroknak is. Új, javított nagysebességű kijelzők a még nem elterjedt FLC és SSFLC kijelzők. Egy szegmens elvi kapcsolása:

4.8. Egyéb kijelzők és megjelenítők

4.8.1. Plazma kijelzők, megjelenítők (PDP)

A plazma kijelzők a gázkisüléses csövek elvén működnek, azaz a gerjesztett gáz alapállapotba visszatérve fényt bocsát ki. Ellentétben a katódsugárcsöves megoldásokkal a PDP hidegkatódos gerjesztésű és nincs elvi korlátja az elérhető méretnek, ráadásul a mélységi mérete nagyon kicsi, mivel fókuszálásra nincs szükség, így nagyon lapos képernyők alakíthatók ki. Összehasonlítva az LCD megjelenítőkkel, amelyek szintén nagyon lapos méretben állíthatók elő, a legszembetűnőbb, hogy a PDP aktív fénykibocsátású (az LCD-k esetén beépített fényforrás gondoskodik a szükséges megvilágításról). A PDP-k legnagyobb hátránya a digitális rendszerekhez kevéssé illeszkedő magas (150-200 V) gyújtófeszültség, az elérhető pixelek közötti távolság

üveglap hordozó a TFT elemekkel

(szegmens elektróda vezérlés)

megvilágítás

polarizátor

folyadékkristály

Üveglap a színszűrő felülettel (RGB) és a közös elektródával

analizátor

kilépő fény

Aktív mátrixkapcsolóelem

analóg adat

aktív sorkijelölő

aktív oszlopkijelölő

közös elektróda

folyadékkristály Szegmenselektróda

Page 48: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 48

(pitch, 0.2-0.5 mm), amely rosszabb, mint egyéb kijelzőknél, valamint a kontraszt arány, amely lényegesen alatta marad a többi kijelzőknek. A PDP-k lehetnek egyen- vagy váltakozó áram vezérlésűek.

a) Az egyenáramú vezérlés esetén a keletkezett ív áramnövekedést okoz, amelynek oltásáról gondoskodni kell. Gyakran alkalmaznak előfeszítést egyenáramú vezérlés esetén, amikor kikapcsolt pixel esetén is a láthatóság határáig vezéreljük a kijelzőt, amely így alacsonyabb reakció időt igényel.

b) Váltakozó áramú vezérlés esetén az elektródák

elszigetelhetők a gáztértől és lehetőség van csak azoknak a pixeleknek a vezérlését megvalósítani, amelyek állapota megváltozik. Ez nagymértékben növeli az eszköz sebességét, csökkenti a villódzást és a képváltási frekvenciát.

Az X és Y vezérlő elektródák térben egymástól elválasztva alkotnak egy mátrix elrendezést. A közöttük fellépő nagy feszültség ionizálja a teret és gerjeszti az elektronokat, azaz gázkisülést hoz létre. Színes kijelzők esetén az RGB szubpixeleket külön-külön kell megcímezni. A kijelző alapállapotban nagyobb részt az UV tartományban sugároz (az alkalmazott gáz xenon és neon), így transzformáló anyagokat kell alkalmazni, amelyek ezt a fény-spektrumot a látható fény tartományba transzformálják. Erre több megoldás is van, pl. a legelterjedtebb a katódsugárcsöves megoldásoknál is alkalmazott fényporok (foszfor) használata, de újabban megjelentek ilyen transzformálásra képes műanyagok is. A színes kijelző keresztmetszete egy pixelnél: A PDP előnyei a lapos, nagyméretű, alacsony fogyasztású megjelenítőknél használhatók ki, ahol a közeli olvasás nem követelmény a nagy pixel távolság miatt.

szigetelő réteg (MgO)

üveglap

hátlap

vörös (R) zöld (G) kék (B)

adat elektróda

átlátszó elektróda

gáz-tér

+Ux

-UY(R)

gerjesztett pixel

0 V0 V0 V0 V0 V

0 V0 V0 V

-UY(G) -UY(B)

Page 49: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 49

5.0. TÁPEGYSÉGEK Az elektronikus rendszerek egyik fontos és kritikus eleme a tápegység. A tápegység jósága, hatásfoka és megbízhatósága alapvetően befolyásolja az egész rendszer tulajdonságait. Különösen kiemelendő a megbízhatóság fontossága, mivel a tápegységek könnyen lehetnek láncolt meghibásodások forrásai, így az okozott kár messze túlmutat a tápegységbe épített biztonsági elemek költségnövelő hatásán. A tápegységek párhuzamosan fejlődnek az általuk kiszolgált elektronikával. Több olyan követelmény is befolyásolta a fejlődésüket az utóbbi időben, amelyek korábban nem voltak a tápegységek sajátosságai, pl. a digitális rendszerek egyre alacsonyabb tápfeszültség igénye párosulva az energiatakarékosság követelményével is újabb és még fejlettebb módszereket igényelnek a kapcsolóüzemű tápegységek területén vagy az intelligens eszközök terjedésével együtt a tápegységtől is egyre inkább elvárják a beépített önálló állapot-felügyeletet, menedzsmentet és a szabványos kommunikáció, távfelügyelet lehetőségét. Az információtechnika és a nagy rendelkezésre-állású ipari rendszerek a szünetmentes energiaellátás technikáját befolyásolták. Tápegységek készülnek kis, közepes és nagy teljesítményre, ennek megfelelően a gyakran ugyanazon elven működő tápegységek különböző elnevezéssel is szerepelhetnek. A fejezet elsősorban az elektronika tápegységeit tárgyalja, kiegészítve néhány ipari gyakorlatban is használt kis-közepes teljesítmény kategóriában alkalmazott eszközzel. Tágabb értelemben tápegység alatt érthetjük a nem egyenfeszültséget/egyenáramot (DC) előállító tápegységeket is, azonban az elektronikában a DC kimenetű tápegységeknek van elsősorban jelentőségük. A szünetmenetes energiaellátásnál azonban elvárt elsősorban a szinuszos, de alkalmanként egyéb hullámalak kimenetű váltakozó áramú (AC) tápforrások is. A tápegységek különböző, esetenként többlépcsős, átalakítási elveket valósítanak meg. A leggyakoribb átalakítási hatásvázlatok a jelek formája szerint:

• Az AC⇒DC eset a stabilizálatlan vagy esetleg stabilizált (szabályozott tirisztoros, stb.) egyenirányításnak felel meg.

• Az AC⇒DC⇒DC eset tartalmaz egy stabilizálatlan kimenetű átalakítást (egyenirányítás) és egy lineáris analóg stabilizálást vagy kapcsolóüzemű DC-DC átalakítást (konverziót).

• Az AC⇒DC⇒AC⇒DC esetben egy közbenső átalakítás történik. Az egyenirányítás után a jelet gyakran nem hálózati frekvenciájú váltakozójellé alakítjuk, majd ebből újra előállítunk egyenfeszültséget. A primer oldali hálózati egyenirányítót is tartalmazó tápegység hasonló elven működnek, de ilyen hatásvázlattal rendelkeznek a közbenső energiatárolású rendszerek is, ahol az egyenirányítás, esetleg az inverter kimeneti energiáját akkumulátorokban tároljuk és ebből tápláljuk a további átalakításokat.

• Az AC⇒DC⇒AC esetben a kimenet váltakozó feszültség/áram. Gyakori megoldás nem egyenfeszültség kimenetű szünetmenetes energiaellátó áramköröknél. A közbenső energiatárolás akkumulátorral történik. (Nagyon kis teljesítmények esetén lehetséges kondenzátoros tárolás is.)

A tápegységeket sok szempont szerint csoportosíthatjuk. Különösen megnehezíti az egyértelmű csoportosítást, ha figyelembe vesszük a teljesítményelektronika ide sorolható -közel hasonló feladatokat ellátó- áramköreit, amelyeket ipari elektronika esetén nem lehet figyelmen kívül hagyni. A fejezet azonban elsősorban az elektronika tápegységeit tárgyalja, a teljesítményelektronikai megoldások egy másik tárgy tárgykörébe tartoznak. A tápegységek nagyobb részt feszültség kimenetűek, de ritkábban alkalmaznak áram stabilizált kimenetű tápegységeket is, pl. villamos hajtások, galvanizálók tápegységei, nyomatékszabályozott rendszerek, stb. esetén. A fenti felsorolás mutatja, hogy az áramkimenetű tápegységek elsősorban a teljesítményelektronikai alkalmazásokban elterjedtek, így a fejezet –az elektronikai alkalmazások miatt- a feszültség kimenetű tápegységekkel foglalkozik.

Page 50: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 50

A tápegységeket különböző szempontok szerint csoportosíthatjuk. Egy lehetséges csoportosítás a kimeneti jellemző stabilitása szerint (a kövéren szedett típusokkal részletesebben foglalkozunk): Stabilizálatlan kimeneti feszültségű

• Fix kimeneti feszültségű • Diódás egyenirányítók • Diódás feszültségsokszorozók • Szabályozatlan öngerjesztésű kapcsolóüzemű tápegységek, stb. • Változtatható kimeneti feszültségű • Tirisztoros hálózati kommutációjú • Szabályozatlan közbenső átalakításos, stb.

Stabilizált kimenetű tápegységek Visszacsatolás nélkül

• Zener-diódás tápegység • LED, IRED diódás tápegység, stb.

Visszacsatolással stabilizált tápegységek • Analóg lineáris disszipatív • Szekunder oldali kapcsolóüzemű • Szabályozott primer oldali kapcsolóüzemű • Szabályozott tirisztoros hálózati kommutációjú • Kombinált analóg és kapcsolóüzemű tápegység, stb.

Az egyes tápegység típusok elnevezése is eltérő lehet a szakirodalomban a felhasználási terület szerint, pl. szekunder oldali kapcsolóüzemű tápegység, vagy DC-DC konverter, stb.

5.1. Stabilizálatlan AC-DC tápegységek

A stabilizálatlan AC-DC tápegységek legfontosabb fajtái a diódás egyenirányítós transzformátor leválasztású egy és háromfázisú tápegységek. Az elektronika igényelte teljesítmény-kategóriában az egyfázisú kapcsolások terjedtek el. A kimeneti jel hullámosságának csökkentésére simító/szűrő elemeket alkalmazunk, amelyek fajtája a kimeneti áramtól függ. Az elektronika teljesítmény-kategóriájában az induktív fojtós simítás nem hatásos, csak kiegészítésként alkalmazzák zavarszűrésre. Általában a kondenzátoros szűrés terjedt el. A fentiek alapján az alfejezet az egyfázisú, diódás egyenirányítású, kondenzátoros szűrésű tápegységekkel foglalkozik. Az életvédelmi megfontolásokat is figyelembe véve közvetlen hálózati egyenirányítást ritkán alkalmaznak, a leggyakoribb, hogy transzformátoros leválasztást (biztonsági transzformátor felhasználásával) iktatunk közbe. Ez nemcsak előállítja a szükséges feszültség szintet, de egyben biztonsági transzformátor alkalmazása esetén életvédelmi leválasztást is nyújt a villamos hálózatról. A fejezet foglalkozik a passzív biztonsági elemek néhány kérdésével, így az olvadóbiztosítós túláram-védelemmel és a túlfeszültség-levezetős aktív és passzív védelemmel is. Korábban gyakran ehhez a témakörhöz sorolták a feszültségsokszorozókat is, azonban ezek jelentősége rendkívül lecsökkent, mivel könnyebben és stabilabban előállíthatók ugyanazok a feszültségek egyéb megoldásokkal (pl. primer oldali kapcsolóüzemű tápegységekkel).

5.1.1. Egyfázisú egyenirányító kapcsolások

Az egyfázisú egyenirányítók blokkvázlata: Az egyenirányító kapcsolások fajtái:

1F1U1Ü 1F2U2Ü 1F1U2Ü

Uf

+ Uki -

AC-AC átalakítás egyenirányító szűrő

Page 51: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 51

A jelölések a fázisszámra (F), a transzformátor egy szekunder tekercsén folyó áram irányaira (egy vagy kétirányú, U) és a bemeneti jel egy periódusára eső kimeneti jel maximum pontjainak számára (Ü) utal (ez egyben megadja, hogy a bemeneti jel frekvenciáját mennyivel kell szorozni, hogy megkapjuk a kimeneti jelben előforduló domináns váltakozójel –a búgófeszültség- frekvenciáját). Az 1F1U1Ü kapcsolásnak tápegységek esetén nincs gyakorlati jelentősége, mivel az előállított egyenfeszültség hullámossága túl nagy, ami elektronikai alkalmazásokban általában nem megengedett. Ilyen kapcsolásokat csak a kapcsolóüzemű nagyfrekvenciás tápegységekben alkalmazunk.

5.1.1.1. 1F2U2Ü kapcsolás (Greatz)

A kapcsolás a jellemző feszültség és áramirányokkal: Működés: Amennyiben a szekunder feszültség pillanatértéke (bármely irányban) nagyobb, mint a kondenzátor feszültség+ két dióda nyitóirányú feszültsége, akkor a diódákon áram folyik a kimenet és a kondenzátor felé. Az ábrán bejelölésre került a két félperiódusban folyó áram útja (pontvonal és szaggatott vonal). Figyeljük meg, hogy a transzformátor szekunder oldalán az áram egy periódus alatt két különböző irányban folyik (2U). Az áramvezetésben dióda párok vesznek részt. A szekunder feszültség ábra szerinti pozitív félperiódusában a D1-D4 diódapáros vezet(het), a másik félperiódusban a D2-D3 diódapáros. A diódák akkor vezetnek, amikor fennáll, hogy az us(t)>uc(t)+2UD, ahol UD a dióda nyitásához szükséges feszültség, uc a kondenzátor, us a transzformátor szekunder tekercs pillanatnyi feszültsége. Ez az állapot a hálózati feszültség csúcsfeszültségének közelében áll fenn, időtartamát pedig több tényező együttesen szabja meg, pl. kondenzátor nagysága, terhelőáram nagysága, szekunder feszültség, stb. Nagyobb terhelőáramok esetén nem lehet elhanyagolni a transzformátor ohmos ellenállását és egyéb az áram útjában mérhető ellenállást sem, ami hatással lesz a kimeneti jelalakra is. Jellemző jelalakok: Az uki1 görbe arra az esetre vonatkozik, ha nem vesszük figyelembe a transzformátor ohmos ellenállásának és a terhelésnek a hatását a kimeneti feszültségre, míg az uki2 a fentiek figyelembevétele esetén kapott (a valóságnak megfelelő) kimeneti jel. A vezetési időket úgy tudjuk meghatározni, ha figyelembe vesszük, hogy állandósult állapotban a kondenzátor töltő és kisütő áramának egyensúlyban kell lennie, mert egyébként változna a kimeneti feszültség. A kondenzátor értékének növekedésével csökken a dióda vezetési ideje, ami az áramcsúcs növekedésével jár (a terhelés szabja meg az áramot, így rövidebb idő alatt kell bevinni ugyanakkora töltést), amely tovább torzítja a kimeneti feszültséget. Általában valamilyen korrekcióval vesszük figyelembe a fenti hatásokat. A t1-t3 időközben vezet valamelyik dióda páros, ekkor:

ckiD iii += ,

ezen belül is t2 ideig a dióda táplálja a kondenzátort is és a terhelést is, t2-t3 időtartományban a terhelést a dióda és a kondenzátor együttesen táplálja. A t3-t4 időközben nem vezet egyik dióda sem, ekkor a kondenzátor szolgáltatja az energiát a terhelésnek:

Ciiki −=

Upr

+ Uki -

Us

D1 D2

D3

D4 C

iC

Iki

uki1uki2

2Ûsz t1 t3

D1-D4 vezet D2-D3 vezet D1-D4 vezet

t4 t2

Uki

usz

+

-

iC

iD

ÎD

-

+ ID=Iki/2

kond

enzá

tor á

ram

di

óda

ára m

Page 52: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 52

A kimeneti feszültség nem változik, ha fennáll, hogy:

∫∫ =4

2

2

1

t

tC

t

tC dtidti

Egy félvezető diódára jutó záróirányú feszültség (UDRmax) az ábra alapján, ha elhanyagoljuk a szekunder feszültség változását (Uso az üresjárási szekunder feszültség effektív értéke):

soso

DR UUU 2222

max ==

Helyettesítsük a terhelést egy ohmos ellenállással, amelynek értéke:

ki

kit I

UR =

Helyettesítsük a transzformátor paraméterekre gyakorolt hatását a szekunder oldalra redukált ohmos ellenállással:

prsztr RaRR 2+= ,

ahol a a transzformátor áttétel Rsz szekunder tekercs ellenállása Rpr primer tekercs ellenállása

Ismétlődő (periodikus) csúcsáram:

trt

kioD RR

UI =ˆ , ahol Ukio a terheletlen kimenet feszültsége

A periodikus csúcsáram a kapcsolás üzemszerű működése során minden periódusban fellép. Bekapcsolási (aperiodikus) csúcsáram (energiamentes kondenzátor mellett):

tr

szD R

UIˆ

max =

Az aperiodikus csúcsáram tranziens jelenség és előfordulásához több tényező együttes fennállása kell. Biztonsági okokból azonban úgy vesszük figyelembe, mintha minden bekapcsoláskor fellépne. Az összefüggésből látható, hogy a bekapcsoláskor esetleg fellépő maximális áramot csak a transzformátor primer és szekunder ohmos ellenállása korlátozza, ezért ez egy jelentős áram lehet. Tovább ront a helyzeten, ha nagyobb kondenzátort alkalmazunk szűrésre, mert ekkor hosszabb ideig is fennáll az aperiodikus csúcsáram, amely megszólaltathatja a túláram védelmet. Ennek elkerülésére előfordul, hogy külső kis értékű ellenállást iktatunk be a kondenzátor és az egyenirányító közé, bár ez növeli a veszteséget, de korlátozza az áramot. A kimeneti egyenfeszültség tartalmaz váltakozófeszültségű komponenseket is. A búgófeszültség (egyes szakirodalmakban brumm feszültség) periodikus, de nem szinuszosan periodikus váltakozó feszültség. Búgófeszültség csúcsértéke ( ):

⎟⎟⎠

⎞⎜⎜⎝

⎛−= 4

21

t

tr

B

kiB R

RCfIU

,

A domináns a búgófeszültség alapharmonikusa (fB), amelynek frekvenciája az ütemszámtól (Ü) és a hálózati frekvenciától függ:

hálózatiB Üff = A kondenzátor kapacitásának növelésével a búgófeszültség csökkenthető (a feszültség hullámalakja simítható), azonban ez a diódák vezetési idejének lecsökkenéséhez és a periodikus csúcsáram növekedéséhez vezetne, amelynek hátrányait korábban tárgyaltuk. A kondenzátort a fentiek miatt egy megadott hullámosságra méretezik (tipikus és a gyakorlatban bevált méretezési érték, hogy a búgófeszültség csúcsértéke 5%-a a névleges kimeneti feszültségnek).

Page 53: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 53

5.1.1.2. 1F1U2Ü kapcsolás (középpont-kapcsolás)

A transzformátor szekunder tekercse két egyforma tekercsből áll, amelyek egymással ellentétes fázishelyzetű feszültséget hoznak létre. (Az ábrán látható fekete pontok a tekercselés kezdeti pontjait jelölik, az ellentétes tekercselési irányok miatt alakul ki a 180°-os fázisforgatás.) A vezetésben mindig egy dióda vesz részt, de a kialakuló jellemző feszültségek és áramok megegyeznek az 1F2U2Ü kapcsolásoknál tárgyaltakkal. A különbség van azonban az egy diódára jutó záróirányú feszültségben, amely kétszer akkora, mint az előző kapcsolásnál volt.

soDR UU 22max = Az alapvető eltérés a transzformátor terhelésében van, mivel ebben az esetben egy szekunder tekercset csak fél periódus ideig terhelünk árammal.Bár a kapcsolás kevesebb félvezetőt igényel, a transzformátor kialakítása gyártásigényesebb.

Kisteljesítményű egyenirányító kapcsolások paraméterei ( )

Kapcsolás 1F1U1Ü 1F1U2Ü 1F2U2Ü Transzformátor típusteljesítmény Pt, [VA] 1.73Pki 1.48Pki 1.24Pki Búgófrekvencia fB, [Hz] fbe 2fbe 2fbe Búgófeszültség UB,[V] 0.05Uki 0.05Uki 0.05Uki Kimeneti feszültség Uki,[V] ~1.2Usz ~1.25Usz ~1.25Usz Diódák záró irányú feszültség igénybevétele UBR,[V] 2√2Usz 2√2Usz √2Usz Transzformátor szekunder feszültsége Usz,[V] ~0.8UkiKu ~0.8UkiKu ~0.8UkiKu Diódák névleges nyitóirányú árama IF,[A] Iki 0.5Iki 0.5Iki Max. kimeneti egyenáramú terhelés Ikimax,[A] (0.3…0.6)IF (0.6…1.5)IF (0.6…1.5)IF Szekunder áram Isz, [A] ~2.1Iki ~1.1.Iki 1.57Iki Puffer kondenzátor értéke 5% búgófeszültség esetén CB,[F] ~0.25Iki/UBfB ~0.2Iki/UBfB ~0.2Iki/UBfB Puffer kondenzátor feszültség igénybevétele UC,[V] √2Usz √2Usz √2Usz

Megjegyzés:

Tájékoztató táblázat tapasztalati értékek alapján. A váltakozó mennyiségek effektívértékek. A Ku biztonsági tényező értéke =1,1..1,2. Az adatok 60 C° mag-hőmérsékletre vonatkoznak.

5.1.2. AC-DC átalakítók elemei

Az egyenirányítók a fenti blokkséma alapján a diódás (esetleg tirisztoros egyenirányítókon kívül egyéb passzív elemeket is tartalmaznak, amelyek hatása a kimeneti jellemzőkre nem hanyagolható el. (Egy ilyen hatást már tárgyaltunk a kimeneti jelnél, ha figyelembe vesszük az egyenirányító-körben fellépő ohmos ellenállások hatását a kimeneti jelre.)

5.1.2.1. Egyenirányító transzformátorok

Az elektronikára elsősorban jellemző kisfeszültségű és kisteljesítményű alacsony frekvenciás transzformátorok leggyakoribb típusai:

Típus Jellemzők Toroid transzformátor

Körvasmagos kialakítás, ami alacsony mágneses ellenállást jelent. Alacsony veszteség (szórás), kis gerjesztési igény, nehéz tekercselés, különösen kisteljesítményű transzformátoroknál

Szalagmagos transzformátor

A mágneses domainek beállítása az alacsony mágneses ellenállás érdekében speciális hengerléssel a fluxus irányába történik. Jó hatásfok, nagy gerjesztés, könnyen szerelhető, de különösen gondos illesztést igényel a köszörült felületeken.

Lemezelt (EI) transzformátor

E és I alakú lemezekből áll, páronként váltogatott összerakási iránnyal a mechanikai szilárdság és a résveszteség csökkentése érdekében. Az M-típushoz képest nagyobb teljesítmény kategória, de alacsonyabb hatásfok jellemzi.

Upr

+ Uki -

Usz

D1

D2

CiC

Iki

Usz

iD

Page 54: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 54

Lemezelt (M) transzformátor

Az M középső száránál hasított lemezelés, amely nagyobb csévetestek behelyezését nem teszi lehetővé. Miután csak lemezenként egy helyen nyitott a vas, így alacsonyabb mágneses ellenállás jellemzi, mint az EI magot. Kis méret, jó hatásfok, könnyű tekercselhetőség, kis teljesítmény kategória.

A transzformátorok méretezési szempontjai:

• A transzformátorok tekercselésére általában kettős zománc-szigetelésű rézhuzalt (Cuzz) használnak, amely egy adott hőmérsékletig biztosítja a transzformátor zárlatmentes működését. Az alkalmazott szigetelőanyagnak (esetleges impregnálásnak) megfelelően a transzformátorokat –a megengedett maghőmérséklet szerint- kategóriákba rendezik. Az elektronika transzformátorai általában a legalacsonyabb maghőmérsékleti (60 C°) kategóriába tartoznak. Ennek megfelelően a transzformátor belső veszteségeit úgy kell méretezni, hogy a tekercsek hőmérséklete ezt a hőfokot üzemszerűen ne lépje túl. A méretezéskor feltételezzük a transzformátor megfelelő elhelyezését (hűtés biztosítását). Zárt, dobozolt (esetleg árnyékolt) transzformátoroknál a rossz hűlési körülményeket is figyelembe kell venni.

• További szempont a szekunder tekercs feszültségesése illetve az egész transzformátorra nézve a százalékos feszültségesés (drop) mértéke. Ez természetesen összefügg a veszteségekkel is. Ennek megfelelően kerül kialakításra a szekunder tekercs áramsűrűsége.

• A primer tekercs áramsűrűségét elsősorban az elérni kívánt mágneses gerjesztés szabja meg. A transzformátor anyagától, kialakításától függő elérhető maximális gerjesztés alapján méretezzük a primer tekercset.

• A tekercsek egymáshoz képesti elhelyezését befolyásolja az, hogy biztonsági transzformátorról van- e szó vagy sem. A biztonsági transzformátor esetén térbeli szétválasztással és kiegészítő szigeteléssel (háromrétegű szigetelés, elválasztó szigetelő, stb.) védekezünk az esetleges primer-szekunder zárlat ellen. Ez azonban jelentősen csökkenti a rendelkezésre álló szabad helyet a tekercselés elvégzésére, így a transzformátorral elérhető maximális teljesítményt is.

• A huzalátmérőket felülről korlátozza a tekercsek elhelyezésére rendelkezésére álló járom keresztmetszet és szerelési tér. A rézhuzalok és szigetelések, valamint a tekercsek fizikai megtartására szolgáló tekercstestek együttesen határozzák meg a megvalósítható tekercs méreteit.

5.1.2.2. Egyenirányító dióda

Az egyenirányító diódák nagy periodikus csúcsáram-igénybevételre, de alacsony frekvenciára tervezett diódák. A kondenzátor miatt jelentős a bekapcsolási áramlökés is (aperiodikus áram). Jelentős áramterhelést kell elviselniük alacsony nyitóirányú feszültségesés mellett. Kialakításuk figyelembe veszi a hűtés körülményeit is. Gyakran a ház egyben az egyik csatlakozási pont is (anód vagy katód) a jobb hűtés érdekében. A diódák teljesítménytől függően hűtést igényelnek, amelyek lehetnek passzív hűtőbordás vagy mesterséges közeghűtés (levegő vagy folyadék). A diódák kialakításukban lehetnek egyedi vagy csoportos (monolitikus, pl. 1F Greatz-híd) kialakításúak, hengeres, szögletes vagy tárcsa kialakításúak. A diódákkal elérhető határadatok: max. záróirányú feszültség, kb. 3000 V, max. nyitóirányú áram 3500 A lehet, a bekapcsolási és kikapcsolási idejük ~10 µs. Egyedi gyors félvezetős túláram-védelem esetén jellemző paraméter a határterhelési integrál (∫i2dt érték), amely alapján a védelem méretezhető.

5.1.2.3. Szűrőkondenzátor

Az egyenirányítókban alkalmazott szűrő-simító kondenzátorok feladata az egyenirányított jel hullámosságának csökkentése (simítás) és energiatárolás/leadás a fogyasztó felé, amikor a diódák nem vezetnek (bár ez is a simításhoz köthető). A kondenzátorokat nagy csúcsáramok terhelik (minél nagyobb a kapacitás, annál rövidebb ideig vezet az egyenirányító dióda, így annál rövidebb idő alatt kell a szükséges töltést felhalmozni, ami jelentős csúcsáramokhoz vezet). A csúcsáramok a kondenzátort fizikailag is terhelik (stressz), élettartamát csökkentik. A kondenzátor veszteségei miatt a nagy csúcsáramok a kondenzátor üzemi hőmérsékletét emelik. A simító kondenzátor az egyenirányítók kritikus eleme, mivel a szükséges nagy kapacitás csak nedves alumínium-elektrolit kondenzátorokkal érhető el, amelyek tulajdonságaikban azonban a kapacitást kivéve a leginstabilabb kondenzátorok közé tartoznak. A kondenzátorokat jelentős feszültség terheli, ráadásul ennek a feszültségnek nagy a váltakozó áramú tartalma is. Az egyfázisú egyenirányító kapcsolások esetén a kondenzátor feszültség igénybevétele:

szCn UU 2=

Page 55: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 55

A váltakozó áramú komponensek aránya a búgó-feszültség nagyságától függ. Általában 5-10%-os búgófeszültségre tervezik a kondenzátort, amely megfelelő simítást, de még elfogadható váltakozó áramú feszültség-tartalmat jelent a kondenzátor számára.

5.1.2.4. Túláram-védelem

Az egyenirányító kapcsolások (és gyakran a tápegységek) tartós túláram-védelmét olvadóbiztosítókkal oldják meg. Az olvadóbiztosítók különböző kiolvadási karakterisztikával és sebességgel rendelkeznek (lomha, gyors). Az egzakt méretezésük a határterhelési integrál segítségével történik (∫i2t), azonban jó közelítéssel méretezhetjük az egyenirányító különböző paraméterei alapján is. Az F1 biztosító feladata a tápláló hálózat megvédése a tápegység hibájától. Méretezése:

lomha biztosító esetén a periodikus csúcsáramra gyors biztosító esetén a bekapcsolási csúcsáramra.

Az F2 biztosító opcionális, feladata a transzformátor védelme az egyenirányító és a tápegység hibájától. Méretezése:

lomha biztosító esetén a periodikus csúcsáramra gyors biztosító esetén a bekapcsolási csúcsáramra.

Az F3 biztosító a terhelésből származó túlterheléstől véd. A statikus védelem miatt általában lomha biztosítót használunk. Méretezése:

az egyenirányító kapcsolás maximális kimeneti árama alapján: Ih≥1,1…1,2 Ikimax A túláram-védelem egy újabb módja, amikor a biztosítók helyett félvezető alapú túláram-védelmet alkalmazunk (pl. polyswitch eszközök).

5.1.2.5. Túlfeszültség-védelem

A túlfeszültség lehet aperiodikus vagy periodikus. A külső forrásból származó aperiodikus túlfeszültség ellen a kapcsolás bemenetét félvezetős túlfeszültség levezető alkatrésszel védhetjük. Bár az alkatrész aktív elem a védelem módja miatt ezt passzív védekezésnek tekintjük. Jelölések: VDR=MOS-varisztor

G= gázkisüléses cső A periodikus túlfeszültségek illetve egyéb forrásból (általában valamilyen kontaktorból származó túlfeszültségek hatásának enyhítésére ellenállásból és kondenzátorból álló csillapító áramkört alkalmazunk. A terhelésből származó túlfeszültségek elleni védelemre –a védelem fokától függően- vagy Zener-diódás védelmet (a), vagy a sokkal gyorsabb és drasztikusabb gyors tirisztoros feszültség lehúzást (b, crowbar) alkalmazunk, amelynél egy áramkör vagy a túlfeszültségre és/vagy a túláramra egy gyors-tirisztort kapcsol be, amely nagy kiolvadási áramot indít a biztosító felé és az kiolvad, mielőtt a tápegység tönkre mehetne.

Upr

+ Uki -

F1 F2 F3

R C

R C

Tápfeszültség oldal

Terhelés oldal

Érzékelő, gyújtó áramkörtől

+ -

Tápfeszültség oldal

Terhelés oldal

+ -

a) b)

N

L

VDR1

VDR3

VDR2

G

Fázisvezető

Nulla vezető

Védővezető

Page 56: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 56

5.2. Stabilizált kimenetű DC-DC tápegységek jellemzői

A kimeneti feszültség vagy áram stabilizálását végezhetjük visszacsatolást tartalmazó és visszacsatolást nem tartalmazó kapcsolásokkal. A visszacsatolást nem tartalmazó kapcsolás lehet egyszerű Zener-diódás analóg lineáris stabilizátor, amely alacsony stabilitási mutatókkal rendelkezik, általában alacsony terhelhetőség mellett, de történhet a visszacsatolás nélküli stabilizálás telítéses transzformátorok alkalmazásával kapcsolóüzemű tápegységekben. Jobb stabilitási paraméterek elérése érdekében azonban visszacsatolást is tartalmazó kapcsolásokat alkalmazunk. Jellemző kimeneti karakterisztikák A kimeneti mennyiségtől, valamint attól függően, hogy a kimeneti áram zárlat vagy túlterhelés esetére korlátozva van-e, különböző kimeneti karakterisztikájú tápegységek lehetségesek: a) Állandó kimeneti feszültségű tápegység áramkorlátozás nélkül Az Ukio a terheletlen kimenet kimeneti feszültsége, Rb a tápegység belső ellenállása.

bkikiki RIUU −= 0 Cél az Rb csökkentése visszacsatolással elektronikus úton. Jellemző stabilizálási paraméterek:

állandóIbe

kiu

kidUdUS

=

= Bemeneti feszültség-érzékenység („line” stabilitás)

állandóUki

kii

bedIdUS

=

= Terhelési érzékenység („load” stabilitás)

b) Állandó áramú tápegység Cél: az Rb növelése elektronikus úton a stabilitás növelése érdekében. Az Ikiz a rövidzárási áram.

b

kikizki R

UII −=

Jellemző stabilizálási paraméterek:

állandóUki

kii

bedUdIS

=

= Terhelési érzékenység („load” stabilitás)

állandóUbe

kiu

kidUdIS

=

= Bemeneti feszültségváltozásra stabilitás („line” stabilitás)

A szabályozott kimeneti áramú tápegységek jelentősége kisebb a gyakorlatban (néhány olyan esetben amikor a töltésbevitelt kell szabályozni akkor alkalmazzuk, pl. akkumulátortöltők, galván tápegységek, stb.), mint a szabályozott kimeneti feszültségű tápegységeké, ezért a továbbiakban csak a szabályozott kimeneti feszültségű tápegységekkel foglalkozunk.

Uki=Ukio-IkiRb

Uki

Iki

UkioIdeális karakterisztika

Valóságos karakterisztikaUkio Uki

Rb

Iki

Uki

Iki Ikiz

Ideális karakterisztika

Valóságos karakterisztika

Ikiz Uki Rb

Iki

Page 57: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 57

c) Állandó kimeneti feszültségű tápegység áramkorlátozással Az Ikiz zárlati kimeneti áram, Ih határáram. Cél: zárlat esetén a zárlati áram korlátozása az üzemszerűen megengedett maximális áram (határáram) függvényében. 1) Egyszerű túláramvédelem (Ikiz>Ih) A zárlat esetén fellépő veszteségi teljesítmény (Pdz=UbeIkiz) lényegesen nagyobb, mint az üzemszerű működés alatt fellépő maximális veszteség (Pdmax=(Ube-Uki)Ih), így a szabályzó félvezetőt csak jelentős túlméretezéssel lehetne megvédeni. Ezt elkerülendő a kapcsolás tartósan zárlatban nem működhet, reteszelődő védelmet kell alkalmazni (pl. olvadóbiztosító). Az áram érzékelésére és a szabályozásra gyakran egy tranzisztor BE-átmenetét használjuk fel. 2) Szabályozott kimeneti áram és feszültség karakterisztika (Ikiz≅Ih) A szabályozott kimeneti feszültségű karakterisztika szabályozott kimeneti áramú karakterisztikába vált át (vagy fordítva). A veszteséget a zárlati esetre méretezik, mivel itt tartósan üzemelhet. (Pdmax=UbeIkiz). Speciális feladatoknál alkalmazzuk, pl. folyamatos üzemű akkumulátortöltő (konstans áramú töltés, a töltöttség elérése után csepptöltés konstans feszültségről az önkisülés megakadályozására). 3) Visszahajló áram-karakterisztika (Ikiz<Ih) A zárlati áram jóval kisebb, mint a határáram, így a tápegység tartósan is üzemelhet zárlatban. A zárlat megszűnte után automatikusan visszaáll az eredeti üzemállapot. A veszteséget úgy méretezik, hogy az üzemszerű maximális veszteség és a zárlati veszteség közel azonos legyen.

( ) ⎟⎟⎠

⎞⎜⎜⎝

⎛−=⇒⋅≅⋅−

be

kihkizkizbehkibe U

UIIIUIUU 1

A védelem mind a kimeneti áramot, mind a kimeneti feszültséget figyeli és annak függvényében szabályozza le a kimeneti áramot. Egy további megoldás a teljesítményszabályozás, amikor a kimeneti feszültség helyett a be- és kimenet közötti feszültségkülönbségre szabályozzuk a kimeneti áramot (úgy, hogy a veszteségi teljesítmény közel állandó legyen). Ezt a megoldást elsősorban monolitikus feszültség-stabilizátorokban alkalmazzák.

5.3. Analóg lineáris üzemű tápegységek

Az analóg lineáris üzemű tápegységek jó stabilitási paraméterekkel, alacsony kimeneti zajjal és jó zavarelnyomással valamint alacsony hullámossággal rendelkeznek, azonban szabályozási elvüknek megfelelően hatásfokuk -elsősorban alacsony tápfeszültség tartományokban- rossz, akár 50 % alatti érték is előfordulhat. A tápegységek jelentős veszteségei hő formájában távoznak a rendszerből, amely a hűtés kialakításában jelent speciális követelményeket. Az utóbbi években a kapcsolóüzemű tápegységek, a monolitikus DC-DC konverterek elterjedése, megbízhatóságának növekedése, jelentősen visszaszorította alkalmazási körüket, bár jó linaritású, alacsony zajú alkalmazásokban nem helyettesíthetők. Gyakran alkalmazzuk őket kártyaszintű stabilizátorként és postregulátorként, kapcsolóüzemű tápegységek kimenetén, annak rosszabb linearítását kompenzálni.

5.3.1. Stabilizálási elvek

Az analóg lineáris tápegységek általában egy elektronikusan szabályozható áteresztő elemet (teljesítmény tranzisztor vagy újabban inkább teljesítmény MOSFET) tartalmaznak. Ezt az áteresztő elemet a fogyasztóval sorba vagy párhuzamosan lehet elhelyezni.

Uki

Iki

Ukio

Ikiz3 Ikiz2 Ikiz1

Ih

Page 58: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 58

5.3.1.1. Soros stabilizálás elve

A stabilizálás vizsgálatánál helyettesítsük az áteresztő elemet egy változtatható ellenállással (Rs) és tekintsünk el a szabályozó elektronika saját fogyasztásától, valamint helyettesítsük a terhelést egy változó ellenállással (Rt). Az Sz a különböző szabályzó elektronikákat helyettesíti. A szabályozó működése:

st

tbeki RR

RUU+

=

Mind az Ube, mind az Rt változik. A terhelés növekedésére (Rt csökken és It nő, így a kimeneti feszültség csökkenne) az Rs ellenállást csökkentjük oly mértékben, hogy a kimeneti feszültség állandó maradjon a terhelés változás esetén is. Ugyanez játszódik le fordított előjellel terhelés csökkenés esetén is vagy ha nem a kimeneti terhelés, hanem a bemeneti feszültség változik meg. A rendszer dinamikai paraméterei attól függnek, hogy a szabályzókör milyen gyorsan tudja a soros elemet szabályozni a kimeneti terhelés, vagy a bemeneti feszültség impulzus-szerű változásaira. A szabályozás hatásfoka (ha feltételezzük, hogy a szabályzó áramkörök saját teljesítmény-felvétellel nem rendelkeznek, vagy elhanyagolható a kimeneti terheléshez képest):

be

ki

bebe

kiki

be

ki

UU

IUIU

PP

≅==η

Az Ube feszültséget tehát minél közelebb kell választani a kimeneti feszültséghez, azonban figyelembe kell venni, hogy a szabályzás miatt szükség van egy minimális feszültségkülönbségre a két oldal között (min. 2-5 V), illetve, hogy a hálózati feszültség egy meghatározott tartományban változhat a szabványok szerint, ami a bemeneti feszültségben is megjelenik. Ezek alapján egy 5 V-os tápegységgel 50 %, vagy az alatti hatásfok érhető el (ami figyelembe véve a digitális elektronika nagyobb áramfelvételét is nagy veszteségi teljesítményt eredményez), míg 24 V-os tápegység esetén ez az érték felmehet 70-75 %-ra is. A kapcsolás legnagyobb hátránya –az alacsony feszültségtartományban rossz hatásfok mellett-, hogy a soros áteresztő elemként használt alkatrészek nagyobb valószínűséggel mennek tönkre zárlatban, mint szakadásban, ami azt eredményezheti, hogy a kimenetre a sokkal nagyobb bemeneti feszültség kerül. Ennek megakadályozására aktív túlfeszültségvédelmet célszerű a kimeneten alkalmazni. Zárlat esetén jelentős áram és veszteségi teljesítmény lép fel, ezért áramkorlátozást kell alkalmazni (egyszerű vagy visszahajló karakterisztikájú túláram-védelem).

5.3.1.2. Párhuzamos (shunt) stabilizálás elve

A szabályozó működése: az RF egy fix értékű ellenállás. A terhelés növekedésére (Rt csökken és It nő, így a kimeneti feszültség csökkenne) az Rs ellenállást növeljük (és ezzel a rajta átfolyó áramot csökkentjük) oly mértékben, hogy a kimeneti feszültség állandó maradjon a terhelés változás esetén is. Ugyanez játszódik le fordított előjellel terhelés csökkenés esetén is, vagy ha nem a kimeneti terhelés, hanem a bemeneti feszültség változik meg. Állandó bemeneti feszültség esetén a fix értékű RF ellenállás miatt a bemeneti áram állandó és így a terheléstől függetlenül mindig azonos áramot vesz fel.

tstFFs

stbe

F

t

s

t

F

t

beki

tkiki

s

kibeki

F

kibebe

RRRRRRRRU

RR

RRRR

UU

RIUR

UII

RUUI

++=

++=

=

−=

−=

1

Sz Rt

Rs

UREF Ube Uki

Iki

Sz Rt Rs UREF Ube Uki

Iki RF Ibe Is

Page 59: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 59

Kimeneti terhelés változás esetén a kimeneti árammal ellentétes módon, de azonos értékben változtatjuk a párhuzamos áteresztő elem áramát. Ha a bemeneti feszültség változik (állandó kimeneti áram mellett), akkor is a párhuzamos áteresztő elem veszi fel vagy pótolja a hiányzó áramot. A szabályozás hatásfoka (ha feltételezzük, hogy a szabályzó áramkörök saját teljesítmény-felvétellel nem rendelkeznek):

ski

ki

be

ki

bebe

kiki

be

ki

III

UU

IUIU

PP

+≅==η

Ha a kimenetet nem terheljük (Iki=0), akkor a hatásfok nulla lesz. A legjobb hatásfokot akkor érjük el, ha fix a kimeneti áram és értéke a maximális kimeneti érték, ekkor a hatásfok közel megegyezik a soros stabilizálás hatásfokával. Felhasználási területe: közel fix értékű kimeneti terhelés esetén alkalmazható jó hatásfokkal. Előnye, hogy a soros áteresztő meghibásodása nagy valószínűséggel nem okoz feszültségnövekedést a kimeneten, így túlfeszültség-védelem nem szükséges. Úgyszintén zárlatra kevésbé érzékeny, a zárlat megszűnése után az eredeti állapot automatikusan visszaáll. A stabilizálási elvnek megfelelően a ki- és a bemenet között kisebb feszültségkülönbséget kell tartani, így a hatásfok javulhat alacsony feszültségtartományban, bár ezt a változó áramterhelés esetén fellépő romlás ellensúlyozza. A gyakorlatban a soros stabilizálás elterjedtsége jelentősen nagyobb.

5.3.2. Visszacsatolás nélküli tápegységek

A visszacsatolás nélküli tápegységek egyszerűbb igényeket elégítenek ki, mivel stabilitásuk alacsony. Általában egy félvezető karakterisztikájának nemlinearítását használják ki a stabilizáláshoz.

5.3.2.1. Zener-diódás stabilizátor

A Zener-stabilizált tápegységeket részletesen az Elektronika I. fejezetben tárgyaltuk. A Zeneres stabilizátor párhuzamos stabilizátor kapcsolásnak felel meg. Uki=Uz A kapcsolás érzékenysége (stabilitása): A bemeneti feszültség-érzékenység

Rrr

dUdUS

dz

dz

állandóIbe

kiu

ki+

≅==

A terhelési érzékenység

dzállandóUki

kii r

dIdUS

be

−===

A stabilitás alacsony rdz (a Zener dinamikus ellenállása) és magas R ellenállás értékeknél jó, amely azonban behatárolja a feszültségtartományt és a terhelhetőséget (az rdz a 6-8 V tartományban a legalacsonyabb, az ellenállás akkor nagy, ha kicsi a terhelő áram). A kimeneti feszültség hőmérsékletfüggése a Zener-dióda hőmérsékletfüggésétől függ (ez is 6-8 V tartományban a legalacsonyabb).

5.3.3. Visszacsatolt tápegységek

A visszacsatolást tartalmazó tápegységek esetén a kimeneti feszültség (vagy azzal arányos feszültség) és egy referencia feszültség összehasonlításából nyert hibajel alapján szabályozzák a beavatkozó szerv működését (analóg tápegységeknél az áteresztő elemet vezérlik, míg kapcsolóüzemű tápegységeknél a PWM, PFM vagy egyéb modulátor működésébe avatkoznak be). Az alábbiakban a szabályozott üzemű analóg lineáris tápegységek tulajdonságait vizsgáljuk. A szabályozott üzemű analóg lineáris tápegységek elvi felépítése:

R

Uki Ube Uz Iz

It Ibe

Page 60: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 60

Az α a kimeneti feszültség-leosztási arány: 0≤α≤1. Az áteresztő elem lehet tranzisztor vagy teljesítmény MOSFET. A MOSFET előnyeit alacsony kimeneti feszültségű tápegységeknél nem lehet kihasználni, mert a vezérlésükhöz viszonylag magas feszültséget igényelnek (max. 10 V), így a kimenet és a bemenet közötti feszültségkülönbség (drop out) nagy lenne, ami jelentős veszteségi teljesítményt eredményezne. A szabályzókör az UREF=αUki összefüggésre szabályoz. A kimeneti feszültség:

αREF

kiUU =

Az összefüggésből látható, hogy a kimeneti feszültség Uki≥UREF lehet csak! UREF-nél kisebb feszültségek akkor állíthatók elő, ha nem a kimeneti feszültséget osztjuk le, hanem a referencia feszültséget (ekkor az áramkör az αUREF=Uki értékre szabályoz):

REFki UU α= (Megjegyzés: egy lépésben csak akkor lehet a teljes bemeneti feszültségtartományt átfogni, ha a kapcsolás nullpontját a referencia feszültség értékével negatív irányban eltoljuk.) A követő szabályozás hibája (eltérés az elméleti értéktől:

hiba

BE

elméleti

REFBEREFkiBEkikiREF A

UUA

UAAU

UUUAUUαααα

α −≅+

−+

=⇒+=−32111

)(

Az „A” a hibajel-erősítő erősítése. Az erősítés növelésével a statikus hiba csökkenthető, de a kapcsolás dinamikai tulajdonságai romlanak. A szabályozás hibájának kiszámításához tételezzük fel, hogy a kimeneti áram ∆Iki értékkel megnőtt. Az áteresztő tranzisztor BE feszültsége is megnő ∆UBE≅∆IkirBE/B értékkel és a kimeneti feszültség egy ∆Uki=∆UBE értékkel lecsökkenne, ha nem lenne szabályozás.

)1( ABrI

UUUAU BEkikiBEkiki α

α+

∆−=∆⇒∆+∆=∆−

)1( ABr

IUS BE

állandóUki

kii

beα+

−=∆∆

==

Ez az érték sokkal kedvezőbb, mint a visszacsatolás nélküli kapcsolásokban kapott érték. A kimeneti feszültség a bemeneti feszültség változására kevésbé érzékeny, ha jól stabilizált referencia feszültségforrást (lehetőleg áramgenerátoros táplálású, hőmérséklet kompenzált) alkalmazunk.

5.3.3.1. Aktív túláramvédelem

Az olvadóbiztosítóval történő túlterhelés-védelem lassú és reteszelődő jellegű, így a rövid ideig fennálló túlterhelések ellen nem véd. A tápegységeknél általában a túláram, túlfeszültség és a maximális veszteségi teljesítmény (túlmelegedés) ellen alkalmazunk aktív félvezetős védelmet. A leggyakoribb ezek közül is a túláramvédelem. A túláramvédelem lehet egyszerű határolós jellegű vagy visszahajló, amennyiben zárlat miatt fellépő túlterhelés után automatikus visszaállást akarunk.

Uki

Ube

UREF

I0

αUREF

Uki

Ube

UREF

I0

αUki

kimeneti feszültség érzékelő

áteresztő elem

referencia-feszültség előállító

Hibajelképző/erősítő

Page 61: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 61

5.3.3.1.1. Egyszerű (határolós) túláramvédelem

Az egyszerű védelem esetén egy tranzisztor BE átmenetének tulajdonságait használjuk ki a megengedettnél nagyobb áram kialakulásának megakadályozására. Karakterisztikája: Az Ih a határáram, amely áramnál a védelem „megszólal”, az Iz a zárlati áram, Rsc a tápegység áramát érzékelő ellenállás, T2 a túláram-védelmet ellátó tranzisztor. A határáram általában egy szűk tartományban változhat, mivel a tranzisztor tulajdonságait a hőmérséklet befolyásolja.

Kialakítása, működése:

A kimeneti áram az Rsc ellenálláson feszültségesést hoz létre. Ez a feszültség egyben megegyezik a T2 tranzisztor UBE feszültségével. Amikor a feszültség megközelíti a tranzisztor nyitásához szükséges feszültséget (UBEh), akkor a T2 elkezd kinyitni és egyrészt csökkenti a T1 bázisába jutó áramot és ezzel a T1 áramát, másrészt az UCE2 csökken és ezzel kezdi lezárni a T1 tranzisztor BE átmenetét. Az egyensúlyi állapot ott áll be, amikor fennáll az

sc

BEhhki R

UII ==max

A meredek karakterisztika miatt kis kimeneti áramváltozásra (és egyben BE feszültségváltozásra) jelentős IC2 változás következik be. Jellemzően UBEh≅0.6 V egy szokásos tranzisztornál. A tranzisztor bemeneti karakterisztikájából következik, hogy az áram növekedésével nő az UBE feszültség is, így a határáram kisebb, mint a zárlati áram. A határáram értékét a hőmérséklet is befolyásolja. Az egyszerű áramhatárolás hátránya, hogy zárlatban nagy veszteségi teljesítmény keletkezik az áteresztő elemen, ezért így tartósan nem üzemelhet, vagy jelentősen túl kell méretezni az áteresztő elemet.

5.3.3.1.2. Visszahajló áram-karakterisztikájú túláram-védelem

Jellemző karakterisztika: A visszahajló karakterisztikát úgy tudjuk elérni, hogy az UBE nemcsak az érzékelő ellenálláson eső feszültségtől (és így a kimeneti áramtól), hanem a kimeneti feszültségtől is függ. A határáram és a zárlati áram jelentősen eltérhet egymástól, így zárlatban a veszteségi teljesítmény korlátozható, az áramkör tartósan zárlatban üzemelhet, majd a zárlat megszűnte után az eredeti állapotban dolgozik tovább a tápegység.

Gyakorlati megvalósítás: Legyen az R1-R2 osztó árama sokkal nagyobb, mint a T2 tranzisztor bázisárama! Így felírhatjuk:

( )

⎟⎟⎠

⎞⎜⎜⎝

⎛++==

=++

+

⎟⎟⎠

⎞⎜⎜⎝

⎛+

++

2

12

2

1

1

1

221

1

121

1

221

RR

RU

RR

RU

I

RIURR

RRIU

sc

BE

sc

ki

RRR

R

URR

RU

ki

sckiBEsckiki

sc

BEki

Uki

Rsc

UBE2

T2 T1

UCE2

Iki

IC2

IB1

Uki

Iki

Ukio

Iz Ih

Uki

Iki

Ukio

Ih Iz

Uki

Rsc

UBE2

T2

T1 Iki

IC2

IB1

R2

R1

UBE2

IB2(IC2)

UBEh

Page 62: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 62

02

1

2

1

2

1

1

1

=⎟⎟⎠

⎞⎜⎜⎝

⎛+=

⎟⎟⎠

⎞⎜⎜⎝

⎛++=

kiUsc

BEhkiz

sc

BEh

sc

kikih

RR

RU

I

RR

RU

RR

RU

I

Az R1/R2 aránnyal tetszőleges zárlati áram és határáram beállítható, bár nem függetlenül egymástól.

5.3.3.2. Diszkrét félvezetővel felépített tápegységek

Diszkrét félvezetőkkel vagy egyszerűbb tápegységeket, vagy speciális tápegységeket építünk, mivel a leggyakoribb tápfeszültségekre és áram igényekre rendelkezésre állnak monolitikus analóg tápegység áramkörök vagy DC-DC konverterek, amelyek kisszámú külső alkatrészigény mellet kitűnő stabilitási tulajdonságokkal és hatásfokkal rendelkeznek. Egy lehetséges egyszerű kapcsolás és működése:

Az R1 ellenállás a T2 tranzisztor meghajtó bázisáramát szolgáltatja. A C kondenzátor az R1 ellenállással egy aluláteresztő szűrű kapcsolást képez a bemeneti jelben levő zavarok és felharmonikusok szűrésére. A T1 és T2 tranzisztor Darlington kapcsolást alkot a nagyobb áramterhelhetőség érdekében. A referencia feszültséget az R2-D áramkör állítja elő. A kimeneti feszültséget az R3, R4, P feszültségosztó áramkör csatolja vissza állítható visszacsatolási tényezővel (a tartomány az ellenállások beállításával határozható meg.).

Tételezzük fel, hogy a kimeneti áram csökken, így a kimeneti feszültség nőne. Akkor a T3 tranzisztor árama megnő és áramot vesz el a T1 bázisától és így csökkenti annak nyitását, azaz az emitter áramot, így a kimeneti feszültség megtartja értékét. Amennyiben a kimeneti feszültség csökken, akkor a T3 vezetése is csökken és több áram jut a T1 bázisába, ami növeli a tranzisztor nyitását és növeli a kimeneti feszültséget. A hibaerősítő (T3 tranzisztor) erősítése kicsi, de ez növelhető differenciál erősítő alkalmazásával. A hőmérsékletkompenzált referencia feszültségforrás nehezen valósítható meg diszkrét alkatrészekkel, amely növeli a kapcsolás hőmérsékletfüggését. Nagyobb kimeneti áramterhelés esetén további tranzisztorok köthetők Darlington kapcsolásba. Diszkrét alkatrészekből felépített tápegységre számos kapcsolás áll rendelkezésre, de a fent vázolt alapelv változatlanul fellelhető bennük.

5.3.3.3. Változtatható kimenetű integrált vezérlővel felépített tápegységek

A tápegységek az elektronika egyik leggyakrabban alkalmazott áramkörei, így az általános blokkséma alapján működő, integrált kivitelű tápegységek már a kezdeti időkben megjelentek. A szokásos tápfeszültségek viszonylag kis száma miatt elterjedtek a fix-feszültségű tápegységek, de alkalmanként szükség van változtatható kimeneti feszültségű feszültségforrásokra is (nemcsak tápegység célokra). Egy jellegzetes áramkör blokksémája:

A változtatható kimeneti feszültségű stabilizátor ugyanazokat a fő egységeket tartalmazza, mint a diszkrét elemekkel felépített stabilizátor, azonban minden főbb egységének ki- és bemeneti pontja hozzáférhető. A szükséges külső alkatrészek száma jelentősen kevesebb, mint az a diszkrét kapcsolásoknál szükséges, de több mint az integrált fix kimeneti feszültségű típusoknál.

Uki

R3

T2

T1

R2 R1

R4

P

D C

Ube

Uz

T3 αUki

Io

UREF

áteresztő elem

referencia feszültség előállító

hibajel-erősítő

Inv

NInv

kompenzáció Uc Uki

Uz

+Ut

CL CS áramhatároló

Page 63: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 63

Jellemző paraméterek (tájékoztató adatok, ): Az integrált tápegység-vezérlő áramkörök egy jellegzetes alaptípusa a 723-s -széles körben gyártott- sorozat. Bár megjelenése óta sok évtized telt eltelt és új típusok is megjelentek, felépítésükben és részben paramétereikben is nagyon hasonlóak az alaptípushoz.

Ikimax=150 [mA] Pdmax=660 [mW] Kimeneti feszültség-tartomány: 2<Uki<40 V Érzékenység: Su≤2⋅10-4 Si≤3⋅10-4 [Ω] Hőmérséklet stabilitás: ≤20.10-6 [V/C°] A referencia feszültség értéke: 7.15 ±0.2 V A hibajel erősítő erősítése: ~2000

Az áramkör univerzalitása miatt számtalan (akár a tápegységektől is elvonatkoztatható) kapcsolás valósítható meg. Két jellemző alapkapcsolás: a) UREF-nél kisebb kimeneti feszültség (Iki≤Ikimax) Az egyszerű áramhatároló 0.6 V/Rsc értéknél határol. A C kapacitás feladata a nagy nyílthurkú erősítésű hibaerősítő gerjedésének megakadályozása

A kimeneti feszültség:21

2

RRRUU REFki +

=

A kimeneti feszültség állítható maximálisan a 2V…UREF tartományban, ha az R1, R2 feszültségosztót részben vagy teljesen potenciométerre cseréljük ki. b) UREF-nél nagyobb kimeneti feszültség (Iki≤Ikimax)

A kimeneti feszültség: ⎟⎟⎠

⎞⎜⎜⎝

⎛+=

2

11RRUU REFki

A kimeneti feszültség állítható az UREF…40V tartományban, ha az R1, R2 feszültségosztót részben vagy teljesen potenciométerre cseréljük ki.

5.3.3.4. Monolitikus integrált tápegységek

A leggyakoribb pozitív és negatív feszültségekre különböző áramtartományokban gyártanak fix kimeneti feszültségű integrált tápegységeket. Ennek megfelelően ezek az áramkörök általában három csatlakozó lábbal rendelkeznek csak (be- és kimeneti, valamint közös láb). Az áramkörök előnye az alacsony külső alkatrész igény, a kézben tartható és jó stabilizálási paraméterek, széles beépített védelmi lehetőségek. A leggyakoribb feszültségek: ±5, ±6, ±9, ±12, ±15, ±18, ±24 V. A leggyakoribb áramkategóriák, amelyre integrált tápegység áramköröket gyártanak:0.1; 0.5; 1.5; 2.2; 3;10 A

+Ut

Uc

UkiCLCS

INVUZ

Comp

UREF

NINV

Ut

GND

R3

Rsc

C

Uki>UREF

R1

R2

Uki

+Ut

Uc

UkiCLCS

INVUZ

Comp

UREF

NINV

Ut

GND

R1

R2

Rsc

C

Uki<UREF

Uki

a) b)

Page 64: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 64

A nagyteljesítményű tápegységek általában hibrid kivitelűek. Leggyakoribb beépített túlterhelés elleni védelmek: túláram, túlmelegedés, túlterhelés (veszteségi teljesítményre). A belső védelmek egyik célja, hogy az áteresztő elemet a biztonságos működési tartományában (SOA) tartsák bármely üzemállapotban. Az áramkör belső felépítése követi az analóg tápegységek általános blokksémáját. Egy tipikus tápegység áramkör belső felépítése (egyszerűsített áramköri rajz): Külső alkatrészként általában csak járulékos ki-és bemeneti búgó feszültség elleni szűrőkondenzátorokat és a hibajel erősítő nagyfrekvenciás kompenzálására alkalmazott kompenzációs kondenzátor szükséges. A nagyobb hibaerősítés miatt egy vagy többfokozatú differenciál-erősítőt alkalmaznak és a visszahajló áramkarakterisztikát az áteresztő tranzisztor megengedett veszteségi teljesítményéhez alakítják ki.

αREF

kiUU =

A határáram attól függ, hogy a ki – és bemenet között mekkora a feszültségkülönbség: a) ∆U<UZ A Zener az áramhatároló ágban nem nyit ki és a kapcsolás úgy működik, mint egy egyszerű áramhatároló:

SC

BEh R

UI 2=

b) ∆U>UZ, a Zener dióda kinyít és csökkenti a megengedett kimeneti áramot Az áramhatárolás konkrét értéke tehát függ a feszültségkülönbségtől, közvetve a veszteségi teljesítménytől. A be és a kimenet között egy minimális feszültségkülönbséget tartani kell a szabályozó megfelelő működése érdekében, ami egy állandó veszteséget eredményez (különösen jelentős ez alacsony kimeneti feszültség esetén!).

5.3.3.4.1. A stabilizátor külső alkatrészei

Az áramkör kialakítása olyan, hogy minimális külső alkatrészre van szükség. A szükséges külső alkatrészek általában kondenzátorok, amelyek nehezen integrálhatók. A C1 és C2 kondenzátorok a belső gerjedés megakadályozására szolgáló frekvencia-kompenzáló kondenzátorok (nF nagyságrendűek). A C3 kondenzátor szűrő - simító feladatokat lát el (100-1000 µF nagyságrendű). A D1 és a D2 diódák alkalmazása általában kívülről nem szükséges, mivel a kapcsolások integrált formában tartalmazzák azokat. A D1 dióda célja a fordított polaritás elleni védelem, a D2 dióda akadályozza meg, hogy a kimeneten akár csak rövid időre is nagyobb legyen a feszültség, mint a bemeneten, mert akkor az áteresztő tranzisztor inverz üzembe kerül és könnyen tönkre mehet.

UZ

Ube UREF

I0

αUki

Uki

Rsc

UBE2

KÖZÖS

BE KI

I2

I1

R2 R1

Uki

Iki

Ukio

Iz

Ih, ha (Ube-Uki)<UZ

BE KI

KÖZÖS + Ube Uki

D1

D2

C1 C2 C3

Page 65: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 65

5.3.3.4.2. Kettős tápegység kialakítása

Gyakori feladat kettős tápegység kialakítása az elektronikában különösen a kettős tápegységről működő analóg áramkörök tápellátásához (pl. műveleti erősítők, egyéb erősítők). A feladat megoldható két ellentétes polaritású monolitikus tápegység felhasználásával illetve elérhető egy tokban gyártott kettős tápegység áramkörrel is. Külön áramkörök alkalmazásánál különösen fontos a közös ág kialakítása a galvanikus csatolások és a zavarok minimalizálása érdekében.

5.3.3.4.3. Áramterhelés növelése

A tápegységek beépített túláram-védelmei lekorlátozzák a tápegységből kivehető áram nagyságát. Külső áramkörökkel ez az áramérték megnövelhető anélkül, hogy a feszültség stabilitása változna. A külső áramkörök alkalmazása miatt azonban a hatásfok romlik, a zárlatvédelem a külső áramkörökre megszűnik.

A kapcsolás működését két részre lehet bontani attól függően, hogy a terhelő áram kisebb vagy nagyobb, mint az Ih áram:

SC

BEh R

UI >

a) Ha Iki<Ih , akkor csak a stabilizátoron keresztül folyik áram és minden paramétert és a védelmeket a stabilizátor szabja meg. b) Ha Iki>Ih , akkor vezetni kezd a külső tranzisztor is és az áramnak az Ih-nál nagyobb részét a PNP tranzisztoron keresztül vezeti a kimenetre:

hkiTr III −= Az áram nagyságát a stabilizátor védelmei nem korlátozzák, így könnyen túlterhelődhet. Külső védelmeket be lehet építeni, de akkor a hatásfok tovább romlik a szükséges ki- és bemenet közötti feszültségkülönbség miatt.

5.3.3.4.4. Kimeneti feszültség megváltoztatása

A monolitikus tápegységeket fix feszültségre tervezték, de speciális esetekben a feszültség a stabilitási paraméterek romlása mellett megváltoztatható minimális külső alkatrész felhasználásával A kimeneti feszültség:

ZSTki UUU +=

BE KI

KÖZÖS +

Uki + -

KÖZÖS

BE KI

+

Ube

+

-

Uki +

BE KI

KÖZÖS +

Ube+

RSC

UBE Iki IST

ITr

BE KI

KÖZÖS +

Ube+

Uki UST

UZ

Page 66: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 66

5.3.4. Tápegységek különleges kapcsolásai

5.3.4.1. Négyvezetékes tápegységek

Ha a terhelés a tápegységtől távolabb van és a vezeték impedanciája miatti feszültség változás nem hanyagolható el (pl. mérőbélyegek és hídba vagy félhídba kapcsolt szenzorok tápellátása, stb.), akkor alkalmazzuk a négyvezetékes megtáplálást. A kimeneti feszültség szabályozása a szenzor bemeneteken (+Us és –Us) mért feszültségre történik, így az áramot szállító vezetékek impedanciájának nincs a tápfeszültséget befolyásoló hatása. A tápellátás és a felhasználási pont közötti távolság a pontosságot nem befolyásolja.

5.3.4.2. Tápegységek soros kapcsolása

Az azonos határterhelésű tápegységek kapcsolhatók sorba, illetve eltérő határterhelés esetén figyelembe kell venni, hogy a legkisebb terhelhetőségű tápegység szabja meg az eredő tápegység tényleges terhelhetőségi mértékét.

5.3.4.3. Tápegységek párhuzamos kapcsolása

Tápegységek a rendkívül kicsi belső ellenállásuk miatt általában nem kapcsolhatók párhuzamosan, mert egy kiegyenlítő áram túlterhelné az egységeket. Speciális, kívülről állítható referencia szintű tápegységek esetén van lehetőség a kismértékben eltérő belső ellenállás és az üresjárási kapocsfeszültségek kiegyenlítésére. Gyakorlatilag csak a master-slave (MS) üzemre kifejlesztett tápegységek alkalmasak párhuzamos kapcsolásra.

A diódák a kapcsolási tranziensek és a fordított polaritás ellen védenek.

5.3.5. Analóg lineáris tápegységek jellemző paraméterei és karakterisztikái

Jellemző paraméterek: Kimeneti feszültség tartomány A kimeneti feszültség driftjei (mV/C°, ppm/ C°,%/ C°) Max. kimeneti áram Kimeneti rövidzárlati áram Max. veszteségi teljesítmény és hőmérsékletfüggése „Line” és „load” stabilitási tényező Tranziens átvitel (bemeneti feszültségugrásra és kimeneti terhelés ugrásra) Búgófeszültség elnyomás Kimeneti zajfeszültség

+

-

+

-

+

-

+

-

Uki M

S M

S M

S M

+

-

+

-

+

-

+

-

Uki

Tápegység +Uki

+Us

-Us

-Uki

Iki

Iki

I=0

I=0 Rt

Page 67: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 67

5.4. Kapcsolóüzemű tápegységek

Az analóg lineáris tápegységek nagy hátránya az alacsony hatásfok, előnye a nagy linearítás, búgófeszültség és zavarelnyomás. A kapcsolóüzemű tápegységek jó hatásfokú tápegységek, de működési elvükből következően a kimeneti jel váltakozó áramú komponense nagyobb, mint az analóg lineáris tápegységeké. Sokkal magasabb követelményeket állítanak a félvezetőkkel szemben a kapcsolgatásból származó tranziensek (du/dt és di/dt) miatt és üresjárási tulajdonságaik is kedvezőtlenebbek, mint analóg társaiké. Míg a lineáris analóg tápegységek üresjárásban a legstabilabbak, addig a kapcsolóüzemű tápegységek üresjárásban ált. nem tudják tartani kimeneti feszültségüket, tehát egy minimális terhelést igényelnek. Nem hanyagolható el a kapcsolóüzemű tápegységek zavarhatása (EMI, EMC) a környezetre, amely a vezetett zavarok esetén szűrést, sugárzott zavarok esetén árnyékolást igényelnek. A kapcsolóüzemű tápegységeket alapvetően az különbözteti meg az analóg lineáris tápegységektől, hogy a be- és kimenet közötti kapcsolat a teljes működési periódus alatt nem folyamatos. Attól függően, hogy a betáplálási oldal felöl vagy a fogyasztói oldal felöl működtetjük őket lehetnek:

• primer oldali kapcsolóüzemű tápegységek (más elnevezéssel transzformátoros leválasztású) • szekunderoldali kapcsolóüzemű tápegységek (más elnevezéssel transzformátor nélküli)

A szekunder oldali kapcsolóüzemű tápegységek egy szokásos elnevezése: DC/DC konverterek.

5.4.1. Primer oldali kapcsolóüzemű tápegységek

A primer oldali kapcsolóüzemű tápegységek általában nagyfrekvenciás transzformátort tartalmazó áramkörök, amelyeknél a beavatkozás a transzformátor primer oldalán történik. Gyakran alkalmazott megoldás, hogy a kapcsolás külön hálózati transzformátort nem tartalmaz (off-line converter), hanem közvetlenül egyenirányítva a hálózati feszültséggel tápláljuk a konvertert, mivel az életvédelmi leválasztást a nagyfrekvenciás transzformátor megoldja. A nagyfrekvenciás transzformátor lényegesen kisebb mérete miatt az áramkör mérete is csökken (a transzformátor mérete és az alkalmazott frekvencia között fordított arányosság létezik). Alacsonyabb DC bemeneti feszültségű kapcsolóüzemű tápegységhez természetesen hálózati transzformátoros egyenirányító szükséges. A primer oldali kapcsolóüzemű tápegységek a szabályzási metódus alapján lehetnek:

öngerjesztésűek külső gerjesztésűek

Uki

Ube

Ukin

Ubemin Ubemax

B) Transzfer karakterisztika

Uki

T [C°] Tmin 25 C° Tmax

Ukin (25C°)

C) A kimeneti feszültség hőmérséklet-függése

Uki

Iki

Ukio

Iz Ih

Tmin

25 C° Tmax

D) A kimeneti karakterisztika hőmérséklet-függése

Uki

Iki

Ukio

Iz Ih

A) Kimeneti karakterisztika

Page 68: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 68

Öngerjesztésű kapcsolóüzemű tápegységek esetén telítéses transzformátort használunk, míg külső gerjesztésű esetben a transzformátor üzemszerűen nem megy telítésbe. A telítéses transzformátorok nagy veszteségei és melegedése az elektronika számára kedvezőtlen. Az öngerjesztésű tápegység kevés elektronikát igényel, de a kimenőfeszültség nem stabil, míg a külső gerjesztésű jelentős mennyiségű félvezetőt igényel, de kimenő feszültség stabil. Az öngerjesztésű tápegységek jelentősége így egyre csökken a külső gerjesztésűekhez viszonyítva, amelyet a jó szabályozhatóság, nagyobb hőmérséklet- és paraméter függetlenség, egyre olcsóbb és jobb tulajdonságú elektronika és teljesítményelektronikai eszközök jellemeznek. Általános blokkvázlatuk: Az öngerjesztésű megoldásnál a teljesítmény-kapcsolót (C) a telítéses transzformátor vezérli (G). A külsőgerjesztésű tápegység esetén a kapcsolást egy szabályozó egység (H) vezérli. A blokkséma elemei:

A hálózati oldali egyenirányító B szűrő-simító C teljesítmény-kapcsoló (tranzisztor vagy MOSFET) D nagyfrekvenciás vasmagos transzformátor E nagyfrekvenciás egyenirányító F nagyfrekvenciás simító-szűrő kapcsolás H Szabályozó egység: általában impulzus szabályzások (PWM vagy PFM). Leválasztás:

transzformátoros vagy optocsatolós, lehet a szabályozó előtt vagy után, attól függően, hogy a szabályozó megtáplálása melyik oldalról történik.

A kimenet lehet: egyenáramú (DC) vagy bizonyos feladatokra váltakozó áramú (AC) is. A primer oldali kapcsolóüzemű tápegységeket –a nagyobb kimeneti teljesítmény és a leválasztás miatt- általában ipari elektronikai célokra használják (motor hajtások tápjai, nagyteljesítményű tápegységek, nagyfeszültségű tápegységek, többszörös-kimenetű tápegységek, stb.) A primer oldali (transzformátoros) kapcsolóüzemű tápegységek (mindkét működési elvű) lehetnek:

Együtemű Záróüzemű Nyitóüzemű

Kétütemű Ellenütemű Félhíd kapcsolású Hídkapcsolású

A továbbiakban egy kapcsoláson keresztül megvizsgáljuk az öngerjesztésű kapcsolás alapvető működését, de elsősorban a külsőgerjesztésű megoldásokkal foglalkozunk. A tápegységek szokásos angol elnevezéseit is megadtuk a könnyebb eligazodás érdekében, mivel nagyon sok egységet nem a magyar elnevezésével illetnek.

A B

C

D

E

Szabá-lyozó

Leválasz-tás

F

+ +

UREF

Külső gerjesztésű (H)

Öngerjesztésű (G)

AC DC

AC

Page 69: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 69

5.4.1.1. Záróüzemű tápegység (flyback converter)

Megjegyzés: a „•” jelzés a transzformátorok tekercs kezdeteit jelzik, amelyeknek az összetartozó feszültség irányoknál van nagy jelentősége. Működés: Öngerjesztésű: a lezárt félvezetőn átfolyó maradékáram a primer tekercsben nagyon kicsi áramot hajt, aminek hatására kis feszültség indukálódik a segéd tekercsben. Ez a feszültség a tranzisztorra nyitó irányú hatást fejt ki, amelynek hatására még több áram folyik a tranzisztoron és így mintegy öngerjesztően a tranzisztor egészen telítődésig vezérlődik. A szekunder tekercsen ez idő alatt nem folyik áram, mivel az adott tekercselési irányok mellett a dióda le van zárva. A terhelés felé az áramot a kondenzátor tárolt energiája biztosítja. A telítésben vezető tranzisztor esetén a primer tekercsre konstans feszültség jut, ami az indukciós törvény szerint lineárisan növekvő áramot eredményez.

tL

UdttuL

tit

beL∫ ==

0

)(1)(

Ube a tápfeszültség Ez az áram addig nő, amíg a transzformátor telítésbe nem megy, akkor megáll az áram növekedése, így a fluxus zérus lesz.

00 →⇒→

=

i

i

udtdi

dtdiLu

A tranzisztor UEB feszültsége az indukált feszültség hiánya miatt zérus lesz, a tranzisztor lezár. A Lenz-törvény értelmében a tranzisztor lekapcsolásának pillanatában maximális energiára töltődött tekercsben a berajzolt feszültségirányokkal ellentétes feszültség indukálódik, ami a diódát kinyitja és a tekercs kisütése a terhelés és a kondenzátor felé megkezdődik. A kisütés addig tart, amíg tárolt energia van és így a dióda nyitva van. Ha kisült a transzformátor, akkor a folyamat az elejéről indul. A tranzisztort a kisütési szakaszban igen jelentős záró irányú feszültség terheli a primer és a segéd tekercsben indukálódó –a berajzolttal ellentétes feszültség miatt- mind a CE, mind a BE pontok között, ezért azok védelméről gondoskodni kell. A vezetési és a kisütési időt a terhelés nagysága, a transzformátor tulajdonságai és a primer tápfeszültség együttesen szabják meg. A kapcsolgatási frekvencia a terheléssel jelentősen változik. A transzformátornak a teljes szekunder körben felhasznált energiát tárolni kell, mert nincs közvetlen kapcsolat a ki és bemenet között, a szekunder feszültséget nem a transzformátor menetszám áttétel szabja meg. A feszültség így széles tartományban változhat a terheléstől függően. Különösen nagy feszültség keletkezhet, ha közel üresjárásban dolgozik a kimenet. Előny:

A kimenet zárlata nem teszi tönkre a tápegységet, mivel nincs közvetlen kapcsolat a ki- és a bemenet között. A kimeneti feszültség igen nagy is lehet, amennyiben nem terheljük a kimenetet, így kiválthatók a kis energiájú alkalmazásokban a nagyfeszültségű sokszorozók. Tetszőleges számú szekunder tekercs alakítható ki, ami több- egymástól szigetelten leválasztott tápegység igény esetén előnyös (pl. motoros hajtások)

-Ube

+

+ -

szabályozó(PWM)

leválasztó érzékelő

külső szabályozó egység

-Ube

+

+ -

Öngerjesztésű Külső gerjesztésű (telítéses transzformátoros) (telítetlen transzformátoros)

Uki Uki

Page 70: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 70

Hátrány: A terheléstől függ –nagymértékben- a kimeneti feszültség. A kimeneti feszültség hullámossága nagy mivel nincs állandó energia utánpótlás a kimenetre, a kondenzátor pótolja a hiányzó energiát a primer töltési idő alatt. A félvezetők jelentős záró irányú feszültség igénybevétele. A transzformátornak a teljes kimeneti energiát tárolnia kell. A telítéses transzformátor nagy vesztesége és melegedése.

Alkalmazás: kis energiájú, de nagyfeszültségű tápegységekben. Külső gerjesztésű: a transzformátor normál működés közben soha sem megy telítésbe. A ki- és a bekapcsolási időt a szabályozó egység szabja meg a kimeneti feszültség függvényében. A transzformátor (folyamatos üzemben) sohasem energiamentes. Ez nagyobb kapcsolgatási frekvenciát eredményez, mint az öngerjesztésűnél volt. A szabályzónak üresjárás esetén is van egy minimális bekapcsolási ideje, ami azt eredményezi, hogy ilyenkor a kimeneti feszültség a névleges fölé emelkedik (betáplálás van a kimeneti kondenzátorba, de nincs energia kivétel, csak ami az önkisüléssel és egyéb veszteségekkel kialakul). A kimeneti feszültség akkor szabályozható jól, ha a kimenet terhelt. Ha elhanyagoljuk a transzformátor veszteségeit, valamint a dióda nyitóirányú feszültségesését, akkor felírhatjuk:

Tt

LL

ttUU

tLUt

LUI

be

pr

sz

ki

bebeki

kisz

kibe

pr

beL

=

=

==∆

γ

Lpr a primer tekercs induktivitása, Lsz a szekunder tekercs induktivitása, γ kitöltési tényező, nsz a szekunder tekercs menetszáma, npr a primer tekercs menetszáma

be

be

pr

szbeki

szszprpr

pr

szbe

be

be

pr

szbeki

tTt

nnUU

nLnLLLU

tTt

LLUU

−=

−=

−=

~~1 γγ

Az előnyök és hátrányok megegyeznek az öngerjesztésűnél tárgyalttal (a telítéses transzformátorból eredő hibák kivételével). Jellemző jelalakok (alacsony terhelés esetén):

Isz a szekunder tekercs árama, Ipr a primer tekercs árama, UCE a kapcsoló tranzisztor CE-feszültsége. toff a kapcsolóelem kikapcsolási ideje, ton a bekapcsolási ideje. A kapcsolóelemet különösen nagy feszültség veszi igénybe, amikor a szekunder tekercs leadja a tárolt energiáját. A terhelés növekedésével csökken az az idő, amikor a transzformátor energiamentes A kapcsolás jelentős csúcsárammal terheli a bemenetet:

be

kibe U

PI 5.5ˆ =

Alkalmazási terület: ~100-150 W tápegységek nagyobb kimeneti feszültséggel, több független kimenettel (pl. motoros hajtások).

Ube+Ukinpr/nsz

Ube

Isz

Ipr

t

t

t

UCE

toff ton

Page 71: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 71

5.4.1.2. Nyitóüzemű (gerjesztő átalakító) tápegység (1T forward converter)

Működés: A tranzisztor bekapcsolt állapotában a primer tekercsen közel lineárisan növekvő áram alakul ki, amely a szekunder tekercsben hasonló áramot indít. A D1 dióda iránya olyan, hogy ez idő alatt az indukált feszültség áramot hajt rajta keresztül a terhelés felé. Ez az áram az L induktivitáson is átfolyik. A tranzisztor kikapcsolása után az L tekercsben tárolt energia miatt indukálódott feszültség a D1 diódát a tárolt energia kisütéséig nyitva tartja és ezen keresztül táplálja a kimenetet (szaggatott vonal). Ez jelentősen csökkenti a kimeneti jel hullámosságát. A tranzisztor kikapcsolt állapotában, ha az induktivitás energiamentes akkor a kondenzátor táplálja a kimenetet. A vasmagban felhalmozott mágneses energiát a kapcsoló félvezető hőveszteséggé alakítja. Gyakorlati kapcsolás energia visszatáplálással:

A tranzisztor bekapcsolási ideje alatt a D2 dióda le van zárva a feszültségirányok miatt, a segéd tekercsben a D3-ra kapcsolódó feszültség miatt áram nem folyik. A tranzisztor kikapcsolása után a D1 lezár és az L tekercsben tárolt energia miatt indukálódott feszültség a D2 diódát kinyitja és ezen keresztül táplálja a kimenetet (szaggatott vonal). A vasmagban felhalmozott mágneses energiát általában a kapcsoló félvezető diszcipálja, azonban a segédtekercsen (amelynek menetszáma megegyezik a primer tekercs

menetszámával) indukálódó feszültség miatt a D3 dióda kinyit és az energiát visszatáplálja a bemeneti tápláló áramkörbe. Ez egyben korlátozza az elektronikus kapcsolóelemre jutó záró irányú feszültség nagyságát is (2Ube). A kimeneti feszültséget a transzformátor áttétel szabja meg, mivel mindkét oldalon azonos időben folyik áram.

γpr

szbe

be

pr

szbeki n

nUTt

nnUU ==

A kapcsolás bemeneti csúcsárama:

be

kibe U

PI 8.2ˆ =

Előny: • A kimeneti feszültséget az áttétel szabja meg, ami stabilabb kimeneti feszültséget eredményez. • A kimeneti feszültség hullámossága kicsi lehet. • D3 alkalmazása esetén a félvezetőket jelentősen kisebb feszültség veszi igénybe záró irányban. • A transzformátornak nem kell a teljes terhelés által felhasznált energiát tárolnia, ami kisebb

méretet eredményez. Hátrány:

• A kimenet zárlata tönkre teheti a tápegységet, mivel közvetlen kapcsolat van a ki- és a bemenet között. Gondoskodni kell a zárlatvédelemről.

Alkalmazás: nagyobb energiájú, de nem nagyfeszültségű tápegységekben, a kb. 100-500 W teljesítmény kategóriában.

külső szabályozó egység

-Ube

+

+ -

szabályozó(PWM)

leválasztó érzékelő

Uki

D1

D2

L

külső szabályozó egység

-Ube

+

+ -

szabályozó (PWM)

leválasztó érzékelő

Uki

D3 D1

D2

L

Page 72: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 72

5.4.1.3. Ellenütemű kapcsolóüzemű tápegység (Push-pull converter)

Működése: Az ellenütemű kapcsolásban két elektronikus kapcsoló (S1 és S2) ellenütemben azonos bekapcsolási idővel kapcsolja az egyenfeszültséget a primer tekercsre (van olyan állapot is terheléstől függően, amikor sem az S1 sem az S2 nincs bekapcsolva). A szekunder oldalon egy 1F1U2Ü kapcsolás (lehetséges az 1F2U2Ü kapcsolás is) az L-C szűrőre kapcsolja az egyenirányított hullámos egyenfeszültséget. PWM moduláció esetén a kapcsolgatás periodicitása állandó, így egyszerűen készíthető szűrő a hullámosság csökkentésére. A kapcsolás úgy működik, mint két nyitóüzemű tápegység kapcsolás, amely közös terhelésre dolgozik.

A kapcsolók átkapcsolása között egy minimális átkapcsolási időt (td) kell hagyni, hogy elkerüljük a két tranzisztor egyidejű vezetését (amelyet a tranzisztorok véges kapcsolási ideje okoz).

2Ttbe <

A félvezetőkkel szemben kapcsolt ultragyors-diódák a mágneses energiát vezetik vissza a betáplálásba. A transzformátor primer tekercseinek szoros csatolásúnak kell lennie, hogy csökkentsük a tranziensek hatását, amikor mindkét tranzisztor kikapcsol. A kimeneten a 2U egyenirányítás miatt egy kedvezőbb hullámosságú jel lesz, mint az együtemű kapcsolásoknál és nagyobb teljesítmények állíthatók elő.

Tt

nnUU be

pr

szbeki 2=

A kapcsolás bemeneti csúcsárama:

be

kibe U

PI 4.1ˆ =

A kapcsolás előnye: • van egy közös visszatérési ága a primer oldalnak, ami zavarvédelmi okokból előnyös.

Hátránya:

• osztott primer tekercses transzformátor (ez gyártás szempontjából hátrányos) • primer tekercseknek szoros csatolásuknak kell lennie a tranziens feszültségek csökkentése miatt,

amikor mindkét tranzisztor ki van kapcsolva. Alkalmazási tartomány: 300 - 750W.

5.4.1.4. Hídkapcsolású kapcsolóüzemű tápegység (Full-bridge converter)

A hídkapcsolású tápegység a legmagasabb teljesítmény kategóriában alkalmazott áramkör. Tipikusan 750 W feletti teljesítményeknél használják. A félhidas kapcsolásokkal ellentétben mindkét hídág aktív kapcsolókat tartalmaz, amely azt eredményezi, hogy a félvezetők statikus (feszültség és áram) valamint dinamikus igénybevétele a legalacsonyabb az eddig tárgyalt kapcsolásokhoz képest. Az S1 és S4, valamint az S2 és S3 kapcsolókat kapcsoljuk párokba, azonban az eltérő tranzisztor potenciálok miatt a vezérlőjeleket egymástól szigetelten le kell választani.

külső szabályozó egység

-Ube

+

+ -

szabályozó (PWM)

leválasztó érzékelő

Uki

D1

D2

L

S1

S2

Page 73: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 73

Az átkapcsolási tranziensek miatt itt is holtidőt kell biztosítani, ami alatt a mágneses energiát a diódák táplálják vissza a tápáramkörbe. Ezzel a félvezetőket terhelő statikus és dinamikus terhelések csökkenthetők.

Tt

nnUU be

pr

szbeki 2=

A kapcsolás bemeneti csúcsárama:

be

kibe U

PI 4.1ˆ =

Hátránya: • több félvezető, nagyobb

kapcsolási veszteség, kicsivel rosszabb hatásfok.

Alkalmazási tartomány: 750-3000 W.

5.4.1.6. A primer oldali kapcsolóüzemű tápegységek jellemző veszteségei

A veszteségek három csoportba sorolhatók: • Statikus veszteségek: általában a szabályzó elektronika nyugalmi teljesítményfelvétele • Dinamikus veszteségek: a félvezetők átkapcsolások alatt fellépő veszteségei és a

transzformátorok nagyfrekvenciás veszteségei a rézveszteség nélkül. • Rézveszteség. A tekercseken és vezetékeken fellépő ohmos veszteség.

A veszteségek frekvenciafüggése: Van egy optimális frekvencia tartomány, ahol a veszteségek minimális értéken tarthatók. Célszerűen a tápegységet ebben a tartományban működtetik. Az egyes veszteségek az alkalmazott kapcsolástól, anyagtól függnek, így az optimális üzemi frekvencia tartomány áramkörfüggő.

5.4.2. Szekunder oldali kapcsolóüzemű tápegységek (DC-DC konverterek)

A szekunderoldali tápegységek a –működési elvük miatt- az átalakításhoz transzformátort nem igényelnek, csak energiatároló elemet. Az energiatároló kisebb teljesítmények esetén kondenzátor, nagyobb teljesítmények esetén tekercs. Általános esetben a közvetlenül egyenfeszültség-forrásról (pl. akkumulátor) működő áramköröket is ide soroljuk, függetlenül attól, hogy nincs közvetlen kapcsolata a hálózati egyenirányító transzformátorral és így nem is szekunder oldalon történik az átalakítás, ezért egyes szakirodalmakban ezt a csoportot transzformátor nélküli kapcsolóüzemű tápegységek elnevezéssel ismerik. A konverterek alacsony bemeneti feszültségűek. Az egyenfeszültség lehet stabilizálatlan vagy esetleg valamilyen szinten stabilizált (pl. gyakori, hogy egy rendszerben egy központi feszültséget állítunk elő -5V-os vagy 24V-os közös rendszer-, majd ebből egyéb segéd tápfeszültségek kerülnek előállításra, pl. 24V, 15V, stb.). A DC-DC konverterek kisebb teljesítmények esetén céláramkörként (hibrid áramkör) kerülnek forgalomba. Méretük és kiképzésük illeszkedik az általuk kiszolgált elektronikához.

külső szabályozó egység

+

Ube

-

+ -

szabályozó(PWM)

leválasztó érzékelő

Uki

D1

D2

L

S1

S2

S4

S3

foptimális

Pd

f

Rézveszteség

Statikus veszteség

Dinamikus veszteségek

Eredő veszteség

Pdmin

Page 74: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 74

A szekunder oldali, vagy alacsony feszültségű tápegységeknek három alaptípusa van: • feszültségnövelő (boost/step up regulator) • feszültségcsökkentő (buck/step down regulator) • polarításváltó (inverting regulator)

Kis teljesítmények esetén gyakran kondenzátoros energiatárolást alkalmaznak, azonban előfordulási gyakorisága miatt a továbbiakban a tekerccsel felépített konvertereket tárgyaljuk.

5.4.2.1. Feszültségcsökkentő tápegység (buck/step down regulator)

Működés: A félvezetős kapcsoló bekapcsolt állapotába (folytonos vonalak): Az induktivitáson közel lineárisan növekvő (bár a vasmag nem lineáris) áram folyik át a kimenet felé. Az áram kezdetben a terhelést táplálja, majd elérve a kimeneti áramnak megfelelő áram-szintet az afölötti áram a kondenzátort tölti egyre nagyobb mértékben. A kondenzátor feszültség ennek megfelelően nő, amit a szabályozó érzékel és egy szint felett kikapcsolja a kapcsolót.

a félvezetős kapcsoló kikapcsolt állapotában (szaggatott vonal): a kikapcsolás pillanatában a tekercs energiát tárolt, így benne feszültség indukálódik (Lenz-törvény szerint). Az indukált feszültség ellentétes a töltés során fellépő feszültség iránnyal, így a diódára nyitóirányú feszültség jut és kinyit. A dióda nyitási ideje alatt áram folyik, amelyet a tekercs tart fenn. Ez az áram a kondenzátor töltésével együtt biztosítja a terhelés áramát. A tekercsből származó áram csökkenése és a növekvő kondenzátor kisülés miatt a kondenzátor feszültsége csökken, amelyet a szabályzó érzékel és bekapcsolja az elektronikus kapcsolót. A fenti folyamat akkor zajlik a leírtak szerint, ha a terhelő áram kisebb egy meghatározott maximális értéknél, de nagyobb a folyamatos áramvezetésre meghatározható határáramnál. Amennyiben a terhelő áram a határáram alatt van és az áramvezetés szaggatottá válik, akkor lesz egy időtartomány amikor a félvezetős kapcsoló nincs bekapcsolva, a tekercs is energiamentes és a kimeneti áramot csak a kondenzátor tartja fenn. Az adott körülmények között nehéz a stabil kimeneti feszültség tartása, mivel a legkisebb rátöltés esetén a feszültség jelentősen emelkedhet, ezért a kapcsolást üresjárásban vagy a szaggatott áramvezetésnek megfelelő terhelésnél kisebb terheléssel lehetőleg nem üzemeltetjük. Különösen üresjárásban okoz gondot, hogy a szabályzónak (amelyik ált. PWM) van egy minimális tbe bekapcsolási ideje, így a kondenzátort csak az önkisülés terheli, míg a töltőáram ennél nagyobb, így a kimeneti feszültség nő. A kapcsolás előnye, hogy a tekercsnek nem kell a teljes kimeneti energiát tárolnia, mivel közvetlen kapcsolat van a kimenet és a bemenet között, ha a félvezetős kapcsoló be van kapcsolva. Folyamatos áramvezetés esetén (It>Ih):

a) A tekercsre konstans feszültséget kapcsolva az áram lineárisan növekszik:

tLUI

tILU L

LL

L ∆∆

=∆⇒∆∆

=∆

b) Az áramváltozás mértéke (∆IL=IL1-IL2) azonos kell, hogy legyen, ha a terhelés állandó, mert egyébként a kimeneti feszültség változna, de a szabályzó állandó kimeneti feszültséget tart:

kiki

bekibe

LLL tL

UtL

UUIII =−

=−=∆ 21

A megengedett ∆IL értéke kb. 20%-a a maximális átlagáramnak. c) A b) összefüggés alapján a kimeneti feszültség meghatározható:

γbekibe

bebeki U

tttUU =+

=

szabályozó egység

+Ube

-

+ -

szabályozó (PWM)

érzékelő

Uki D L C

uL

Page 75: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 75

Határáram:

( )TL

UtL

UIII beki

kiLth γγ

−==∆

== 1222

A kapcsolás bemeneti csúcsárama:

be

kibe U

PI 4.1ˆ =

Jellemző jelalakok: td az az idő, ami alatt a tekercs energiamentes, Ih határam, a folyamatos áramvezetés határa A kimeneti feszültség a határáram alatti működés esetén: Határáram alatt a kimeneti feszültséget az energia egyensúly alapján tudjuk meghatározni, ha a kapcsolás belső veszteségeit elhanyagoljuk:

TULITUU

IUtLUUU

TtIUP

IUPIUP

beki

beki

kikibekibe

bebeL

bebe

kikikibebebe

2

22

2

22

γγ

γ

+=

=−

=∆

=

===

Az összefüggésből látható, hogy ha a γ állandó maradna, akkor csökkenő áramterhelés esetén a feszültség nőne, szélső esetben Ube értékig, ezért a kitöltési tényezőt csökkenteni kell. A saját belső veszteségek is befolyásolják a működést. Az ábra a konstans kimeneti feszültséghez szükséges γ-értéket mutatja változó terhelőáram esetén.

5.4.2.2. Feszültségnövelő tápegység (boost/step up regulator)

Működés: a félvezetős kapcsoló bekapcsolt állapotában (folytonos vonalak): a tekercsen közel lineárisan növekvő áram folyik, a tekercs mágneses energiát tárol. A terhelés áramát a kondenzátor szolgáltatja, így nincs közvetlen a kapcsolat a ki- és bemenet között. A kondenzátor feszültsége a kisütés során csökken, amit a szabályzó érzékel és kikapcsolja a kapcsolót.

γnévleges

Ih Iki

γ

Folyamatos áramvezetés Szaggatott

áramvezetés

Ube-Uki

Uki

IL1IL2

It

iD

iC

UCE

t t t t t

tki tbe

T

Folyamatos áramvezetés

Ube-Uki

Uki

It

t t t

tki td tbe

T

Szaggatott áramvezetés

uLuL

iL iL

It=Ih

Határáram iL

Page 76: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 76

a félvezetős kapcsoló kikapcsolt állapotában (szaggatott vonal): kikapcsoláskor a tekercsben tárolt energia volt, így benne feszültség indukálódik (Lenz-törvény szerint). Az indukált feszültség ellentétes a töltés során fellépő feszültség irányával, a dióda kinyit és áram folyik, amelyet a tekercs tart fenn. Ez az áram a kondenzátor töltésével együtt biztosítja a terhelés áramát. A növekvő kondenzátor feszültség miatt egy adott értéknél - amelyet a szabályzó érzékel - bekapcsolja az elektronikus kapcsolót.

Az induktivitás feszültsége hozzáadódik a bemeneti feszültséghez és a kimeneti feszültség nagyobb lesz, mint a bemeneti feszültség. Megfigyelhető, hogy a tekercs a teljes kimeneti energia szükségletet tárolja, mivel nincs közvetlen kapcsolat a ki és a bemenet között. Ez a szükséges tekercs méretek miatt hátrányos. Jellemző jelalakok: Folyamatos áramvezetés esetén:

γ−=

+=

=−

=−=∆∆

=∆⇒∆∆

=∆

1

21

be

ki

kibebeki

bebe

kibeki

LLL

LL

L

Ut

ttUU

tL

UtL

UUIItLUI

tILU

Határáram:

( )γγ−==

∆== 1

222 LTUt

LUIII ki

bebeL

th

Határáram alatti terhelés esetén a kimeneti feszültség nőne, ezért a kitöltési tényezővel kell azt kompenzálni. A kapcsolás bemeneti csúcsárama:

be

kibe U

PI 5.5ˆ =

szabályozó egység

+Ube

-

+ -

szabályozó (PWM)

érzékelő

Uki D L C

uL

Ube

Uki-Ube

IL1IL2

It

iD

iC

UCE

t t t t t

tki tbe

T

Folyamatos áramvezetés

Ube

Uki-Ube

It

t t t t t

tki td tbe

T

Szaggatott áramvezetés uL

uL

iL iL

It=Ih

határáram iL

Uki

Page 77: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 77

5.4.2.3. Polaritásváltó tápegység (inverting regulator)

Működés: a félvezetős kapcsoló bekapcsolt állapotában (folytonos vonalak): az induktivitáson közel lineárisan növekvő áram folyik, a tekercs mágneses energiát tárol. A terhelés áramát a kondenzátor szolgáltatja, így nincs közvetlen a kapcsolat a kimenet és a bemenet között. A kondenzátor feszültsége a terhelés hatására csökken, amit a szabályzó érzékel és kikapcsolja a kapcsolót.

a félvezetős kapcsoló kikapcsolt állapotában (szaggatott vonal): kikapcsoláskor a tekercsben tárolt energia volt, így benne feszültség indukálódik. Az indukált feszültség ellentétes a töltés során fellépő feszültség irányával, a dióda kinyit és áram folyik, amelyet a tekercs tart fenn. A körben folyó áram a kondenzátort a bemeneti feszültséghez képest ellentétes polaritásra tölti fel. Az induktivitás árama és a kondenzátor árama együttesen biztosítja a terhelés áramát. A növekvő kondenzátor feszültség miatt egy adott értéknél - amelyet a szabályozó érzékel - bekapcsolja az elektronikus kapcsolót. Megfigyelhető, hogy a tekercs a teljes kimeneti energia igényt tárolja, mivel nincs közvetlen kapcsolat a ki és a bemenet között. Ez a szükséges tekercs méretek miatt hátrányos. Folyamatos áramvezetés esetén:

γγ−

==⇒==−=∆121 be

ki

bebekiki

kibe

beLLL U

ttUUt

LU

tL

UIII

Határáram:

( )TL

Ut

LUIII ki

bebeL

th γ−==∆

== 1222

A kapcsolás bemeneti csúcsárama:

be

kibe U

PI 5.5ˆ =

Jellemző jelalakok:

Ube

Uki

IL1IL2

It

iD

iC

UCE

t t t t

t

tki tbe

T

Folyamatos áramvezetés

Ube

Uki

It

t t t

tki td tbe

T

Szaggatott áramvezetés uL

uL

iL iL

It=Ih

határáram iL

Ube+Uki

szabályozó egység

+Ube

-

- +

szabályozó (PWM)

érzékelő

Uki

D

L C

UL

Page 78: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 78

Összehasonlítva a feszültségnövelő és invertáló kapcsolást a feszültség csökkentővel, azt tapasztaljuk, hogy a tekercs méretezésében alapvető különbség van, mivel a feszültségcsökkentő esetén a tekercsnek nem kell tárolnia a teljes kimeneten felhasznált energiát, míg a másik két esetben nincs közvetlen kapcsolat a ki és bemenet között , így az energiát tárolni kell. A fenti tápegységek egyszerű felépítésűek és jó hatásfokúak (η>90% lehet). Összehasonlítva a szekunderoldali kapcsolóüzemű tápegységeket a primer oldali kapcsolóüzemű tápegységekkel látható, hogy a primer oldali tápegységeket nagyobb teljesítmények, és/vagy nagyobb áramok, illetve több kimeneti feszültség esetén alkalmazzuk, míg a szekunderoldali tápegységek elsősorban alacsony tápfeszültségű alkalmazásokban elterjedtek, így elsősorban az elektronikában alkalmazzák őket.

5.4.2.4. Nagyfrekvenciás transzformátorok és tekercsek

A kapcsolóüzemű tápegységekben alkalmazott tekercsek és transzformátorok általában egyedi tervezésű elektronikai egységek, mivel a tápegységek egyedi jellemzői szabják meg értékeiket. Tekercsekből jelentősebb katalógus áramkör készlet áll rendelkezésre, de ott is –mivel a határáramok határozzák meg szükséges értéküket- korlátozott a gyárilag készre gyártott tekercsek alkalmazhatósága. Az alacsony frekvenciás transzformátor anyagok jelentős veszteségeik miatt nagyfrekvencián nem használhatók. Bár a transzformátorok mérete csökken a frekvenciával, de vasveszteségük jelentősen nő. Különösen igaz ez az örvényáramú veszteségekre (a frekvencia négyzetével nő). Ez teszi szükségesség a minél kisebb örvényáramú veszteség érdekében a kohászati pormagok, illetve a mikro-szemcsés ferrit magok alkalmazását. További figyelmet érdekel a nagyfrekvencián jelentős skin-hatás, ami a rézvezeték hatásos keresztmetszetét csökkenti.

5.4.2.5. Teljesítménykapcsolók

A kapcsolóüzemű tápegységekben kisebb teljesítmények esetén teljesítménytranzisztort, teljesítmény MOSFET-et alkalmazunk, nagyobb (több kW) teljesítmények esetén pedig IGBT-t. Az IGBT vezérlés szempontjából hasonlóan viselkedik, mint a MOSFET, de alacsonyabb határfrekvenciával kapcsolgatható (max. 20 kHz), a MOSFET jó szaturációs tulajdonságokkal, de viszonylag nagy vezérlő feszültséggel rendelkezik (5-10V), amely alacsony kimeneti feszültségű tápegységeknél okozhat gondot. A teljesítmény tranzisztorok vezérlésükhöz is energiát igényelnek, illetve a szaturációs feszültségük is jelentősebb, ami nagyobb veszteséget és rosszabb hatásfokot eredményez. A teljesítmény félvezetőket részletesebben a teljesítményelektronika tárgyak tárgyalják.

5.4.2.6. Az analóg és kapcsolóüzemű tápegységek összehasonlítása

Az összehasonlítás a legjellemzőbb paramétereik alapján történik, a működési elvtől függetlenül. A felsorolt paraméterek alapján lehet meghatározni, melyik tápegységet célszerű az adott alkalmazásban felhasználni.

Paraméter Analóg lineáris Kapcsolóüzemű „Line” stabilitás 0.02%-0.05% 0.05%-0.1% „Load” stabilitás 0.02%-0.1% 0.1%-1% Kimeneti jel hullámzása 0.5mV-2mV 25mV-100mVp-p Bemeneti feszültség megengedett változása

±10% ±20%

Hatásfok 40%-55% 60%-80% (max. 95%) Tranziens idő 50µs 300µs Feszültség megtartási idő 2ms 30ms

Forrás: National Semiconductor Corp. A feszültség megtartási idő (holding time) az az idő, amíg a kimeneti feszültség a megengedett határok között marad annak ellenére, hogy a bemeneti feszültség jelentősen megváltozott, vagy megszűnt. A felsorolt paraméterek alapján látható, hogy nagy linearitású, kis zajú és hullámosságú tápegység igény esetén az analóg tápegység előnyös, jó hatásfok esetén pedig a kapcsolóüzemű.

Page 79: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 79

5.5. Szünetmentes energiaellátás

Az alacsony energia igényű elektronikai, információtechnikai eszközök elterjedésével megnőtt a jelentősége a szünetmentes (uninterruptible) tápellátásnak (Uninterruptible Power Supply). Különösen fontos az ilyen tápegységek azon tulajdonsága, hogy a hálózat felöl érkező zavarokat (alacsony és nagyfrekvenciás vezetett zavarok) jelentősen csökkentik. Nagy szünetmenetes rendszereket gyártanak olyan körülményekre, amikor a veszélyes üzem miatt valamely rendszer működőképességét fenn kell tartani áramkimaradás esetére is pl. vegyipari folyamatszabályzó rendszerek, erőművi segédüzem, stb. A modern szünetmenetes tápegységek szinusz alakú kimeneti feszültséggel rendelkeznek és a kimeneti feszültség alacsony harmonikus tartalmú, amely a meddőenergia veszteséget és az EMC zavarásokat csökkenti. A szünetmenetes rendszerek tartalmaznak egy energiatároló elemet (akkumulátor), amely biztosítja a kimeneti energia ellátást áramkimaradás esetére. Az energia ellátásnak védenie kell a táplált rendszert az alábbi jellemző zavarások ellen:

• Feszültségcsúcsok hatása (surge) • Rövid idejű feszültség letörések (sags) • Teljes táphálózat kiesés • Hálózati és inverter frekvencia különbség

A beépített egyéb szűrők védik a rendszert a hálózaton vezetett egyéb zavarástól, pl. felharmonikusok, alacsony és nagyfrekvenciás vezetett zavarok. Egyéb árnyékolási, stb. eljárással a sugárzott zavarok hatásai is csökkenthetők. A leggyakoribb megoldások:

A) Készenléti (stand by) UPS B) Folyamatos üzemű (continuous) UPS C) Line-interaktív

A készenléti üzemmódú UPS elve: Készenléti üzemben a hálózati feszültség biztosítja az energiát a terhelésnek. A készenléti ágban az akkumulátorok folyamatos töltésen vannak (csepptöltés). Hálózati feszültség kimaradás esetén az inverter bekapcsol, az elektronikus kapcsoló nagyon kicsi reakció idővel átkapcsol a készenléti ágra és az energia-ellátás onnan történik. Előny:

• Az akkumulátorok nincsenek folyamatos töltés/kisütésnek kitéve. • Megoldható, hogy a fontos egységek működését tartsuk csak fenn, ami kisebb tárolt kapacitást

igényel. • Alacsonyabb költségigény

Hátrány: • Átkapcsolás alatt tranziensek fordulhatnak elő • Kevésbé stabil, mint a folyamatos üzemű megoldás • A hálózati zavarok szűrésére külön szűrők kellenek.

~~ ~~

AC AC

Akkumulátor töltő inverter

Akkumulátor telep

gyors elektronikus átkapcsoló

S

Túlfesz. védelem

szűrő

Page 80: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 80

Folyamatos üzemű (dupla konverziós) UPS: Az energia ellátás az inverteren keresztül történik. Ez stabil és jól szűrt, zavarvédett megoldást eredményez a stand by rendszerűhöz képest. Általában nagyobb megbízhatóságot igénylő rendszereknél alkalmazzák, mert drágább és alacsonyabb hatásfokú megoldás. Line-interaktív UPS Alapállapotban a hálózat táplálja a fogyasztót, az inverter egyenirányítóként tölti az akkumulátort. Hálózatkiesés esetén az akkumulátor szolgáltatja az energiát az inverter üzembe kapcsolt áramkörön keresztül. Az inverter folyamatosan dolgozik, vagy tölt, vagy táplálja a fogyasztót. Ez gyorsabb reakció időt tesz lehetővé. Bonyolultabb felépítésű, mint a stand by, de képes az esetleges feszültségcsökkenéskor rátáplálni a kimenetre. Előnye a fentieken túl a kisebb méret, hátránya a sok töltés/kisütés hamarabb tönkreteszi az akkut. Léteznek ritkábban használt megoldások is, mint a stand by ferro típus, ahol a kimeneten további transzformátor van, vagy a delta-konverziós UPS, amelynél egy delta átalakítón keresztül mind a direkt ág, mind az inverteres ág egyszerre dolgozik.

~~ ~ ~

AC AC

Akkumulátor töltő inverter

~ ~ AC

AC

Page 81: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 81

6.0 A/D ÉS D/A ÁTALAKÍTÓK A természetben a jelek döntően analóg jelek, amelynek feldolgozása történhet analóg vagy digitális módon. Digitális feldolgozás esetén is a jelet először analóg jelkondicionálásnak vetjük alá, mivel a jelszintek ritkán felelnek meg a digitális átalakítás követelményeinek. A jelek további feldolgozása azonban egyre gyakrabban digitális eszközökkel történik, ezért az átalakítás digitális jelre ritkán kerülhető meg. Ugyanez játszódik le fordítva, ha a jelet kell a folyamatokkal közölni, akkor azt gyakran analóg formában lehet megtenni. A digitális jel átalakítása analóg formára szintén mindennapi gyakorlattá vált, bár ritkábban van rá szükség, mint az analóg jel konverziója. Az analóg jelek a forrásuktól a feldolgozásukig haladva számtalan külső zaj és zavar-hatásnak vannak kitéve. A folyamat során a jeleket erősíteni kell, de az erősítés során a jelre szuperponálódott zaj már nehezen távolítható el, az erősítő a zajt is erősíti, mi több saját nemlinearítása és zaja miatt még ront is azon. Minden szét nem választható zaj és zavar magát az analóg jel által hordozott információt károsítja. Egy analóg jelfeldolgozó rendszert a jel és a zaj arányával jellemezhetünk (S/N):

][lg20 dBuu

NS

zaj

jel=

A digitális jelek esetén azonban nem erősítésről, hanem jelregenerálásról beszélünk, ami lényegesen nagyobb védettséget biztosít a külső behatásokkal szemben. A jel amplitúdója széles határok között változhat, mindössze a jelátmeneteket és azok meredekségét kell időről-időre regenerálni. Bár ez is információ-vesztést okozhat (különösen akkor, ha az információt többek között a jelek időbeli előfordulása hordozza), de ez jobban kézben tartható. Minden előnye mellett azonban meg kell említeni, hogy mivel a digitális jelet valamilyen csonkításos eljárással nyerjük, az analóg jelhez képest kevesebb információt hordoz. Ez az információ vesztés azonban kezelhető és hatása különböző matematikai eljárásokkal csökkenthető. Az analóg-digitális átalakítás hatásvázlata: Az anti-aliasing szűrők feladata, hogy a jelre szuperponálódott, de attól szűréssel szétszeparálható zaj, zavar

komponenseket kiszűrje és ezáltal a szükséges mintavételezési frekvencia csökkenhessen. Az antialiasing szűrők nagy meredekségű, magas rendszámú/fokszámú aluláteresztő szűrők (gyakran kapcsolt kapacitású szűrők). Az anti-aliasing szűrő alkalmazása opcionális, alkalmazhatósága pedig a mindenkori jeltől függ. A mintavevő-tartó (Sample & Hold) áramkörök a jelből meghatározott gyakorisággal mintát vesznek és azt megőrzik a következő mintavételig. A tárolt minta analóg, ezért fontos, hogy értékvesztés ne léphessen fel. A mintavételezés frekvenciájára a mintavételezési törvény, a Nyquist-tétel ad előírást. A kvantáló áramkör a folytonos értéktartományt alakítja véges értékkészletűvé. Ez előfeltétele annak, hogy véges halmazú digitális kódok alkalmazásával a mintát ábrázolni tudjuk. A kódoló áramkör minden egyes kvantálási lépcsőhöz egyedi azonosítót rendel hozzá. Ez teszi lehetővé, hogy az analóg minta digitálisan ábrázolható legyen. A fontosabb egységek tulajdonságaival a további fejezetek foglalkoznak.

Ana

lóg

jel

n bi

t dig

itális

jel

Anti-aliasing

szűrő

Mintavevő-tartó áramkör (S&H)

Kvantáló

Kódoló

jel

t ∆t

jel

t

jel

t

jel

t

0000 0001 0010 0011

Page 82: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 82

A D/A átalakítás hatásvázlata: A D/A átalakító a digitális jelet egy lépcsős analóg jellé konvertálja. A jel jelentős felharmonikus tartalommal rendelkezik. Az aluláteresztő szűrő feladata az átalakító kimeneti jeléből az alap-harmonikus kiszűrése az analóg jel helyreállítására a Shannon-szabály szerint. A sinx/x korrelátor a véges mintavételező impulzus miatti amplitúdó hibát korrigálja. Ez a hiba különösen jelentős, ha a mintavételezett jel maximális frekvencia komponense közel van a mintavételi frekvencia feléhez. A korrelátor elhagyható, ha a mintavételezés nem a Nyquist-tételben meghatározott minimális mintavételező frekvenciával, hanem annál jelentősen nagyobb frekvenciával történik, mert ilyenkor a fenti hiba nem jelentős.

6.1. Az átalakítók jellemzői és paraméterei

6.1.1. Mintavételezés

A mintavételezés elméletileg egy olyan impulzussal történik, amelyik szélessége tart a nullához. Matematikailag a Dirac-delta δ(t) tudja a mintavételezést leírni, a gyakorlatban azonban az ideális mintavevő jelet csak megközelíteni lehet. A mintavételezés véges szélességű jellel történik, amely hatással van a mintavett jel tulajdonságaira is. A mintavétel általában időben egyenletesen történik. A kimenő jel spektrumára vonatkozó összefüggés azt mutatja, hogy a mintavételezés után a kimeneti jel spektruma a mintavételezési frekvenciák körül végtelen számban ismétlődik, azaz a kimeneti jel frekvencia tartományban periodikus lesz. (Ezt alkalmanként ki is használjuk pl, matematikai mintavételezés, túlmintavételezés, stb., lásd bit-stream átalakítók). Tételezzünk fel egy háromszög alakú alapsávi spektrumot (ez a gyakorlatban soha sem ilyen alakú, de az összefüggések ilyen ábrázolás esetén jobban látszanak), akkor a mintavételezett jel kimeneti spektruma: A fenti ábrának megfelelő mintavételezés feltételezi, hogy a mintavételezés ideális jellel, azaz Dirac-deltával történt.

D/A átalakító

Aluláteresztő

szűrő

sinx/x korrelátor analóg jel

n-bi

tes d

igitá

lis je

l

Ω

XA*(Ω)

Ωc ΩT-Ωc ΩT ΩT+Ωc 2ΩT-Ωc 2ΩT 2ΩT+Ωc

analóg jelspektruma XA(ω)

Mintavett jelspektruma

hiba Ωc ΩT 2ΩT 3ΩT

Ω

Spektrum ideális mintavételezés esetén

Spektrum véges impulzusszélességű jelleltörtént mintavételezés esetén A)

Page 83: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 83

Amennyiben a mintavételezés egy valóságos jellel történik, akkor a kimeneti jel spektruma torzul: A kimeneti amplitúdó egy sinx/x alakú amplitúdó hibát szenved el, amelynek mértéke a frekvenciával nő. Ez a hiba két úton is csökkenthető:

• A mintavételezés nem 2fc frekvenciával, hanem annál nagyobb 4..10fc frekvenciával történik. Ez jelentős minta felesleget okoz, de egyéb beavatkozást nem igényel.

• A mintavételezés a minimális szükséges mintavételi frekvenciával történik, azonban az amplitúdót sinx/x függvénynek megfelelően erősítjük, így kompenzálva az amplitúdó hibát (sinx/x korrelátor).

A mintavételezést és a mintavett jel visszaállítását két fontos tétel szabja meg. a) Nyquist-tétel: A mintavételezés frekvenciájának (fT) legalább kétszer nagyobb frekvenciának kell lennie, mint a mintavett jel legmagasabb frekvenciájú komponensének frekvenciája (fc).

cT ff 2≥ Ez az összefüggés azonban csak Dirac-deltával történő mintavételezésre áll fenn, ha véges impulzusszélességű jellel mintavételezünk, akkor ennél nagyobb arányt kell választanunk a mintavételezéskor fellépő amplitúdó-hiba csökkentésére.(lásd fentebb) Amennyiben a mintavételezés a Nyquist-frekvenciánál kisebb frekvenciával történne, akkor átlapolódás következne be: Az ilyen jelből az eredeti jel többé nem állítható vissza! Shannon-Kotelnikov tétel: A mintavételezési szabály szerint mintavett jelből az analóg jel torzításmentesen visszaállítható ideális interpolációs függvénnyel. A valóságban a jel visszaállítása egy aluláteresztő szűrővel történik. (Az ideális aluláteresztő függvény súlyfüggvénye megegyezik az ideális interpolációs függvénnyel, A gyakorlatban ideális szűrő nem valósítható meg, ezért a visszaállított jel hibát tartalmaz, amely korrigálható, pl. sinx/x korrelátorral.) Egyéb interpolációs eljárások is ismertek a jel visszaállítására. Idegen frekvencia hatása és szűrése:

A mintavételezni kívánt analóg jelre gyakran szuperponálódik zaj vagy zavar jel, amely alapvetően megváltoztathatja a mintavételezés követelményeit. Mintavételezés szempontjából az okoz gondot, ha az idegen frekvenciák megnövelik az eredeti analóg jel sávszélességét, mert ilyenkor meg kell növelni a mintavételi frekvenciát is, pl. lassan változó hőmérséklet mérése elektromágneses zavaró térben.

hasznos jel +zavarás

t

hasznos jel

Ωc ΩT=4Ωc Ω

Spektrum ideális mintavételezés esetén

Spektrum véges impulzusszélességű jelleltörtént mintavételezés esetén

hiba

B)

lg Ω

A(Ω)

Ωc ΩT 2ΩT

analóg jel spektruma

Mintavett jel spektruma frekvencia

átlapolódások

Page 84: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 84

A példa szerinti jel spektruma (vázlatosan): Az fTz>>fT kell legyen, ami jelentősen megnöveli a feldolgozással kapcsolatos követelményeket, a hardver igényt és a számolási igényt is. A megoldás a jel előszűrése (ha ez megoldható): a) nagymeredekségű idegenjel (anti-aliasing) elnyomó aluláteresztő szűrő

A szűrő nagymeredekségű, ami lehetővé teszi, hogy a szükséges mintavételi frekvencia csak kis mértékben haladja meg a hasznos jel határfrekvenciájának (fc) kétszeresét. fT≥(2…3)fc Pl. A beszéd felső sávhatára analóg telefon esetén 3400 Hz, a digitálisan átvitt jelhez 8000 Hz frekvenciával mintavételezünk.

b) kismeredekségű idegenjel elnyomó aluláteresztő szűrő

A szűrő kismeredekségű,- amit elektronikusan egyszerűbb megvalósítani- de nagyobb mintavételi frekvenciára van szükség. fT≥(4…8)fc A szűrés további előnyös tulajdonsága az idegenjel elnyomás mellett, hogy a hasznos jeltartományból kieső zajt is szűri. A fenti ábra szerint a széles sávban szétterjedő zajt csökkenti annak szűrésével (ezt az eljárást is felhasználják digitális jelfeldolgozáson alapuló konvertereknél, pl. bit-stream konverterek)

6.1.2. Követő-tartó áramkörök (S&H)

A követő tartó áramkör feladata A/D átalakítók esetén a mintavett jel tartása a következő minta beérkeztéig, illetve D/A átalakító típusától függően az átalakító kimeneti jelének tartása a következő érvényes kimeneti jel kialakulásáig. A feladat megoldására különböző rendű tartóáramköröket alkalmaznak. Elsőrendű tartókat D/A kimeneteknél a lépcsős jel simítására és 0.-rendű tartókat a mintavett jel tartására a bemeneten (ettől eltérő megoldások is ismertek különösen az interpolátorokat tartalmazó átalakítóknál). Egy tipikus S&H kapcsolás elvi vázlata: Az S kapcsoló zárásakor a kondenzátor feltöltődik a bemeneti feszültségre (követés), majd annak nyitásakor ezt az értéket megtartja (tartás), mivel a nagy bemeneti ellenállású műveleti erősítő bemenetén áram nem

hasznos jel szűrő karakterisztika

lgffc fT

A(f)

fc fT

hasznos jel szűrő karakterisztika

lgf

A(f)

átengedett zaj kiszűrt zaj

lgf

G(f) zaj teljesítmény spektruma

fc

zajspektrum Aluláteresztő szűrő

hasznos jel spektruma hasznos jel +zavarás spektruma szükséges mintavételi frekvenciák

lgf fc fcz fT fTz

A(f)

Page 85: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 85

folyik (vagy csak pA nagyságrendű). A visszacsatolás gondoskodik az ofszet hiba csökkentéséről. A valóságos kapcsoló, erősítők és a kondenzátor hibája miatt az áramkör statikus és dinamikus hibával is rendelkezik. A követő-tartó áramkörök –miután egy időben kell kielégíteni a gyors működés és a jel statikus tartása feladatokat is- több hibával rendelkeznek, amelyek közül a fontosabbak:

• Apertura hiba: a követésből a tartásba átkapcsoláshoz szükséges idő. • Apertura jitter: az apertura idő bizonytalansága. • Áthatás: a tartás ideje alatt megváltozott jelből a nem ideális kapcsoló miatt a kimenetre jutó jel. • Tartási hiba: a kimeneti jel változása tartási idő alatt.

A stabil tartáshoz nagy kondenzátor kellene, de a gyors, dinamikus működéshez kicsi kell, ezért ténylegesen kompromisszumot kell kötni a paraméterek tekintetében. A modern átalakítókban az S&H áramkörök be vannak integrálva az átalakítókba, bár önálló katalógus áramkörként is hozzáférhetők.

6.1.3. Kvantálás

A kvantálás fizikailag a jel végtelen értékkészletű értéktartományának bekorlátozását jelenti véges értéktartományba. Két kvantálási szint közötti különbséget kvantálási lépcsőnek nevezünk (q). A kvantálási lépcső finomsága meghatározza az átalakító felbontását, azonban túlzottan kicsi kvantálási lépcsők technikailag nem valósíthatók meg, illetve a zaj mértéke nagyobb, mint a lépcső, akkor a jel értékelhetetlen lesz. A gyakorlatban 12-14 bites (binárisan kódolt) átalakítókat alkalmaznak, bár létezik 16 bites átalakító is, illetve matematikai úton ennél finomabb felbontás is előállítható. Nagy léptékű kvantálási lépcső esetén, pedig a kvantálási zaj növekszik meg. Szórakoztató elektronikai célokra a 16 bit nem elegendő a jel nagy dinamika tartománya miatt, ezért ott a hagyományostól eltérő technikákat alkalmaznak a nagy bitszámú jelek konverziójára. Kvantálási lépcső: Jelöljük a teljes kvantálási jeltartományt FS-vel (full scale)! Jelöljük b-vel a természetes binárisan kódolt (lásd később) kvantálási szintek ábrázolásához szükséges bitek számát.

b

FSq2

=

Pl. Legyen FS=10 V, b=12 bit, akkor a kvantálási szintek száma 4096 és a kvantálási lépcső nagysága q=2.4 mV. A kvantáló áramkörök lehetséges transzfer függvényei az ábrázolásra használt kód szerint (kettős polaritású jelek kvantálása): a) előjelbites számábrázolás esetén

+ -

- +

ube

uki

C S

Mintavételező/követő kapcsoló

FS

ube

uki

q

q

Page 86: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 86

b) eltolt bináris (ofszet bináris), kettes-komplemens kódolás esetén Az a megoldás szerint két nulla is létezik attól függően, hogy pozitív oldalról vagy negatív oldalról vizsgáljuk a jelet. A b megoldás esetén aszimmetrikus lesz a pozitív és a negatív tartomány, amennyiben egyszerű csonkításos kerekítést használunk (azonos pozitív és negatív jelek abszolút értékének nem azonos a kódja), de nincs kettős nulla. A kvantálási hiba max. q, míg a kerekítéses megoldás esetén a kvantálási hiba kisebb lesz, max. q/2. A gyakorlatban a b megoldás az elterjedtebb a kerekítéses kvantálással. Kvantálási hiba a két lehetséges kialakítás esetén: Kvantálási zaj: A kvantálási hiba a jelben zajként jelenik meg. A hiba egy kvantálási lépcsőn belül egyforma valószínűséggel fordul elő [p(e)=1/q a –q/2…+q/2 tartományban]. Minden bit a jel/zaj viszonyt ~6 dB-vel javítja, ami azt sugallja, hogy növelni kell a bit-számot. A bit-szám növelése ( és így a felbontás is) azonban csak egy meghatározott értékig célszerű, mivel efölött a kvantálási lépcső kisebb lesz, mint az áramkör saját zaja, így a legalacsonyabb bit értéktelen lesz (pl. gyakori, hogy a 16 bit felbontású átalakító adatlapja azt tartalmazza, hogy a hasznos bitek száma 14.) A magasabb felbontású átalakítók műszakilag bonyolultabbak és jelentősen drágábbak is, ezért költség-hatékony megoldásokat kell alkalmazni.

6.1.4. Kódrendszerek

A kvantálási lépcsők leírására több kódrendszer is kialakult. Tovább bonyolítja a helyzetet, hogy a digitális technikában nincs előjel, így a negatív bemeneti jeltartományokat valamilyen kóddal kell leírni. Csak egy polaritású jelek esetén használják a természetes bináris kódokat, amelyeknek minden bitje hasznos és nem kell előjel konvenciót alkalmazni. Az előjel bites esetén az első bit jelzi a ± értékeket (0-pozitív,1-negatív), a további bitek a természetes bináris kódnak felelnek meg. Az értékes bitek száma b hosszúságú ód esetén: b-1. Egyszerűen visszaállítható a negatív jeltartomány a kódból. A kód az a karakterisztika szerinti átalakítónak felel meg. A kettes komplemens különösen előnyös, ha további matematikai műveleteket végeznek a jelen, mivel ez az ábrázolás megegyezik a szokásos számábrázolással mikroszámító-gépeken. Gyakran alkalmazott kódolási mód. A kód a b karakterisztika szerinti átalakítónak felel meg. Az egyes komplemens két nulla szintet eredményez, ami a visszaállítást megnehezíti. A kód az a karakterisztika szerinti átalakítónak felel meg. Gyakori megoldás az eltolt bináris (ofszet bináris) kód, amely úgy épül fel, hogy a teljes tartományt (FS) egy folyamatosan binárisan változó kóddal fedi le úgy, hogy ha az első bit nulla akkor az negatív érték, ha 1 akkor az pozitív érték (lehet fordítva is). Így a kódtáblázat közepén van a nulla érték (nincs két nulla, de aszimmetrikus a kódtáblázat egy fél kvantálási lépcsővel, bár ez csökkenthető, ha a kerekítéses kvantálási szabályt használjuk). Egyszerűen visszaállítható a negatív jeltartomány a kódból. A kód a b karakterisztika szerinti átalakítónak felel meg. Léteznek kifejezetten digitális műszerek számára BCD kódot használó átalakítók is, bár jelentőségük csökken.

e(q) ube

q e(q)

ube q

ube q

uki

q/2

kerekítéses kvantálás esetén

csonkításos kvantálás esetén q

Page 87: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 87

Egy példa alapján vizsgáljuk meg az egyes kódok kialakítását. Tételezzünk fel egy 4 bites, 16 kvantálási lépcsős átalakítót. A leggyakoribb kódok esetére ( ):

Kvantálási lépcső Kódok

(decimális számmal leírva) Előjelbites 2-es komplemens

1-es komplemens

Ofszet/ eltolt bináris

+7/8 0111 0111 0111 1111 +6/8 0110 0110 0110 1110 +5/8 0101 0101 0101 1101 +4/8 0100 0100 0100 1100 +3/8 0011 0011 0011 1011 +2/8 0010 0010 0010 1010 +1/8 0001 0001 0001 1001 0+ 0000 0000 0000 1000 0- 1000 1111 -1/8 1001 1111 1110 0111 -2/8 1010 1110 1101 0110 -3/8 1011 1101 1100 0101 -4/8 1100 1100 1011 0100 -5/8 1101 1011 1010 0011 -6/8 1110 1010 1001 0010 -7/8 1111 1001 1000 0001 -8/8 1000 0000

6.1.5. Átalakítók pontossága és hibái

Az A/D és D/A átalakítók a bennük alkalmazott jelentős számú elektronikus kapcsoló, ellenállás-hálózat, stb. miatt nem ideálisak. Az alkatrészek nem ideális volta statikus hibát, a tranziens viselkedése dinamikus hibát eredményez.

6.1.5.1. Statikus hibák

Ábrázoljuk az átalakítók transzfer karakterisztikáját a lépcsős karakterisztikája helyett egy azt helyettesítő egyenessel. A hibákat az A/D átalakító transzfer karakterisztikáján mutatjuk be, de hasonlóak a D/A átalakító statikus hibái is. Jelöljük a kimeneti digitális kódot Dki-vel, és tételezzük fel (ez a gyakorlat is), hogy az egymást követő kódok skálán lineárisan növekvő értéket mutatnak. a) ofszet hiba b) erősítés hiba c) Linearítási hiba

ideális

Ube

Dki

valóságos

ofszet hiba

ideális

Ube

Dki

valóságos

ideális

Ube

Dki

valóságos

Page 88: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 88

d) Monotonitási hiba (növekvő jelhez nem magasabb értékű kód tartozik) e) Hőmérsékleti hiba (TC) a paraméterek változása a hőmérséklet függvényében. Az eredő statikus hiba:

A hibák egy időben jelentkeznek, ezért a statikus hibára –a műszereknél megszokott módon- egy teljes skálára (FS-re) vonatkoztatott hiba százalékot és a kis kvantálási lépcsők miatt bitekben kifejezett hiba-tartományt szokás megadni.

6.1.5.2. Dinamikus hibák

A dinamikus hibák forrása az egyes elemek (elsősorban a nagy tömegben alkalmazott elektronikus kapcsolók) tranziens hibái. Pl. D/A átalakítók kapcsolási hibái: Az átkapcsoláskor túllövések jönnek létre, amelyek nem kerülhetnek a kimenetre, bár a kimeneti aluláteresztő szűrő ezeket egyébként simítaná. Az átkapcsolási tranziensek csökkentésére átlapolásokat használnak, azaz a jelet csak a tranziens lezajlása után engedik a kimenetre, ami azonban a kapcsolási időket növeli, az áramkör sebességét csökkenti. A különböző hibák együtt, szétszeparálhatatlanul fordulnak elő, ezért a dinamikus viselkedést a konverziós/átalakítási idővel jellemezzük. Ez az az idő, ami

• A/D esetén a bemenetre kerülő jelből a digitális kód megjelenéséig (átalakítási idő), • D/A esetén a bemenetre adott digitális kód alapján a kimeneti feszültség megjelenéséig szükséges

idő. Az A/D átalakítóknál egy speciális kimeneten keresztül jelzik a konverzió lezajlását és a kimeneten levő kód helyességét. Ez a kimenet a „vége a konverziónak” EOC (end of conversion). A konverziós idő és a beállási idő között szoros összefüggés van. Pl. D/A esetén, ha a beállási idő 1 bitre van megadva, akkor az egyben a konverziós idő is. A konverziós idő megszabja a maximális átalakítási frekvenciát is, de a megengedhető maximális jelfrekvencia ettől eltérhet, mert figyelembe kell venni, pl. a D/A átalakítóknál a kimeneti jel maximális jelváltozási sebességét (slew rate) is. Hibát okoz továbbá az is, hogy a mintavételezés indításától a tényleges mintavételezésig idő telik el (apertura késés), amely befolyásolja a jel visszaállíthatóságát, illetve megjelenik az apertura jitter az apertura késés bizonytalansága is.

ideális

Ube

Dki

valóságos

monotonitási hiba

valóságos ideális

Ube

Dki

hibasáv

t

Uki glitch

Page 89: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 89

6.2. D/A átalakítók (DAC)

A D/A átalakítók feladata egy digitális jel analóg jellé alakítása. A digitális jelek lehetnek sorosak vagy párhuzamosak. Az alfejezetekben bemutatott klasszikus átalakítók párhuzamos bemenetűek. A soros bemenetűk a speciális átalakítók fejezetben ismertetett szigma-delta átalakítókon alapulnak elsősorban vagy tartalmaznak egy soros-párhuzamos átalakítást belül. A D/A átalakítók kimenetei általában 0. rendű tartó áramkört tartalmaznak, amelynél két digitális kódnak megfelelő analóg jel között tartjuk az előző kimeneti értéket, így feszültség ugrások keletkeznek a kimeneti jelben, amelyet aluláteresztő szűrővel simítunk. Léteznek elsőfokú integráló, illetve interpolációs szűrővel ellátott kimenetű átalakítók is, amelyeknél két minta közötti feszültségváltozás valamilyen eljárással kerül kialakításra (pl. lineáris interpoláció, vagy görbe szerinti interpoláció, stb.).

6.2.1. Súlyozott áramok módszere

Az áramkör működése azon alapul, hogy kettő hatványai szerint súlyozott áramgenerátorokat a kódnak megfelelően kapcsolnak (vagy nem kapcsolnak) egy áramösszegző kapcsolásra. A súlyozott áramgenerátorokat egy stabil referencia feszültség valamint kettő hatványai szerint súlyozott ellenállások segítségével hozzák létre úgy, hogy az áramösszegző pontban a feszültséget közel földponton tartják egy műveleti erősítővel, így az áramösszegzés nem befolyásolja az egyes részáramok nagyságát.

Jelöljük az n bit hosszú kód i. bitjének (0≤i≤n-1) értékét αi-vel. Az αi két értékű lehet 0 vagy 1. A legmagasabb helyi értékű bit (MSB, α0) szolgáltatja a kimeneti áram felét, míg a legkisebb helyi értékű (LSB, αn-1) bit szabja meg a felbontást. Ha a megfelelő bit αi=1, akkor az Si kapcsoló az UREF feszültséghez, αi=0 esetén pedig a jelföld vezetékhez kapcsolódik. Megjegyezzük, hogy létezik olyan alapkapcsolás is, ahol nem váltó kapcsolók hanem záró érintkezők vannak (ami gyártástechnikai szempontból előnyös, mert könnyebben realizálható) és csak az UREF-hez kapcsolódnak a bemenetek, ami azonban több szempontból is

hátrányos, pl. állandóan változó bemeneti ellenállás zajt termel, a nem használt bemenetek szabadon vannak, ami zaj forrása lehet. Az i. ág árama:

( ) RUI

i

REFii 12 +

= α

A kimeneti feszültség:

( )∑∑−

=

=+

−=−=1

0

1

012

n

i

iREF

n

iiki i

UIRU α

Az összefüggésből látható, hogy a kimeneti feszültség nem függ az ellenállás konkrét értékétől, csak az αi értékétől. Az átalakító hibái: a) A kimeneti feszültség rendszeres hibával rendelkezik, amely megegyezik az LSB bit által a kimeneti feszültségben okozott jelváltozással. Elméletileg, ha minden bit 1, akkor a kimeneti feszültségnek UREF értékűnek kellene lennie. Az eltérés (hiba):

nREF

hUU

2=

b) Az ellenállásokat nagyon széles skálán kell gyártani nagy pontossággal, ami különleges gyártási előírásokat jelent, de még így is bekorlátozza a maximális kódhosszt. (pl. 10 bit esetén a legnagyobb és legkisebb

- + uki

R 2R

4R

8R

2nR

UREF

MSB

LSB

S0

S1

S2

Sn-1

Digitális kód [α0……αn-1]

∑Ii I0

I1

I2

In-1

Page 90: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 90

ellenállás aránya 210=1024). Integrálási technikákkal általában a pontos abszolút értékű ellenállások gyártása nehezen valósítható meg, sokkal egyszerűbb pontos ellenállás arány előállítása. A műveleti erősítő elhagyásával és az áramösszegző pont kivezetésével áramkimenetű D/A is előállítható. Ebben az esetben az áramösszegzés külső áramkörökkel valósul meg.

6.2.2. Létrahálózatos átalakító

Feszültség kimenetű átalakító: A létrahálózatos átalakítók kivédik az előző kapcsolás legnagyobb hátrányát a széles skálán nagy pontossággal gyártandó ellenállások szükségességét. A működés azon az elven alapul, hogy tetszőleges hosszúságú létrahálózat hozható létre úgy, hogy bármely csomópontján felvágva a kapcsolást a mögöttes ellenállás értéke mindig ugyanannyi. A kimeneti áramösszegző műveleti erősítő nélkül az átalakító áram kimenetű is lehet a ∑I kimeneten. A létrahálózat működési elve:

Az ellenállások eredője minden csomópontra -az ábrán látható módon- 2R, amely párhuzamosam kapcsolódva a másik 2R ellenállással R ellenállást ad eredőben. Ez összeadódva a vele sorba kapcsolt R ellenállással újra 2R ellenállást ad eredőben és ez így folytatódik tovább. Elvileg

végtelen hosszúságban folytatható a létra, de a valóságban az elektronikus kapcsolók műszaki megvalósíthatósága, illetve annak hibái, valamint az egyre kisebb áram, ami a kapcsolókon átfolyik és a vele összehasonlítható zaj korlátozza az átalakító fizikai hosszát és így a gazdaságosan elérhető felbontást is. Az átalakítónak –az előző kapcsoláshoz hasonlóan- van statikus hibája, mert LSB-nek megfelelő áramhiány lép fel az áramösszegző ponton (ez gyakorlatilag az utolsó, a földvezetékhez közvetlenül csatolt, ellenálláson elfolyó áram).

⎟⎠⎞

⎜⎝⎛ −−=

=

nREFki

REF

UU

RUI

211max

A kapcsolás előnye, hogy nem az ellenállások abszolút értékét, hanem az arányát kell pontosan tartani, ami technikailag könnyebben megoldható. A kapcsolók nem feszültséget, hanem áramot kapcsolnak, mivel a

UREF

S0 S1 S2 Sn-1

2R 2R 2R 2R 2R

R R R I I/2 I/4 I/2n

I/2 I/4 I/8 I/2n

∑I

U

I/8

eredő R 2R R 2R R

- + uki

UREF

Dig

itális

kód

[α0…

…α

n-1]

S0 S1 S2 Sn-1 2R 2R 2R 2R 2R

R R R I I/2 I/4 I/2n

I/2/ I/4 I/8 I/2n

∑I

R

U

V

I/8

Áram kimenetű átalakító

Feszültség kimenetű átalakító

Page 91: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 91

műveleti erősítő invertáló pontja virtuális földponton van, így mindkét kapcsolóág földpotenciálú. Az alapvető problémát a fizikailag megvalósítható kapcsolók illetve az azokon átfolyó eltérő áramok okozta hibák jelentik. A létrahálózatos kialakításon belül -fizikai megvalósítás tekintetében- több almegoldás is lehetséges. Az átalakító gyakran alkalmazott a közepes sebességű átalakítók kategóriájában. Feszültség kimenetű létrahálózatos konverter kialakítása: A létrahálózat fordítottan is megtáplálható, ez esetben a kimenet közvetlenül feszültség.

6.2.3. Közvetlen/teljesen dekódolt átalakító

A teljesen dekódolt átalakítók nagysebességű (flash) átalakítók, amelyeknél a digitális kódnak megfelelő analóg érték egy lépésben jelenik meg az átalakító kimenetén.

Az átalakító nagyszámú kapcsolót tartalmaz (2n-1), ezért gyakran nem egy lépésben dekódolják a kimeneti jelet, hanem két lépésben: egy durva (néhány bit) kapcsolóval kiválasztjuk a kimeneti jel tartományának egy részét, majd egy finom felosztású kapcsolóhálózattal a tartományon belül dekódoljuk a kimeneti feszültséget. A finom felbontást végző áramkör referencia feszültségei szabadon kötődnek a kiválasztatott tartományok alsó és felső értékhatáraihoz. A működési elvet egy 3 bites (a valóságban ilyen alacsony bitszámú átalakító nem létezik) átalakítón keresztül mutatjuk be. A legalacsonyabb helyi értékű bit (a0, LSB) fogja a legtöbb kapcsolót működtetni egyszerre. Ha értéke 0, akkor a kapcsolók lefelé, ha 1, akkor felfelé kapcsolnak. Ugyanígy haladunk a kiment felé. Az MSB bit választ, hogy a jeltartomány alsó felében legyen a kimeneti feszültség vagy a felső felében. A kapcsolók átalakítása minden bit-szinten egyszerre történik meg, ezért nagyon gyors lesz az átalakító. A rendszeres hiba egy LSB értékű lesz, mivel a maximális kimeneti jel az ábra alapján:

87

max REFAD UU =

6.3. A/D átalakítók (ADC)

Az A/D átalakítás a gyakorlatban a D/A átalakításnál sokkal gyakrabban előforduló feladat. Az analóg világból az információt a digitális feldolgozó egységek felé A/D átalakítóval visszük be. Ennek jósága, megbízhatósága befolyásolja a teljes digitális jelfeldolgozást.

6.3.1. Számláló típusú átalakító

Az átalakító tulajdonképpen egy kompenzációs elven működő rendszer, ahol egy monoton növekvő lépcsőfeszültséget állítanak elő D/A átalakító segítségével. A monoton növekvő digitális kódot, amelyik a D/A-t vezérli egy bináris számláló állítja elő. A lépcsős feszültséget összehasonlítva (komparátorral) a bemeneti jellel érzékelhető, hogy meddig kisebb a bemeneti jel, mint a monoton növekvő lépcsős feszültség. Amikor a lépcsős feszültség nagyobb lesz, mint a bemeneti jel, akkor a számlálás leáll. Az EOC kimenet jelzi, hogy a kód a kimeneten rendelkezésre áll (End of Conversion). A belső D/A átalakító bemenetén megjelenő digitális kód lesz az érvényes kimeneti kód értéke.

+

-

U

V ∑I

R-2R

UREF

Uki Digitális kód

UREF

R

R

R

R

R

R

R

R

a0 a1 a2 1 0 1

UDA

10

1

Page 92: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 92

A módszer hátránya, hogy lassú, a konverziós idő a bemeneti feszültség nagyságától függ. Ha T az oszcillátor periódus ideje és n bites az átalakító, akkor a maximális konverziós idő:

Tt nkonv 2=

6.3.2. Sorozatos közelítéses (szukcesszív approximációs) átalakító

A szukcesszív approximációs regiszter bitenként (az MSB bittel kezdve) egymás után állítja be a kimenetet 1-re. Az MSB bit beállítása után (a többi bit 0) a D/A kimenetén kapott feszültséget összehasonlítjuk a bemeneti feszültséggel. Ha a bemeneti feszültség nagyobb, akkor a bitet 1-ben hagyjuk, ha kisebb, akkor visszaállítjuk 0-ra. Ezután az eggyel alacsonyabb helyi értékű bitet a fentiekhez hasonlóan beállítjuk. A teljes kód az n. lépés után áll be, így a teljes konverziós idő legalább:

nTtkonv = Példa a konverzió folyamatára Az áramkör egyszerű felépítésű, népszerű, általános felhasználási célú áramkör.

+ -

A

D

n-bites számláló

n-bit kód kimenet

ube

oszcillátor+ vezérlő start

stop

EOC UDA

ube

start stop számlálás

+ -

A

D

Szukcesszív approximációs regiszter

(SAR)

n-bit kódkimenet

ube

start EOC

Oszc.

t

FS

ube

n-3. bit=0 (FS/16) n-2. bit=1 (FS/8) n-1. bit=0 (FS/4) n. bit=1 (FS/2)

UDA

D/A átalakító kimeneti jele

Page 93: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 93

6.3.3. Közvetlen átalakító

A közvetlen átalakítók nagyszámú komparátort és azok kimeneteit feldolgozó döntési logikát tartalmaznak. Egyes szakirodalmak teljesen párhuzamos illetve flash komparátorok néven is nevezik ezt a típust. A kapcsoláshoz szükséges komparátorok száma a bit- hossztól függ m=2n-1. A döntési logika tulajdonképpen egy priorítás dekóder, amely megvizsgálja, hogy melyik a legnagyobb priorítású, még kapcsolt komparátor, és annak a kódját adja ki a kimeneten. A konverzió az összes komparátoron egy időben megy végbe így igen gyors, az átalakító tipikusan a MHz tartományban használható. A nagy sebesség mellett hátránya, hogy bonyolult felépítésű áramkör.

6.3.4. Kettős meredekségű (dual slope) átalakító

Szokásos elnevezése még a kétszeres integráló átalakító. Lassúbb átalakításoknál, ahol a villamos hálózati zavarhatások csökkentése is fontos, alkalmazzuk az egyes és a kettős meredekségű átalakítókat. Kedvezőbb tulajdonságai miatt a kettős meredekségű az elterjedtebb. Az alapelv a kettős integráláson alapul, ahol egy kondenzátort állandó ideig töltünk a bemeneti jellel, majd a kisütést egy ismert állandó árammal végezzük el. Az állandó idejű töltés lehetővé teszi, hogy megfelelően választott idő esetén a kondenzátor integráló hatása miatt kiszűrje az átalakítandó jelre szuperponálódott hálózati frekvenciás zavarjeleket (50 Hz és annak szub– és felharmonikusait). Az átalakító blokkvázlata: Az első lépcsőben (a kapcsoló 1. állapotában) a bemeneti jelet integráljuk egy meghatározott tm ideig. Az időt a számláló méri. Ha T az oszcillátor periódus ideje, akkor n bites számláló esetén:

tm=2nT.

A számlálás a maximális értékről lefelé történik, amíg a számláló el nem éri a 0 értékhez tartozó túlcsordulást. Az integrálás ideje alatt a bemeneti feszültség nem változik (Nyquist-tétel).

UREF

3/2R

R

R

R

R

R

R

R/2

+ + + +

+ + +

Ube

R

egis

zter

+ dö

ntés

i log

ika

n bi

t dig

itális

kód

kim

enet

mintavétel start

-

+-

+Ube

-UREF R

C

vezérlő számlálóoszc.

start

n bit kimenet

2

1 Ui

Page 94: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 94

Az integrátor kimeneti feszültsége (a mérés kezdetén a kondenzátor energiamentes!):

mbe

t

bei tRCUdtU

RCU

m

−=−= ∫0

1

A kisütés (2. kapcsoló állás) egy ismert feszültséggel (UREF) történik (a kisütéshez szükséges időt is a számláló méri úgy, hogy most felfelé számol):

( )

m

kREFbe

kREF

mbe

kREF

i

tt

tREFi

ttUU

tRC

UtRCUt

RCUUdtU

RCU

km

m

=

+−=+=−−= ∫+10

Legyen a kisütési idő tk=zT, ahol z a számolt impulzusok száma, akkor

kzUzT

zTUU

skons

nREF

nREFbe ===321tan

22

A bemeneti feszültség tehát egyenesen arányos a leszámolt impulzusok számával, így a regiszter tartalma a kisütés végén közvetlenül reprezentálja a bemeneti feszültség nagyságát. A kettős integrálás az integrátor paramétereinek hatását is minimalizálja. Amennyiben a tm értékét úgy választjuk meg, hogy az a hálózati frekvencia periódusidejének (20 ms) egész számú többszöröse legyen, akkor a hálózati zavarásokból származó elektromágneses zavarjelek hatása lényegesen csökken, mert kiintegrálódnak. Az átalakító két alapvető tulajdonsága, tehát az, hogy lassú és jó zavarszűrési képességű különösen alkalmassá teszi őket lassú ipari folyamatok méréstechnikájában és digitális műszerekben történő felhasználásra.

6.4. Speciális átalakítók

A klasszikus A/D és D/A konverterek precíz kialakítást igényelnek és a mintavételezési frekvencia csökkentése érdekében közel a Nyquist-frekvencia közelében mintavételeznek, ami feltételezi a jó minőségű anti-aliasing szűrő kialakítását. Az áramkörök jelentős része analóg vagy mintavételezett analóg jelekkel dolgozik. A döntően digitális jelekkel és nagybonyolultságú digitális áramkörökkel dolgozó átalakítók, pl. a szigma-delta átalakítók azonban jelentősen a Nyquist-frekvencia felett dolgoznak (túlmintavételezés), ami jelentős előnnyel jár a zaj csökkentése szempontjából (az átalakítás során keletkező zaj szélesebb frekvenciatartományban oszlik szét, amelyet szűréssel tovább csökkenthetünk). Bár nagyobb sebességű áramköröket igényelnek, de ezek modern digitális technikával egyszerűbben realizálhatók. Az átalakítás során 1-bites átalakítót használunk, ami egyszerűbb felépítésű.

6.4.1. Szigma-delta átalakítók

A szigma-delta átalakítók 1-bites kvantáló áramkört alkalmaznak. Az átalakítást szigma-delta modulációnak, a visszaalakítást szigma-delta demodulációnak nevezzük.

t

-Ui

2nT zT

Ube integrálása -UREF integrálása

Page 95: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 95

a) A delta moduláció elve Az elv azon alapul, hogyha elég nagy frekvenciával, mindig csak egy kvantálási lépcsővel követjük (felfelé növelve, vagy lefelé csökkentve) a bemeneti jelet, akkor az a jel ami vezérli az 1 bit-es kvantálót, egyben jellemzi a bemeneti jelet is. A kvantáló által kiadott feszültségnövelő vagy csökkentő jelet egy integrátor összegzi. Az integrátor kimeneti jelét kivonva a bemeneti jelből egy hibajelet kapunk, ami helyes működés esetén nem lehet nagyobb, mint a kvantálási lépcső. Az integrátor összegzőként működik, amely az előző értékhez hozzáadja (előjelhelyesen) az 1 bites kvantáló kimeneti jelét.

A kimeneti jel egy kétállapotú jelfolyam, amelyet további műveleteknek (pl. decimáló szűrés) vetünk alá, hogy soros, vagy párhuzamos digitális jelet kapjunk. b) A delta demoduláció elve Az xD kimeneti jelből az analóg jel visszaállítható integrálással és szűréssel. c) A szigma-delta moduláció/demoduláció blokksémája A demodulátor integrátorát be lehet vonni a moduláció fázisába, amellyel a demoduláció egy egyszerű aluláteresztő szűréssé válik. Demodulátor: d) Szigma-delta moduláción alapuló ADC Az egy lépcsőnyi változást egy 1 bites ADC és DAC hozza létre. Az ADC kimenetén bit-folyam formájában kapjuk az eredményt, amely soros kód. A decimáló szűrő célja, hogy az adatfolyamból egy jellemző digitális kódot hozzon létre. Pl. 7 bit esetén, ha a digitális jelfolyam az alábbi értékekkel rendelkezik: 0000111, akkor a kimenetre 0, ha az egyesek száma több, mint a 0-k száma, akkor a kimenetre 1 kerül.

∑ +

-

1 bites kvantáló

integrátor ∫

analóg jel xA

hibajel xe digitális jel

xD

t

t

xA

xi

fT

xD

xi

∫ digitális jel

(xD) analóg jel

(xA)

analóg jel xA ∑

+

-

1 bites kvantáló

szigma

digitális jel xD

fT delta

digitális jel (xD)

analóg jel (xA)

∑ +

-

1 bites ADC

szigma

digitális jel

fT delta

Analóg jel xA

1 bites DAC

Digitális decimáló szűrő

n 1

Page 96: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 96

AJÁNLOTT IRODALOM

1. Tietze-Schenk: Analóg és digitális áramkörök, Műszaki Könyvkiadó, 1990. 2. Herpy-Barka: Aktív RC szűrők, Akadémiai Kiadó, 1985 3. Schnell szerk.: Jelek és rendszerek méréstechnikája, Műszaki Könyvkiadó, 1985. 4. Millmann: Microelectronics, McGraw-Hill, 1992 5. Winzer: Linear Integrated Circiuts, Saunders College Publishing, 1992 6. Kissel: Industrial Electronics, Prentice Hall, 1997 7. Doebelin: Measurement Systems, McGraw-Hill, 1990 8. Savant-Roden-Carpenter: Electronic Design, Benjamin/Cummings Publishing, 1991 9. Smith,S.D.: Optoelectronic devices, Prentice Hall, 1995. 10. Kwork,K,NG: Complete Guide to Semiconductor Devices, IEEE Press, 2002. 11. Gies: Optokoppler und Displays, Franzis Verlag, 1987. 12. Usher,M.J.-Keating,D.A.: Sensors and transducers, MacMillan Press, 1996. 13. Ferenczi Ö.: Félvezetős feszültségátalakítók, Műszaki Könyvkiadó 1979. 14. Ferenczi Ö.: Kapcsolóüzemű tápegységek, Műszaki Könyvkiadó 1979. 15. Marty Brown: Power Supply Cookbook, Newness Publ. 2001. 16. M.H. Rashid: Power electronics: Prentice Hall, 1993. 17. Komarik J: Számítástechnika analóg áramkörei, LSI Oktatóközpont 18. J.G. Proakis- D.G. Manolakis: Digital Signal Processing, MacMillan Publ. , 1992. 19. C. Marven-G. Ewers: Simple Aproach to Digital Signal Pocessing, Wiley International-Texas

Instruments, 1996. TARTALOMJEGYZÉK 3.0. Műveleti erősítők (folytatás) ........................................................................................................... 2

3.5. Műveleti erősítők kapcsolóüzeme ..................................................................................................... 2 3.5.1. Komparátorok .......................................................................................................................... 2

3.5.1.1. Hiszterézis-nélküli komparátorok ....................................................................................... 2 3.5.1.2. Hiszterézises komparátorok ................................................................................................ 4

3.5.2. Multivibrátorok ........................................................................................................................ 6 3.5.2.1. Astabil multivibrátor műveleti erősítővel ........................................................................... 6 3.5.2.2. Monostabil multivibrátor műveleti erősítővel ..................................................................... 7

3.5.3. Időzítők/timerek ( ) ............................................................................................................... 8 3.6. Jelkondicionáló áramkörök ............................................................................................................... 9

3.6.1. Mérőerősítők (Műszererősítők, Instrumentation amplifiers) .................................................. 10 3.6.1.1. Három műveleti erősítős mérőerősítő (műszererősítő) ..................................................... 11

3.6.2. Szigetelt erősítők .................................................................................................................... 12 3.6.2.1. Transzformátoros leválasztású szigetelt erősítők .............................................................. 12 3.6.2.2. Optoelektronikai leválasztású szigetelt erősítő ................................................................. 13

3.6.3. Töltéscsatolt erősítők .............................................................................................................. 14 4.0. Optoelektronika ............................................................................................................................. 15

4.1. Optoelektronikai alapfogalmak ....................................................................................................... 15 4.1.1. Fénytechnikai alapfogalmak ................................................................................................... 15 4.1.2. Az optoelektronikai eszközök hullámtartománya (optikai spektrum) .................................... 15 4.1.3. Az emberi szem érzékenysége ............................................................................................... 16 4.1.4. Hőmérséklet hatása, öregedés ................................................................................................ 16

4.2. Fotovevők/detektorok ...................................................................................................................... 16 4.2.1. Fotoellenállás (Light Dependent Resistor, LDR) ................................................................... 17 4.2.2. Foto-elektromos jelenségek a pn átmenetben ......................................................................... 18

4.2.2.1. Fotoelem ........................................................................................................................... 19 4.2.2.2. Fényelem ........................................................................................................................... 19

4.2.3. Fotodióda................................................................................................................................ 19 4.2.3.1. PIN dióda .......................................................................................................................... 20 4.2.3.3. Lavina dióda (APD, Avalanche Photo Diode) .................................................................. 20

4.2.4. Fototranzisztor ........................................................................................................................ 21 4.2.4.1. Foto-Darlington ................................................................................................................. 22

4.2.5. Foto-FET ................................................................................................................................ 23 4.2.5.1. Képérzékelők .................................................................................................................... 23

4.2.5.1.1. Töltéscsatolt eszközök (Charge Coupled Device) ........................................................ 24 4.2.5.1.2. CMOS érzékelő ........................................................................................................... 25

Page 97: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 97

4.2.5.1.3. Színes képérzékelők ..................................................................................................... 26 4.2.6. Egyéb félvezetős optoelektronikai detektorok ....................................................................... 27

4.2.6.1. pin-diódás pozíció-érzékelő (PSD) ............................................................................... 27 4.3. Fotoadók (emittálók) ....................................................................................................................... 27

4.3.1. IRED ...................................................................................................................................... 28 4.3.2. LED ........................................................................................................................................ 28 4.3.3. OLED ..................................................................................................................................... 30 4.3.4. Lézer dióda (SDL) .................................................................................................................. 30

4.4. Optolektronikai adó-vevő eszközök ................................................................................................ 31 4.4.1. Optocsatolók .......................................................................................................................... 31 4.4.2. Opto-érzékelők ....................................................................................................................... 33 4.4.3. Üvegszálas átvitel alapjai ....................................................................................................... 34

4.5. Optoelektronikai elven működő mérőeszközök .............................................................................. 35 4.5.1. Forgó jeladók ......................................................................................................................... 35 4.5.2. Lineáris jeladók ...................................................................................................................... 36 4.5.3. Háromszögeléses elven működő lézeres távolságmérők ........................................................ 37

4.6. LED alapú kijelzők .......................................................................................................................... 37 4.6.1. Folytonos üzem ...................................................................................................................... 38 4.6.2. Multiplex-üzem ...................................................................................................................... 39 4.6.3. Intelligens kijelzők ................................................................................................................. 40 4.6.4. LED-Display .......................................................................................................................... 41

4.7. Folyadékkristályos kijelzők (LCD) ................................................................................................. 41 4.7.1. Működése, tulajdonságai ........................................................................................................ 41 4.7.2. Vezérlési megfontolások ........................................................................................................ 44 4.7.3. Intelligens kijelzők ................................................................................................................. 46 4.7.4. Folyadékkristályos monitorok (LCD) .................................................................................... 46

4.8. Egyéb kijelzők és megjelenítők ....................................................................................................... 47 4.8.1. Plazma kijelzők, megjelenítők (PDP) ..................................................................................... 47

5.0. TÁPEGYSÉGEK........................................................................................................................... 49 5.1. Stabilizálatlan AC-DC tápegységek ................................................................................................ 50

5.1.1. Egyfázisú egyenirányító kapcsolások ..................................................................................... 50 5.1.1.1. 1F2U2Ü kapcsolás (Greatz) .............................................................................................. 51 5.1.1.2. 1F1U2Ü kapcsolás (középpont-kapcsolás) ....................................................................... 53 Kisteljesítményű egyenirányító kapcsolások paraméterei ( ) ........................................................... 53

5.1.2. AC-DC átalakítók elemei ....................................................................................................... 53 5.1.2.1. Egyenirányító transzformátorok ........................................................................................ 53 5.1.2.2. Egyenirányító dióda .......................................................................................................... 54 5.1.2.3. Szűrőkondenzátor .............................................................................................................. 54 5.1.2.4. Túláram-védelem .............................................................................................................. 55 5.1.2.5. Túlfeszültség-védelem ...................................................................................................... 55

5.2. Stabilizált kimenetű DC-DC tápegységek jellemzői ....................................................................... 56 5.3. Analóg lineáris üzemű tápegységek ................................................................................................ 57

5.3.1. Stabilizálási elvek ................................................................................................................... 57 5.3.1.1. Soros stabilizálás elve ............................................................................................................. 58 5.3.1.2. Párhuzamos (shunt) stabilizálás elve ....................................................................................... 58

5.3.2. Visszacsatolás nélküli tápegységek ........................................................................................ 59 5.3.2.1. Zener-diódás stabilizátor ................................................................................................... 59

5.3.3. Visszacsatolt tápegységek ...................................................................................................... 59 5.3.3.1. Aktív túláramvédelem ....................................................................................................... 60

5.3.3.1.1. Egyszerű (határolós) túláramvédelem .......................................................................... 61 5.3.3.1.2. Visszahajló áram-karakterisztikájú túláram-védelem .................................................. 61

5.3.3.2. Diszkrét félvezetővel felépített tápegységek ..................................................................... 62 5.3.3.3. Változtatható kimenetű integrált vezérlővel felépített tápegységek .................................. 62 5.3.3.4. Monolitikus integrált tápegységek .................................................................................... 63

5.3.3.4.1. A stabilizátor külső alkatrészei .................................................................................... 64 5.3.3.4.2. Kettős tápegység kialakítása ........................................................................................ 65 5.3.3.4.3. Áramterhelés növelése ................................................................................................. 65 5.3.3.4.4. Kimeneti feszültség megváltoztatása ........................................................................... 65

5.3.4. Tápegységek különleges kapcsolásai ..................................................................................... 66 5.3.4.1. Négyvezetékes tápegységek .............................................................................................. 66 5.3.4.2. Tápegységek soros kapcsolása .......................................................................................... 66 5.3.4.3. Tápegységek párhuzamos kapcsolása ............................................................................... 66

5.3.5. Analóg lineáris tápegységek jellemző paraméterei és karakterisztikái................................... 66

Page 98: elektronika II BV levelezo 2008 - users.atw.huusers.atw.hu/mevill2009lev3/--3. félév--/Elektronika II/elektronika_II_BV_ levelezo... · Miskolci Egyetem Elektrotechnikai-Elektronikai

Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék

Dr. Kovács Ernő: Elektronika II. előadás jegyzet Villamosmérnök alapszakos (BSc) nappali tagozatos hallgatók számára 98

5.4. Kapcsolóüzemű tápegységek ........................................................................................................... 67 5.4.1. Primer oldali kapcsolóüzemű tápegységek ............................................................................ 67

5.4.1.1. Záróüzemű tápegység (flyback converter) ........................................................................ 69 5.4.1.2. Nyitóüzemű (gerjesztő átalakító) tápegység (1T forward converter) ................................ 71 5.4.1.3. Ellenütemű kapcsolóüzemű tápegység (Push-pull converter) ........................................... 72 5.4.1.4. Hídkapcsolású kapcsolóüzemű tápegység (Full-bridge converter) ................................... 72 5.4.1.6. A primer oldali kapcsolóüzemű tápegységek jellemző veszteségei .................................. 73

5.4.2. Szekunder oldali kapcsolóüzemű tápegységek (DC-DC konverterek) ................................... 73 5.4.2.1. Feszültségcsökkentő tápegység (buck/step down regulator) ............................................. 74 5.4.2.2. Feszültségnövelő tápegység (boost/step up regulator) ...................................................... 75 5.4.2.3. Polaritásváltó tápegység (inverting regulator) .................................................................. 77 5.4.2.4. Nagyfrekvenciás transzformátorok és tekercsek ............................................................... 78 5.4.2.5. Teljesítménykapcsolók ...................................................................................................... 78 5.4.2.6. Az analóg és kapcsolóüzemű tápegységek összehasonlítása ............................................ 78

5.5. Szünetmentes energiaellátás ............................................................................................................ 79 6.0 A/D és D/A átalakítók .................................................................................................................... 81

6.1. Az átalakítók jellemzői és paraméterei ............................................................................................ 82 6.1.1. Mintavételezés ........................................................................................................................ 82 6.1.2. Követő-tartó áramkörök (S&H) ............................................................................................. 84 6.1.3. Kvantálás ................................................................................................................................ 85 6.1.4. Kódrendszerek ........................................................................................................................ 86 6.1.5. Átalakítók pontossága és hibái ............................................................................................... 87

6.1.5.1. Statikus hibák .................................................................................................................... 87 6.1.5.2. Dinamikus hibák ............................................................................................................... 88

6.2. D/A átalakítók (DAC) ..................................................................................................................... 89 6.2.1. Súlyozott áramok módszere ................................................................................................... 89 6.2.2. Létrahálózatos átalakító .......................................................................................................... 90 6.2.3. Közvetlen/teljesen dekódolt átalakító ..................................................................................... 91

6.3. A/D átalakítók (ADC) ..................................................................................................................... 91 6.3.1. Számláló típusú átalakító ....................................................................................................... 91 6.3.2. Sorozatos közelítéses (szukcesszív approximációs) átalakító ................................................ 92 6.3.3. Közvetlen átalakító ................................................................................................................. 93 6.3.4. Kettős meredekségű (dual slope) átalakító ............................................................................. 93

6.4. Speciális átalakítók .......................................................................................................................... 94 6.4.1. Szigma-delta átalakítók .......................................................................................................... 94

Ajánlott irodalom ............................................................................................................................................. 96 Tartalomjegyzék ............................................................................................................................................... 96