emlab 1 chapter 3. nodal and loop analysis techniques 2014. 9. 12

18
EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12.

Upload: wesley-park

Post on 03-Jan-2016

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

1

Chapter 3. Nodal and loop analysis techniques

2014. 9. 12.

Page 2: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

2Contents

1. Nodal analysis

2. Loop analysis

3. Application examples

4. Design examples

Page 3: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

33.1 Nodal analysis

• Unknowns are node voltages.

• The node voltages are defined with respect to a common point in the circuit which is called ground.

• Ground node is the one to which the largest number of branches are connected.

• Ground is at zero potential, and it sometimes represents the chassis or ground line in a practical circuit.

• Once ground node in an N-node circuit has been selected, our task is reduced to identifying the remaining non-ground nodes and writing one KCL equation at each of them.

unknowns

0 [V]

Page 4: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

4Example 3.1

Suppose that the network in the figure has the following parameters: IA = 1mA, R1 = 12kΩ, R2= 6k Ω, IB=4mA, R3= 6k Ω. Let us determine all node voltages and branch currents.

Node 1: 021 iiiA

Node 2: 032 iii B

00

2

21

1

1

RR

iA

00

3

2

2

12

Ri

R B

AiRRR

2

21

21

111 BiRRR

2

322

1 11

Page 5: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

5

m

m

V

V

kk

kk4

1

3

1

6

16

1

4

1

2

1

48

12

42

23

2

1

V

V

15

6

366

2412

2

1

12

3

32

24

2

1

48

12

32

24

8

1

2

1

V

V

Page 6: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

6Example 3.2Let us apply what we have just learned to write the equations for the network in the figure by inspection. (IA = 4mA, IB=2mA, R1 = R2= 2kΩ, R3= R4= 4kΩ, R5= 1kΩ)

00

1

31

2

1

Ri

R A

00

4

32

3

2

R

iR

i BA

00

1

13

5

3

4

23

RRR

υ1 = -4.3636 Vυ2 = 3.6364 Vυ3 = -0.7273 V

011111

1110

10

11

3

2

1

54141

443

121

BA

A

ii

i

RRRRR

RRR

RRR

Page 7: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

7Example 3.4

Let us determine the set of linearly independent equations that when solved will yield the node voltages in the network in Fig. 3.10. Then given the following com-ponent values, we will compute the node voltages using MATLAB:R1 = 1 kΩ, R2 = R3 = 2 kΩ, R4 = 4 kΩ, iA = 2 mA, iB = 4 mA, and α= 2.

00

1

21

3

1

AiRR

02

32

1

12

Ri

R xA

04

3

2

23

BiRR

)( 32 x0)(

2

3232

1

12

Ri

R A

Page 8: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

8

00

1

21

3

1

AiRR

04

3

2

23

BiRR

B

A

A

i

i

i

RRR

RRRR

RRR

3

2

1

422

2211

231

1110

1111

0111

0)(2

3232

1

12

Ri

R A

][9940.15

][9910.15

][9940.11

3

2

1

V

V

V

Page 9: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

9Example 3.6

Suppose we wish to find the currents in the two resistors in the circuit of the figure.

I

6,0412

0

06

06

212

1

kI

Ik

m6,04

12

0

6

06 21

21

kk

m

Super node

][4],[10 21 VV

Page 10: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

103.2 Loop analysis

• In contrast to nodal analysis, a loop analysis uses KVL to determine a set of loop currents in the circuit.

• There are exactly (E-V+1) linearly independent KVL equations for any net-work, where E is the number of branches in the circuit and V is the number of nodes(vertices). (Euler’s theorem for planar graphs)

• For each loop path, KCL is automatically satisfied.

D

DC

C

DB

CA

B

BA

A

ii

iii

ii

iii

iii

ii

iii

ii

8

7

6

5

4

3

2

1

Page 11: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

11Euler’s theorem for planar graph

v : number of verticese : number of edges (branches).f : number of facets

• for graphs with vertices and edges : v - e = 1• for planar graphs with vertices, edges, and facets : v – e + f = 1• for solid with vertices, edges, and facets : v – e + f = 2

Page 12: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

12Example 3.12

033)(6

0)(6612

212

211

IkIIk

IIkIk

Consider the network in the figure. We wish to find the current Io.

396

12612

21

21

IkIk

IkIk

][75.0

][5.0],[25.1

210

21

mAIII

mAImAI

033)(612

06)(612

221

121

IkIIk

IkIIk

Alternately, loop paths could be chosen as follows, which yields the same solution.

Page 13: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

13Example 3.13

012)(6)(3

0)(369

0)(646

31323

322

311

IkIIkIIk

IIkIk

IIkIk

0

6

6

2136

3120

6010

3

2

1

I

I

I

kkk

kk

kk

][1261.0

][4685.0

][6757.0

3

2

1

VI

VI

VI

Let us write the mesh equations by inspection for the network

Page 14: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

14Example 3.16Let us find Io.

][2,4

0)(116

02)(2

132

133

212

mAImII

IIkVIk

IkVIIk

x

x

0)(1)(2

)(216

][4],[2

13132

323

21

IIkIIIk

IIkIk

mAImAI

][3

23 mAI mII

IkIk

4

02412

32

32

][3

10],[

3

223 mAImAI

][3

42 221 mAImIIIo

][3

4321 mAIIIIo

Page 15: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

15Example 3.18

Let us find V0 in the circuit in the figure, which contains a voltage-controlled current source

)(4

06)(23

][2,2000

12

313

21

IIkV

IkIIk

mAIV

I

x

x

114238

][482

3

11

mkIk

mAIIk

][25.84

33],[

8

1103 VVmAI

Page 16: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

16Example 3.19

The network in the figure contains both a current-controlled voltage source and a voltage controlled current source. Determine the loop currents.

241321

2434

4313

),(2,2

],[4

012)(1)(1

0)(1)(21

IIIIIkVk

VImAI

IIkIIk

IIkIIkIk

xxx

x

0

12211

8231

321

423

432

III

IkIkIk

IkIkIk

][1],[2],[6 432 mAImAImAI

Page 17: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

17Some Matlab command

754

132A A= [2,3,1; 4, 5, 7]

97531A A= [1:2:9]

TAA A= A’

)(inv AA= A-1

Page 18: EMLAB 1 Chapter 3. Nodal and loop analysis techniques 2014. 9. 12

EMLAB

18

01

11

1 axaxaxay nn

nn

);x,a(polyvaly

];a,a,,a,a[a

1.e3];:2:[1x

011nn

01

11

1

01

11

1

bxbxbxb

axaxaxaH

nn

nn

mm

mm

./den;numH

x);polyval(b,den

x);polyval(a,num

];b,b,,b,[bb

];a,a,,a,[aa

1e3];:2:1[x

011nn

011mm