engineering mathematics i - chapter 4. systems of...

41
Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 민기복 Ki-Bok Min PhD Ki Bok Min, PhD 서울대학교 에너지자원공학과 조교수 Assistant Professor , Energy Resources Engineering

Upload: others

Post on 25-Oct-2019

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Engineering Mathematics I- Chapter 4. Systems of ODEs

민기복민기복

Ki-Bok Min PhDKi Bok Min, PhD서울대학교 에너지자원공학과 조교수Assistant Professor, Energy Resources Engineering, gy g g

Page 2: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Ch.4 Systems of ODEs. Phase Plane. Q lit ti M th dQualitative Methods

• Basics of Matrices and Vectors• Systems of ODEs as Models• Systems of ODEs as Models• Basic Theory of Systems of ODEs• Constant-Coefficient Systems. Phase Plane Method

C it i f C iti l P i t St bilit• Criteria for Critical Points. Stability• Qualitative Methods for Nonlinear SystemsQ y• Nonhomogeneous Linear Systems of ODEs

Page 3: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Basics of Matrices and Vectors

• Systems of Differential Equations– more than one dependent variable and more than one equationmore than one dependent variable and more than one equation

1 11 1 12 2' ,y a y a y 1 11 1 12 2 1

2 21 1 22 2 2

' ,' ,

n ny a y a y a yy a y a y a y

2 21 1 22 2' ,y a y a y 2 21 1 22 2 2

1 1 2 2

,

' ,

n n

n n n nn n

y a y a y a y

y a y a y a y

• Differentiation– The derivative of a matrix with variable entries is obtained by

differentiating each entry.

1 1

2 2

' '

'y t y t

t ty t y t

y y

Page 4: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Basics of Matrices and VectorsEivenvalues (고유치) and Eivenvectors (고유벡터)Eivenvalues (고유치) and Eivenvectors (고유벡터)

• Let be an n x n matrix. Consider the equation where is a scalar and x is a vector to be determined.

jka A Ax x

– A scalar such that the equation holds for some vector x ≠ 0 is called an eigenvalue of A,

Ax x

– And this vector is called an eigenvector of A corresponding to this eigenvalue .

A Ax x

Page 5: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Basics of Matrices and VectorsEivenvalues (고유치) and Eivenvectors (고유벡터)Eivenvalues (고유치) and Eivenvectors (고유벡터)

Ax x 0 A I x0 Ax Ix

– n linear algebraic equations in the n unknowns (the components of x).

1, , nx x

p )– The determinant of the coefficient matrix A I must be zero in

order to have a solution x ≠ 0.

• Characteristic Equation

– Determine λ1 and λ2

det 0 A IDetermine λ1 and λ2

– Determination of eigenvector corresponding to λ1 and λ2

Page 6: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Basics of Matrices and VectorsEivenvalues (고유치) and Eivenvectors (고유벡터)Eivenvalues (고유치) and Eivenvectors (고유벡터)

• Example 1. Find the eigenvalues and eigenvectors

0404

2.16.10.40.4

A

• If x is an eigenvector, so is kxg ,

Page 7: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Systems of ODEs as Models

10 gal/min

10 gal/min

10 gal/min

10 gal/minVS.

10 gal/min

Single ODE Systems of ODEs

Page 8: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Systems of ODEs as ModelsE l 3 Mi i bl (S 1 3)Example 3. Mixing problem (Sec 1.3)

– Initial Condition: 1000 gal of water, 100 lb salt, initially brine runs in 10 gal/min, 5 lb/gal, stirring all the time, brine runs out at 10 gal/mingal/min

– Amount of salt at t?

10 gal/min

10 gal/min

?

Page 9: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Systems of ODEs as Models

– Tank T1 and T2 contain initially 100 gal of water each.

– In T1 the water is pure, whereas 150 lb of fertilizer are dissolved in T2.

– By circulating liquid at a rate of 2 gal/min and stirring the amounts of fertilizer

in T1 and in T2 change with time t. 2y t

1y t

1 2 g

– Model Set Up2 gal/min

2y

2 gal/min

1 2 1 1 1 1 22 2' Inflow / min - Outflow / min Tank ' 0.02 0.02

100 100y y y T y y y

2 1 2 2 2 1 22 2' Inflow / min - Outflow / min Tank ' 0.02 0.02

100 100y y y T y y y

0 02 0 02 0.02 0.02 ' ,

0.02 0.02

y Ay A

Page 10: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Systems of ODEs as Models

y1-y2 plane - phase plane (상평면 )Trajectory (궤적) : -상평면에서의곡선-전체해집합의일반적인양상을잘표현함.Phase portrait (상투영): trajectories in phase plane

Page 11: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Systems of ODEs as Models

• Example 2. Electrical Network

y1-y2 plane - phase plane (상평면 )Trajectory (궤적) : -상평면에서의곡선-전체해집합의일반적인양상을잘표현함.Phase portrait (상투영): trajectories in phase plane

Page 12: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Systems of ODEs as ModelsCon ersion of an nth order ODE to a s stemConversion of an nth-order ODE to a system

• 2nd order to a system of ODE – Example 3. Mass on a Spring

0''' k 0''' kycymy

21' yy 10 y' , 21 yyyy

2

1

yy

y

212

21

' ymcy

mky

yy

2

10

'yy

mc

mkAyy

0

1det 2

mk

mcck

IA Calculation same

as before!mmmm as before!

) '' 2 ' 0 75 0E ) '' 2 ' 0.75 0Ex y y y

Page 13: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Systems of ODEs as ModelsCon ersion of an nth order ODE to a s stemConversion of an nth-order ODE to a system

– solve single ODE by methods for systemsg y y– includes higher order ODEs into …first order ODE

Page 14: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Basic Theory of Systems of ODEsC t ( l t i l ODE)Concepts (analogy to single ODE)

• First-Order Systems 1 1 1' , , , ny f t y y

1 1

,

n n

y f

y f

y f

2 2 1

1

' , , ,

' , , ,

n

n n n

y f t y y

y f t y y

n ny f ' ,ty f y

S l ti i t l t b

1n n n

• Solution on some interval a<t<b– A set of n differentiable functions 1 1 , , n ny h t y h t

• Initial Condition: 1 0 1 2 0 2 0, , , n ny t K y t K y t K

Page 15: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Basic Theory of Systems of ODEsE i t d U iExistence and Uniqueness

• Theorem 1. Existence and Uniqueness Theorem

– Let be continuous functions having continuous partial

derivatives in some domain R of

1, , nf f

f f f tderivatives in some domain R of -

space containing the point . Then the first-order system

1 1

1, , , ,

n n

f f fy y y

n 1 2 nty y y

0 1, , , nt K Kspace containing the point . Then the first order system

has a solution on some interval satisfying the

0 1 n

0 0t t t

initial condition , and this solution is unique.

Page 16: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Basic Theory of Systems of ODEsH N hHomogeneous vs. Nonhomogeneous

• Linear Systems 'y a t y a t y g t

11 1 1 1

1 2

, , n

n nn n

a a y g

a a y g

A y g

1 11 1 1 1

1 1'

n n

n n nn n n

y a t y a t y g t

y a t y a t y g t

' y Ay g

Homogeneous:– Homogeneous:– Nonhomogeneous: ' , y Ay g g 0

' y Ay

Page 17: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Basic Theory of Systems of ODEsC t ( l t i l ODE)Concepts (analogy to single ODE)

• Theorem 2 (special case of Theorem 1)

Th 3• Theorem 3

(1) (2) (1) (2) (1) (2)1 2 1 2 1 2

(1) (2)1 2

c c c c c c

c c

y y y y y Ay Ay

A y y Ay

Page 18: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Basic Theory of Systems of ODEsG l l tiGeneral solution

미분아님!!• Basis, General solution, Wronskian– Basis: A linearly independent set of n solutions of the 1 , , ny y

미분아님!!

Basis: A linearly independent set of n solutions of the homogeneous system on that interval

– General Solution: A corresponding linear combination

, ,y y

General Solution: A corresponding linear combination 1

1 1 , , arbitraryn nc c c c ny y y

– Fundamental Matrix : An n x n matrix whose columns are nsolutions 1 , , ny y 1 , ,

nY y y y = Yc– Wronskian of : The determinant of Y 1 , , ny y

1 21 1 1

1 2

n

n

y y y

y y y

ex)

1 2 2 2

1 2

W , ,

nn n n

y y y

y y y

ny y

ex)(1) (2) 0.5 1.5

1 1 0.5 1.51 11 2(1) (2) 0.5 1.5

2 22 2

2 121 1.51.5

t tt t

t t

c cy y e eYc c e c e

c cy y e e

y

Page 19: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Constant Coefficient Systems.

• Homogeneous linear system with constant coefficients

' y Ay

• Homogeneous linear system with constant coefficients – Where n x n matrix has entries not depending on tjka A

– Try tey x

' t te e y x Ay Ax Ax x

• Theorem 1. General Solution

y y

– The constant matrix A in the homogeneous linear system has a linearly independent set of n eigenvectors, then the corresponding solutions form a basis of solutions and the 1 ny ysolutions form a basis of solutions, and the corresponding general solution is

, , y y 11

1nn tt

nc e c e y x x

Page 20: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Constant Coefficient Systems.

• Example 1. Improper node (비고유마디점)

3 1 3 1'

1 3

y Ay y 1 1 2

2 1 2

3

3

y y y

y y y

tt ececccy 42211 11

yyy ececccy 2121

2 11

yyy

Page 21: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Constant Coefficient Systems.

• Example 2. Proper node (고유마디점)1 0

'

y Ay y 1 1y y 0 1

y Ay y

2 2y y

t

ttt

ecyecy

ecec22

1121

10

01

y

Page 22: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Constant Coefficient Systems.

• Example 3. Saddle point (안장점)1 0

'

y Ay y 1 1y y 0 1

y Ay y

2 2y y

ttt ecy

ecec

1101y tecy

ecec

22

21 10

y

Page 23: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Constant Coefficient Systems.

• Example 4. Center (중심)0 1

'

y Ay y 1 2y y 4 0

y Ay y

2 14y y

itit

itititit

eiceicyececye

ice

ic 2

22

12

22

2112

22

1 22

21

21

y

Page 24: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Constant Coefficient Systems.

• Example 5. Spiral Point (나선점)1 1 1 1 2y y y 1 1

'1 1

y Ay y2 1 2y y y

titi ei

cei

c

1

21

111

y

Page 25: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Constant Coefficient Systems.

• Example 6. Degenerate Node (퇴화마디점): – 고유벡터가기저를형성하지않는경우: 행렬이고유벡터가기저를형성하지않는경우: 행렬이대칭이거나반대칭(skew-symmetric)인경우퇴화마디점은생길수가없음.

texy 1

yy

2114

' exy

tt ete uxy 2

tt etcec 33 011

y etcec 21 111

y

Page 26: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Constant Coefficient Systems.SSummary Δ is discriminant (판별식) of

determinant of (A-λI)• Improper node (비고유마디점):

– Real and distinct eigenvalues of the same sign1 20, 0

• Proper node (고유마디점): – Real and equal eigenvalues

*1 20,

q g

• Saddle point (안장점): Real eigenvalues of opposite sign

1 20, 0 – Real eigenvalues of opposite sign

• Center (중심): 0, pure imaginary

– Pure imaginary eigenvalues

• Spiral point (나선점): 0, complex p p ( )– Complex conjugates eigenvalues with nonzero real part

* : when two linearly independent eigenvectors exist. Otherwise, degenerate node

Page 27: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Name Δ Eigenvalue Trajectories

Improper node(비고유마디점) 0 1 2 0

Proper node(고유마디점) 0 (고유마디점) 0 1 2

Saddle Point(안장점) 0 1 2 0

Center(중심)

Pure imaginarye.g., i( ) g

Spiral Point Complex number

0

i

Spiral Point(나선점)

Complex numbere.g., 1 i

Page 28: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Criteria for Critical Points. Stability

• Critical Points of the system2

2 2 21 1 22 2''dy

dy y a y a ydt y Ay 2 2 21 1 22 2

11 1 11 1 12 2

' '

y y y ydtdydy y a y a ydt

y Ay

– A unique tangent direction of the trajectory passing through except for the point

2

1

dydy

0 0P P Pthrough , except for the point

– Critical Points: The point at which becomes undetermined, 0/0

0 : 0,0P P 1 2: ,P y y

2

1

dydy1y

Page 29: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Criteria for Critical Points. Stability

• Five Types of Critical Points

– Depending on the geometric shape of the trajectories near them

Improper Node

Proper Node

SSaddle Point

Center

Spiral Point

Page 30: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Criteria for Critical Points. Stability

• Stable Critical point (안정적 임계점):

– 어떤 순간 에서 임계점에 아주 가깝게 접근한 모든궤적이 이후의 시간에서도 임계점에 아주 가까이 접근한

0tt 궤적이 이후의 시간에서도 임계점에 아주 가까이 접근한상태로 남아 있는 경우.

• Unstable Critical point (불안정적 임계점):

– 안정적이 아닌 임계점

• Stable and Attractive Critical point (안정적 흡인임계점)임계점):

– 안정적 임계점이고, 임계점 근처 원판 내부의 한 점을지나는 모든 궤적이 를 취할 때 임계점에 가까이t접근하는 경우

Page 31: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Criteria for Critical Points. Stability

St bl & U t blStable & attractive

Unstable Unstable

Stable Stable & Attractive

Page 32: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Qualitative Methods for Nonlinear S tSystems

• Qualitative Method– Method of obtaining qualitative information on solutions without Method of obtaining qualitative information on solutions without

actually solving a system.– particularly valuable for systems whose solution by analytic particularly valuable for systems whose solution by analytic

methods is difficult or impossible.

N li

1 1 1 2

Nonlinear systems' ,

, thus '

y f y y'

f

y f y 2 2 1 2' ,y f y yy y

'y a y a y h y y linearization

1 11 1 12 2 1 1 2

2 21 1 22 2 2 1 2

,, thus

' ,y a y a y h y yy a y a y h y y

y' Ay h y

linearization

Page 33: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Qualitative Methods for Nonlinear S tSystems

• Theorem 1. Linearization– If f1 and f2 are continuous and have continuous partial derivatives If f1 and f2 are continuous and have continuous partial derivatives

in a neighborhood of the critical point (0,0), and if , then the kind and stability of the critical point of nonlinear systems are th th f th li i d t

det 0A

the same as those of the linearized system

1 11 1 12 2'th

y a y a y ' A

– Exceptions occur if A has equal or pure imaginary eigenvalues;

1 11 1 12 2

2 21 1 22 2

, thus ' .y y yy a y a y

y' Ay

Exceptions occur if A has equal or pure imaginary eigenvalues; then the nonlinear system may have the same kind of critical points as linearized system or a spiral point.

Page 34: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Qualitative Methods for Nonlinear S tSystems

• Example 1. Free undamped pendulum– Determine the locations and types of critical pointsDetermine the locations and types of critical points– Step 1: setting up the mathematical model

q : the angular displacement measured counterclockwise q : the angular displacement, measured counterclockwise from the equilibrium position

The weight of the bob : mgThe weight of the bob : mg

A restoring force tangent to the curve of motion of the bob : mg sin q

By Newton’s second law, at each instant this force is balanced by the force of acceleration mLq``

'' sin 0 sin 0 gmLθ mg θ'' k kL

Page 35: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Qualitative Methods for Nonlinear S tSystems

– Step 2: Critical Points Linearization 0,0 , 2 ,0 , 4 ,0 ,

sin 0θ'' k 1 2set , 'y y 1 2'' iy yk

2 1' siny k y

2 10, sin 0 infinitely many critical points 0 , 0, 1, 2, y y nπ , n :

1 '0 1

– Step 3: Critical Points Linearization.3

1 1 1 11sin6

y y y y 1 2

2 1

'0 1, thus

'0y y

'y kyk

y Ay y

,0 , 3 ,0 , 5 ,0 ,

Consider the critical point (p , 0) 1 2set , ' 'y y 0 1

' y Ay y

critical points are all saddle points.

sin 0θ'' k

31 1 1 1 1

1sin sin sin6

y y y y y 0'

k

y Ay y

Page 36: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Qualitative Methods for Nonlinear S tSystems

Page 37: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Nonhomogeneous Linear Systems of ODEODEs

• Nonhomogeneous of Linear Systems:– Assume g(t) and the entries of the n x n matrix A(t) to be

' , y Ay g g 0Assume g(t) and the entries of the n x n matrix A(t) to be continuous on some interval J of the t-axis.

– General solution : h p y y yGeneral solution : : A general solution of the homogeneous system on J

: A particular solution(containing no arbitrary constants) of

y y y hy py ' y Ay

' y Ay g

: A particular solution(containing no arbitrary constants) of on J

• Methods for obtaining particular solutions

y y Ay

• Methods for obtaining particular solutions– Method of Undetermined Coefficients– Method of the Variation of Parameter

Page 38: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Nonhomogeneous Linear Systems of ODEODEs

• Method of undetermined coefficients: – Components of g : Components of g : – (1) constants

(2) iti i t f t– (2) positive integer powers of t

– (3) exponential functions – (4) cosines and sines.

Page 39: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Nonhomogeneous Linear Systems of ODEODEs

• Example 1. Method of undetermined coefficients. Modification rule 3 1 6

A general solution of the homogeneous system :

23 1 6'

1 3 2ty e

y Ay g

2 41 2

1 1h t tc e c e y– A general solution of the homogeneous system :

– Apply the Modification Rule by setting

Equating the terms on both sides:

1 21 1 y

2 2p t tte e y u v

1 2tt – Equating the -terms on both sides:

– Equating the other terms:

62 2 h 0

kk

A

1

2 with any 01

a a

u Au u2tte

– General solution :

2 2, choose 02 4

a kk

u v Av v

1 1 1 2 2 4 2 21 2

1 1 1 22

1 1 1 2t t t tc e c e te e

y

Page 40: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Nonhomogeneous Linear Systems of ODEODEs

• Example 1. solution by the method of variation of parameters3 1 6

– General solution of the homogeneous system :

23 1 6'

1 3 2ty e

y Ay g

General solution of the homogeneous system :

– Particular solution :

11 'h n

nc c t y y y Y c Y AY p t ty Y u– Particular solution : t ty Y u

' ' ' ' ' p

t

y Y u Yu Y u Yu AYu g

0

1 1 ' ' t

t

t t dt Yu g u Y g u Y g

Page 41: Engineering Mathematics I - Chapter 4. Systems of ODEsocw.snu.ac.kr/sites/default/files/NOTE/7328.pdf · Engineering Mathematics I - Chapter 4. Systems of ODEs 민기복 Ki-Bok Min

Nonhomogeneous Linear Systems of ODEODEs

• Example 1. solution by the method of variation of parameters (cont.)

4 4 2 21 1 1t t t te e e e Y 6 2 2 4 4

2 2 21

2 24 4 2

2 2

4 261 1'8 42 22

t t t t t

t t t

t tt t t

e e e e e

e e ee e

Y

u Y g 4 4 2

2 20

8 42 22

2 24 2 2

t t t

t

t t

e ee e e

tdt

e e

u

0

2 4

2 4

t tp

t t

e ee e

y Yu

2 2 42 4

2 2 2 4

2 2 2 22 2 22 2 2 2 22 2 2

t t tt t

t t t t

t tte e ee e

e tte e e