eur. j. inorg. chem. 2007 © wiley-vch verlag gmbh & co. kgaa, 69451 weinheim, 2007 ... ·...

34
Eur. J. Inorg. Chem. 2007 · © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 · ISSN 1434–1948 SUPPORTING INFORMATION Title: Blue-Light-Emitting Complexes: Cationic (2-Phenylpyridinato)iridium(III) Complexes with Strong-Field Ancillary Ligands Author(s): Chong Shik Chin,* Min-Sik Eum, Song yi Kim, Choongil Kim, Sung Kwon Kang Ref. No.: I200600920

Upload: others

Post on 13-Nov-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

Eur. J. Inorg. Chem. 2007 · © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 · ISSN 1434–1948

SUPPORTING INFORMATION

Title: Blue-Light-Emitting Complexes: Cationic (2-Phenylpyridinato)iridium(III) Complexes with Strong-Field Ancillary Ligands Author(s): Chong Shik Chin,* Min-Sik Eum, Song yi Kim, Choongil Kim, Sung Kwon Kang Ref. No.: I200600920

Page 2: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

Experimental details and spectroscopic data

1H-, 13C and 31P-NMR spectra were recorded on a Varian 200, 300 or 500 MHz

spectrometer. Nicolet 205 instrument was used to measure infrared spectra. Absorption spectra

measured on an Agilent 8453 UV-visible spectrophotometer. Steady state emission spectra were

measured on a JY Horiba Fluorolog-3 spectrofluorimeter. Phosphorescence lifetime measurements

were performed on a Tektronix model TDS 2022 oscilloscope with photomultiplier tube through a

monochromator by exciting the argon-charged sample at the third harmonic 355 nm of Q-switched

Nd:Yag laser with a pulse duration of 5 ns and a repetition rate of 10 Hz at room temperature.

Quantum efficiency was calculated with using fac-Ir(ppy)3 as the reference in toluene (ΦPL = 0.40[1]).

Elemental analysis was carried out using a Carlo Erba EA1180 at the Organic Chemistry Research

Center, Sogang University. Electrochemical measurements were carried out using a CHI 900 using

Glassy carbon working (3 mm dia) platinum wire counter (spiral), and Ag/Ag+ reference electrodes.

X-ray intensity data were obtained by using a Bruker SMART APEX-II CCD diffractometer

equipped with graphite monochromated Mo Kα radiation (λ = 0.71073 Å) at 295 K for 4a. Initial

unit cell parameters were obtained from SMART software.[2] Data integration, correction for

Lorentz and polarization effects, and final cell refinement were performed by SAINTPLUS.[3] An

empirical absorption correction based on the multiple measurement of equivalent reflections was

applied using the program SADABS.[4] Structures were obtained by a combination of the direct

methods and difference Fourier syntheses and refined by full matrix least-squares on F2, using the

SHELXTL.[5] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were added in

calculated positions.

Schlenk type glass wares were used in most of experiments for synthesis and measurements

although most of metal complexes are stable enough to be handled in air at room temperature.

2-Phenylpyridine (ppyH), PPh3, PPh2Me, P(OPh)3, pyridine, MeCN, AgOTf, Pd(PPh3)4, 2-

Page 3: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

bromopyridine, 2,4-difluorophenylyboronic acid and 2-bromo-4-methylpyridine were purchased

from Aldrich. F2ppyH and F2MeppyH were synthesized by Suzuki coupling reactions.[6] IrCl3·x

H2O and CO were obtained from Pressure Chemicals and Dong-A Gas Co. (Korea), respectively.

Iridium complexes, (ppy)2Ir(μ-Cl)2Ir(ppy)2,[7] (n-Bu)4N[Ir(ppy)2(CN)2],[8] Ir(ppy)2(Cl)(CO),[9]

Ir(ppy)2(Cl)(PPh3)[10] and Ir(ppy)2(Cl)(P(OPh)3)[10] were synthesized by the literature methods.

Synthesis of [Ir(ppy)2L2]OTf (2). Compounds 2b – 2e, 2F2 and 2F2Me have been prepared

practically by the same method described below for 2a. Either AgPF6 or AgOTf was used to

precipitate AgCl to remove Cl ligand. Ancillary ligands PPh2Me, P(OPh)3, MeCN and py were

added to the reaction mixture before the elimination of AgCl. The yields were 80 – 90 %.

Synthesis of [Ir(ppy)2(CO)2](PF6) (2a). A reaction mixture of (ppy)2Ir(μ-Cl)2Ir(ppy)2 (1, 107

mg, 0.1 mmol) and AgPF6 (51 mg, 0.2 mmol) in CHCl3 (10 mL) was stirred under CO (1 atm) at 25

oC for two hours before the white solid (AgCl) was removed by filtration. Addition of hexane (30

ml) to the resulting solution yielded beige micro-crystals which were isolated by filtration, washed

with hexane (3 x 10 mL) and dried under vacuum. The yield was 120 mg and 86 % based on 2a. 1H

NMR (300 MHz; acetone-d6): δ 9.47 (d, J = 5.4 Hz, 2H), 8.39–8.50 (m, 4H), 8.01 (d, J = 7.8 Hz,

2H), 7.72 (t, J = 5.7 Hz, 2H), 7.17 (t, J = 7.5 Hz, 2H), 7.06 (t, J = 7.5 Hz, 2H), 6.19 (d, J = 7.5 Hz,

2H). 13C NMR (75 MHz, acetone-d6): δ 167.75, 167.11, 156.43, 147.43, 145.26, 142.32, 132.49,

130.80, 127.11, 126.74, 122.91, IR (KBr, cm–1): 2126, 2084 (s, νC≡O), 2044 (s, νC13

≡O), 843 (s, PF6–).

Anal. Calcd for IrC24N2H16F6O2: C, 41.09; H, 2.30; N, 3.99. Found: C, 41.03; H, 2.32; N, 3.84.

[Ir(ppy)2(PPh2Me)2](OTf) (2b). 1H NMR (500 MHz; CDCl3): δ 8.58 (d, J = 6.0 Hz, 2H),

7.79 (t, J = 8.0 Hz, 2H), 7.69 (d, J = 7.5 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H),

7.28–7.21 (m, 6H), 7.14 (t, J = 7.5 Hz, 4H), 7.08 (t, J = 8.0 Hz, 4H), 6.96 (qu, J = 7.0 Hz, 2H),

6.82–6.76 (m, 6H), 5.73 (d, J = 7.5 Hz, 2H), 1.63 (d, J = 6.0 Hz, 6H). 13C NMR (126 MHz, CDCl3):

δ 167.89, 155.02, 154.31, 143.44, 138.66, 133.36, 131.64, 131.37, 131.65, 131.00, 130.27, 128.66,

128.42, 125.09, 124.06, 123.91, 121.03, 14.29. 31P NMR (202 MHz, CDCl3): δ –21.67 (s). IR (KBr,

Page 4: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

cm–1): 1269, 1152 and 1031 (s, OTf–). Anal. Calcd for IrC49N2H42F3O3SP2: C, 56.04; H, 4.03; N,

2.67. Found: C, 56.15; H, 4.07; N, 2.61.

[Ir(ppy)2(P(OPh)3)2](OTf) (2c). 1H NMR (500 MHz; CDCl3); δ 9.28 (d, J = 5.5 Hz, 2H),

7.97 (m, 4H), 7.62 (d, J = 7.5 Hz, 2H), 7.11–7.04 (m, 20H), 6.92 (t, J = 7.0 Hz, 2H), 6.66 (t, J = 7.0

Hz, 2H), 6.54 (d, J = 7.5 Hz, 12H), 5.78 (m, 2H). 13C NMR (126 MHz, CDCl3): δ 167.87, 157.33,

154.52, 153.83, 152.64, 151.32, 143.10, 139.80, 131.33, 130.82, 130.33, 129.96, 129.33, 125.42,

124.78, 124.34, 123.98, 122.51, 121.01, 120.93, 119.96, 119.88, 119.31, 115.80. 31P NMR (202

MHz, CDCl3): δ 73.12 (s). IR (KBr, cm–1): 1271, 1163 and 1031 (s, OTf–). Anal. Calcd for

IrC59N2H46F3O9SP2: C, 55.79; H, 3.65; N, 2.21. Found: C, 55.64; H, 3.68; N, 2.23.

[Ir(ppy)2(py)2](OTf) (2d). 1H NMR (300 MHz; CD2Cl2): δ 8.61 (d, J = 5.7 Hz, 2H), 8.53–

8.50 (m, 4H), 7.96–7.89 (m, 6H), 7.60–7.57 (m, 2H), 7.46–7.41 (m, 6H), 6.91–6.86 (m, 4H), 6.36–

6.32 (m, 4H). 13C NMR (75 MHz, acetone-d6): δ 168.62, 152.56, 149.84, 148.61, 144.69, 139.39,

139.18, 132.61, 130.89, 127.14, 124.94, 124.29, 123.08, 120.26. IR (KBr, cm–1): 1267, 1151 and

1031 (s, OTf–). Anal. Calcd for IrC33N4H26F3O3S: C, 49.06; H, 3.24; N, 6.94; S. Found: C, 48.93; H,

3.21; N, 6.73.

[Ir(ppy)2(NCMe)2](OTf) (2e). 1H NMR (500 MHz; CDCl3): δ 9.11 (d, J = 5.0 Hz, 2H), 7.88–

7.96(m, 4H), 7.57(d, J = 7.5 Hz, 2H), 7.45 (t, J = 6.5 Hz, 2H), 6.91 (t, J = 7.5 Hz, 2H), 6.77 (t, J =

7.0 Hz, 2H), 6.10 (d, J = 7.5 Hz, 2H), 2.38 (s, NCCH3, 6H). 13C 125.7 MHz (CDCl3): δ 167.35,

151.42, 144.28, 143.99, 138.59, 131.52, 130.08, 124.21, 123.72, 122.83, 119.42, 119.30 (s, CH3CN),

4.17 (s, CH3CN). IR (KBr, cm–1): 2310, 2280 (w, νN≡CR), 1270, 1165 and 1030 (s, OTf–). Anal.

Calcd for IrC27N4H22F3O3S: C, 44.32; H, 3.03; N, 7.66. Found: C, 44.15; H, 3.00; N, 7.32.

[Ir(F2ppy)2(CO)2](PF6) (2aF2). 1H NMR (300 MHz; acetone-d6): δ 9.58 (d, J = 4.5 Hz, 2H),

8.60–8.48 (m, 4H), 7.79 (t, J = 2.7 Hz, 2H), 6.98–6.90 (m, 2H), 5.71 (dd, J = 7.8, 1.8 Hz, 2H). IR

(KBr, cm–1): 2142, 2108 (s, νC≡O), 2051 (s, νC13

≡O), 841 (s, PF6–). Anal. Calcd for

IrC24N2H12F10O2P: C, 37.26; H, 1.56; N, 3.62. Found: C, 37.15; H, 1.53; N, 3.51.

Page 5: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

[Ir(F2Meppy)2(CO)2](OTf) (2aF2Me). 1H NMR (300 MHz; acetone-d6): δ 9.36 (d, J = 3.6

Hz, 2H), 8.38 (s, 2H), 7.62 (s, 2H), 6.95–6.87 (m, 2H), 5.74 (dd, J = 8.0, 2.1 Hz, 2H), 2.76 (s, 6H).

IR (KBr, cm–1): 2141, 2105 (s, νC≡O), 2052 (s, νC13

≡O), 826 (s, PF6–). Anal. Calcd for

IrC26N2H16F10O2P: C, 38.96; H, 2.01; N, 3.49. Found: C, 39.16; H, 2.06; N, 3.40.

[Ir(F2ppy)2(PPh2Me)2](OTf) (2bF2). 1H NMR (500 MHz; CDCl3): δ 8.78 (d, J = 5.5 Hz, 2H),

7.97 (dd, J = 8.3, 3.0 Hz, 2H), 7.81 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.0 Hz, 4H), 7.23 (t, J = 6.5 Hz,

2H), 7.16–7.08 (m, 12H), 6.91 (t, J = 8.5 Hz, 4H), 6.46 (m, 2H), 5.20 (dd, J = 5.3, 3.0 Hz, 2H), 1.86

(d, J = 6.5 Hz, 6H). 31P NMR (202 MHz, CDCl3): δ –26.54. IR (KBr, cm–1): 1257, 1164 and 1031

(s, OTf–). Anal. Calcd for IrC49N2H38F7O3SP2: C, 52.45; H, 3.41; N, 2.50. Found: C, 52.58; H, 3.45;

N, 2.43.

[Ir(F2Meppy)2(PPh2Me)2](OTf) (2bF2Me). 1H NMR (500 MHz; CDCl3): δ 8.56 (d, J = 6.5

Hz, 2H), 7.76 (s, 2H), 7.30–7.23 (m, 6H), 7.12 (t, J = 7.5 Hz, 8H), 7.06–7.00 (m, 6H), 6.92 (t, J =

7.0 Hz, 4H), 6.44 (t, J = 11.5 Hz, 2H), 5.22 (d, J = 7.0 Hz, 2H), 2.50 (s, 6H), 1.78 (d, J = 4.5 Hz,

6H). 31P NMR (202 MHz, CDCl3): δ –26.03. IR (KBr, cm–1): 1260, 1154 and 1031 (s, OTf–). Anal.

Calcd for IrC51N2H42F7O3SP2: C, 53.26; H, 3.68; N, 2.44. Found: C, 53.41; H, 3.63; N, 2.35.

Synthesis of [Ir(ppy)2 (CO)(L)]OTf (3). Compounds 3 have been prepared by practically the

same method described below for 3a. The yields were 80 – 90 %.

Synthesis of [Ir(ppy)2(CO)(NCMe)](OTf) (3a). A reaction mixture of Ir(ppy)2(Cl)(CO) (110

mg, 0.2 mmol) and AgOTf (51 mg, 0.2 mmol) in CHCl3 (10 mL) was stirred under nitrogen at 25

oC for two hours before the white solid (AgCl) was removed by filtration. A 2.0 mL of MeCN was

added into the filtrate solution and the resulting solution was stirred for two hours under N2 before

hexane (50 mL) was added to yield pale-yellow micro-crystals which were collected by filtration,

washed with hexane (3 x 10 mL) and dried under vacuum. The yield was 102 mg or 84 % based on

3a. 1H NMR (300 MHz; CD3CN): δ 9.14 (dt, J = 5.7, 1.2 Hz, 1H), 9.04 (dt, J = 6.0 1.2 Hz, 1H),

8.17–8.13 (m, 6H), 7.75 (ddd, J = 7.8, 4.1, 1.2 Hz, 2H), 7.55–7.43 (m, 3H), 7.07–6.99 (m, 3H),

6.93–6.83 (m, 3H), 6.20 (dd, J = 7.7, 1.2 Hz, 1H), 5.89 (dd, J = 7.5, 0.9 Hz, 1H), 2.27 (s, 3H). 13C

Page 6: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

NMR (75 MHz, CD3CN): δ 171.56, 167,19, 166.64, 157.96, 155.49, 152.22, 145.68, 144.27, 141.05,

141.02, 126.21, 125.94, 125.76, 125.57, 125.29, 124.98, 121.78, 118.17, 1.87. IR (KBr, cm–1): 2290

(w, νN≡CR), 2044 (s, νC≡O), 1253, 1168 and 1030 (s, OTf–). Anal. Calcd for IrC26N3H19F3O4S: C,

43.45 H, 2.66; N, 5.85. Found: C, 43.26; H, 2.62; N, 5.68.

[Ir(ppy)2(CO)(py)](OTf) (3b). 1H NMR (300 MHz; acetone-d6): δ 9.58 (d, J = 5.4 Hz, 1H),

8.86 (s, 1H), 8.50–8.46 (m, 2H), 8.34–8.21 (m, 3H), 8.11 (m, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.89 (d,

J = 7.8 Hz, 1H) 7.64–7.55 (m, 5H), 7.15–7.03 (m, 3H), 6.94 (td, J = 7.5, 1.2 Hz, 1H), 6.40 (d, J =

7.5 Hz, 1H), 6.15 (d, J = 7.1 Hz, 1H). 13C NMR (75 MHz, acetone-d6): δ 155.48, 154.81, 151.53,

141.35, 141.38, 140.60, 131.45, 131.39, 131.62, 130.48, 128.43, 126.91, 126.40, 126.40, 126.21,

126.05, 125.44, 125.14, 122.21. IR (KBr, cm–1): 2046 (s, νC≡O), 1265, 1157 and 1031 (s, OTf–).

Anal. Calcd for IrC29N3H21F3O4S: C, 46.03; H, 2.80; N, 5.55. Found: C, 46.06; H, 2.83; N, 5.50.

[Ir(ppy)2(CO)(PPh3)](OTf) (3c). 1H NMR (200 MHz; CDCl3): δ 8.47 (dd, J = 8.9, 5.8 Hz,

1H), 8.16 (d, J = 4.0 Hz, 1H), 7.87 (t, J = 7.4 Hz, 1H), 7.77–7.60 (m, 2H), 7.50 (d, J = 8.2 Hz, 1H),

7.48–7.41 (m, 3H), 7.34–7.25 (m, 6H) 7.18–6.99 (m, 12H), 6.89 (m, 2H), 6.00 (dd, J = 7.5, 4.6 Hz,

1H), 5.67 (d, J = 7.8 Hz, 1H). IR (KBr, cm–1): 2048 (s, νC≡O), 1268, 1153 and 1031 (s, OTf–). Anal.

Calcd for IrC42N2H31F3O4SP: C, 53.67; H, 3.32; N, 2.98. Found: C, 53.75; H, 3.37; N, 2.92.

[Ir(ppy)2(CO)(P(OPh)3)](OTf) (3d). 1H NMR (200 MHz, CDCl3): δ 9.26 (d, J = 5.8 Hz,

1H), 8.64 (d, J = 5.8 Hz, 1H), 8.18–7.99 (m, 2H), 7.88 (d, J = 8.0 Hz, 1H), 7.59-7.49 (m, 4H), 7.41

(t, J = 6.6 Hz, 1H), 7.18–6.92 (m, 12H), 6.84 (t, J = 6.4 Hz, 2H), 6.45 (d, J = 7.4 Hz, 6H), 6.04 (m,

1H), 5.80 (m, 1H). IR (KBr, cm–1): 2069 (s, νC≡O), 1267, 1162 and 1031 (s, OTf–). Anal. Calcd for

IrC42N2H31F3O7SP: C, 51.06; H, 3.16; N, 2.84. Found: C, 51.19; H, 3.14; N, 2.71.

Synthesis of [Ir(ppy)2 (NCMe)(L)]OTf (4). Compounds 4 have been prepared by practically

the same method described above for 3a except that Ir(ppy)2(Cl)L (L = PPh3, PPh2Me, P(OPh)3)

was used in MeCN. The yields were 80 – 90 %.

Synthesis of [Ir(ppy)2(NCMe)(PPh3)](OTf) (4a). 1H NMR (200 MHz; CDCl3): δ 8.75 (d, J =

Page 7: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

5.0 Hz, 1H), 8.58 (d, J = 5.2 Hz, 1H), 7.91 (d, J = 6.8 Hz, 1H), 7.80 (t, J = 8.8 Hz, 1H), 7.57–7.42

(m, 3H), 7.33–7.10 (m, 12H), 6.97–6.69 (m, 10H) 6.62 (t, J = 8.8 Hz, 1H), 5.83 (d, J = 7.6 Hz, 1H),

2.17 (s, 3H). 31P NMR (81 MHz, CDCl3): δ 0.45 (s). IR (KBr, cm–1): 2280 (w, νN≡CR), 1269, 1161

and 1031 (s, OTf–). Anal. Calcd for IrC43N2H34F3O3SP: C, 54.19; H, 3.60; N, 4.41. Found: C,

54.32; H, 3.56; N, 4.36.

[Ir(ppy)2(PPh2Me)(NCMe)](OTf) (4b). 1H NMR (200 MHz; CDCl3): δ 8.85 (d, J = 5.8 Hz,

1H), 8.57 (d, J = 5.4 Hz, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.90 (t, J = 7.0 Hz, 1H), 7.66–7.07 (m, 15H),

7.00–6.79 (m, 5H), 6.24 (d, J = 8.0 Hz, 1H), 5.97 (m, 1H), 2.38 (s, 3H), 1.77 (d, J = 8.0 Hz, 3H).

31P NMR (81 MHz, CDCl3): δ –19.48 (s). IR (KBr, cm–1): 2280 (w, νN≡CR), 1269, 1163 and 1031 (s,

OTf–). Anal. Calcd for IrC38N3H32F3O3SP: C, 51.23; H, 3.62; N, 4.72. Found: C, 51.13; H, 3.67; N,

4.74.

[Ir(ppy)2(P(OPh)3)(NCMe)](OTf) (4c). 1H NMR (200 MHz; CDCl3): δ 9.51 (d, J = 6.0 Hz,

1H), 9.13 (d, J = 5.7 Hz, 1H), 8.06–7.95 (m, 2H), 7.78 (t, J = 8.0 Hz, 1H), 7.67 (s, 1H), 7.63–7.55

(m, 3H), 7.46–7.34 (m, 3H), 7.20–7.12 (m, 4H), 7.07–6.70 (m, 13H), 6.28 (d, J = 7.6 Hz, 1H), 5.79

(t, J = 7.8 Hz, 1H), 2.07 (s, 3H). 31P NMR (81 MHz, CDCl3): δ 78.62 (s). IR (KBr, cm–1): 2286 (w,

νN≡CR), 1269, 1163 and 1031 (s, OTf–). Anal. Calcd for IrC43N3H34F3O6SP: C, 51.59; H, 3.42; N,

4.20. Found: C, 51.67; H, 3.45; N, 4.27.

[1] K. A. King, P. J. Spellane, R. J. Watts, J. Am. Chem. Soc. 1985, 107, 1431–1432.

[2] SMART, V 5.05 Software for the CCD Detector System; Bruker Analytical X-ray Systems,

Inc.: Madison, WI 1998.

[3] SAINTPLUS, V 5.00 Software for the CCD Detector System; Bruker Analytical X-ray

Systems, Inc.: Madison, WI 1998.

[4] SADABS. Program for absorption correction using SMART CCD based on the method of:

R.H. Blessing, Acta Crystallogr. 1995, A51, 33.

[5] G. M. Sheldrick, SHELXTL, V 6.1; Bruker Analytical X-ray Systems, Inc.: Madison, WI 1997.

Page 8: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

[6] O. Lohse, P. Thevenin, E. Waldvogel, Synlett 1999, 1, 45–48.

[7] M. Nonoyama, Bull. Chem. Soc. Jpn. 1974, 47, 767–768.

[8] M. K. Nazeeruddin, R. Humphrey-Baker, D. Berner, S. Rivier, L. Zuppiroli, M. Graetzel, J.

Am. Chem. Soc. 2003, 125, 8790–8797.

[9] W. J. Finkenzeller, P. Stößel, H. Yersin, Chem. Phys. Lett. 2004, 397, 289–295.

[10] C.-L. Lee, R. R. Das, J.-J. Kim, Curr. Appl. Phys. 2005, 5, 309–313.

Page 9: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(CO)2](PF6) (2a) at 300 MHz in acetone-d6

Page 10: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

13C NMR spectrum of [Ir(ppy)2(CO)2](PF6) (2a) at 75 MHz in acetone-d6

Page 11: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(PPh2Me)2](OTf) (2b) at 500 MHz in CDCl3

Page 12: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

13C NMR spectrum of [Ir(ppy)2(PPh2Me)2](OTf) (2b) at 126 MHz in CDCl3

Page 13: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(P(OPh)3)2](OTf) (2c) at 500 MHz in CDCl3

Page 14: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

13C NMR spectrum of [Ir(ppy)2(P(OPh)3)2](OTf) (2c) at 126 MHz in CDCl3

Page 15: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(py)2](OTf) (2d) at 300 MHz in acetone-d6

Page 16: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

13C NMR spectrum of [Ir(ppy)2(py)2](OTf) (2d) at 75 MHz in acetone-d6

Page 17: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(NCMe)2](OTf) (2e) at 500 MHz in CDCl3

Page 18: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

13C NMR spectrum of [Ir(ppy)2(NCMe)2](OTf) (2e) at 126 MHz in CDCl3

Page 19: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(F2ppy)2(CO)2](OTf) (2aF2) at 300 MHz in acetone-d6

Page 20: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(F2Meppy)2(CO)2](OTf) (2aF2Me) at 300 MHz in acetone-d6

Page 21: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(F2ppy)2(PPh2Me)2](OTf) (2bF2) at 500 MHz in CDCl3

Page 22: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(F2Meppy)2(PPh2Me)2](OTf) (2bF2Me) at 500 MHz in CDCl3

Page 23: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(CO)(NCMe)](OTf) (3a) at 300 MHz in CD3CN

Page 24: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

13C NMR spectrum of [Ir(ppy)2(CO)(NCMe)](OTf) (3a) at 75 MHz in CD3CN

Page 25: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(CO)(py)](OTf) (3b) at 300 MHz in acetone-d6

Page 26: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

13C NMR spectrum of [Ir(ppy)2(CO)(py)](OTf) (3b) at 75 MHz in acetone-d6

Page 27: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(CO)(PPh3)](OTf) (3c) at 200 MHz in CDCl3

Page 28: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(CO)(P(OPh)3)](OTf) (3d) at 200 MHz in CDCl3

Page 29: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(NCMe)(PPh3)](OTf) (4a) at 200 MHz in CDCl3

Page 30: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(NCMe)(PPh2Me)](OTf) (4b) at 200 MHz in CDCl3

Page 31: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

1H NMR spectrum of [Ir(ppy)2(NCMe)(P(OPh)3)](OTf) (4c) at 200 MHz in CDCl3

Page 32: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

Table S1. Details of Crystallographic Data Collection for 4a

4a

Chemical formula C43H34F3IrN3O3PS

Chemical formula weight 952.96

Temp, K 295(2)

crystal dimension, mm 0.05 x 0.04 x 0.04

crystal system monoclinic

space group P2(1)/n

color of crystal Yellow

a, Å 10.5070(4)

b, Å 26.5922(9)

c, Å 15.1862(16)

α, deg. 90

β, deg. 95.458(2)

γ, deg. 90

V, Å3 4223.9(3)

Z 4

ρ(calc), gcm-1 1.499

μ, mm-1 3.302

F(000) 1888

Radiation Mo Kα

wavelength 0.71073

θ range, deg 1.53-27.50

hkl range -13 ≤ h ≤ 13

-34 ≤ k ≤ 34

-19 ≤ l ≤ 19

no. of reflns 81836

no. of unique data 9706

Completeness to theta = 27.50 100 %

No. of data/restraints/parameters 9706/1/449

Refinements method Full-matrix least-squares on F2

R1 0.0700

wR2 0.1654

GOF 1.084

R1 = [Σ⏐Fo⏐−⏐Fc⏐/⏐Fo⏐], wR2 = [Σw(Fo2 − Fc

2)2/Σw (Fo2) 2]0.5

w = 1/ [σ2(Fo2) + (0.0388P)2 + 1.8667P ] where P = (Fo2 + 2Fc2) / 3

Page 33: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

PL decay measurement data

Page 34: Eur. J. Inorg. Chem. 2007 © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ... · 2007. 1. 11. · Experimental details and spectroscopic data 1H-, 13C and 31P-NMR spectra

Cyclic voltamogram

Cyclicvoltamograms of [Ir(ppy)2(L)2]OTf (2) in MeCN. L = CO (-----), PPh2Me (…..), MeCN (⎯⎯).