fallsem2013 14 cp1853 07 aug 2013 rm02 chenming hu ch4 slides

Upload: suyog-chavan

Post on 03-Jun-2018

226 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    1/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-1

    Chapter 4 PN and Metal-Semiconductor Junctions

    PN junction is present in perhaps every semiconductor device.

    diodesymbol

    N P

    V

    I

    +

    4.1 Building Blocks of the PN Junction Theory

    V

    I

    Reverse bias Forward bias

    Donor ions

    N-type

    P-type

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    2/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-2

    4.1.1 Energy Band Diagram of a PN Junction

    A depletion layerexists at the PN

    junction where n0andp0.

    Efis constant at

    equilibrium

    Ecand Evare smooth,

    the exact shape to be

    determined.

    Ecand Evare known

    relative to Ef

    N-region P-region

    (a) Ef

    (c)

    Ec

    Ev

    Ef

    (b)

    Ec

    Ef

    Ev

    Ev

    Ec

    (d)

    Depletion

    layer

    Neutral

    P-region

    Neutral

    N-regionEc

    Ev

    Ef

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    3/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-3

    4.1.2 Built-in Potential

    Can the built-in potential be measured with a voltmeter?

    (b)

    (c)

    (a)N-type

    Nd

    P-type

    Na

    Nd Na

    Ef

    Ec

    Ev

    qfbi

    xN xPx

    0

    V

    fbi

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    4/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-4

    4.1.2 Built-in Potential

    d

    c

    i

    acbi

    N

    N

    n

    NN

    q

    kTAB lnln

    2f

    d

    ckTAq

    cd N

    N

    q

    kTAeNNn ln N-region

    2ln

    i

    adbi

    n

    NN

    q

    kTf

    2

    2

    lni

    ackTBq

    c

    a

    i

    n

    NN

    q

    kTBeN

    N

    nn P-region

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    5/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-5

    4.1.3 Poissons Equation

    Gausss Law:

    s:permittivity (~12ofor Si)

    : charge density (C/cm3)

    Poissons equation

    Dx

    (x) (x+ Dx)

    x

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    6/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-6

    4.2.1 Field and Potential in the Depletion Layer

    On the P-sideof the

    depletion layer,=qNa

    On theN-side, = qNd

    4.2 Depletion-Layer Model

    s

    aqN

    dx

    d

    )()( 1 xxqN

    CxqN

    x Ps

    a

    s

    a +

    )()( Ns

    d xxqN

    x -

    N P

    Depletion La yer Ne utral R egion

    xn

    0 xp

    x

    xp

    xn

    qNd

    qNa

    x

    xn xp

    0

    N eut ral Re gio n

    N

    N

    N P

    P

    P

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    7/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-7

    4.2.1 Field and Potential in the Depletion Layer

    The electric field is continuous atx= 0.

    Na |xP| = Nd|xP|

    Which side of the junction is depleted more?

    A one-sided junction is called aN+P junctionorP+N junction

    N P

    D epletion La yer N eutral R egi on

    xn 0 xp

    N eut ral Region

    N P

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    8/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-8

    4.2.1 Field and Potential in the Depletion Layer

    On the P-side,

    Arbitrarily choose the

    voltage atx = xP asV = 0.

    On the N-side,

    2)(2

    )( xxqN

    xV Ps

    a

    2)(

    2

    )( Ns

    d xxqN

    DxV

    2)(

    2 Ns

    dbi xx

    qN

    f

    x

    xn xp

    Ec

    EfEv

    fbi ,built-in potential

    0

    xn

    xp

    x

    fbiV

    N

    N

    P

    P

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    9/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-9

    4.2.2 Depletion-Layer Width

    Vis continuous atx =0

    IfNa >> Nd, as in a P+Njunction,

    What about a N+P junction?

    wheredensitydopantlighterNNN ad

    1111+

    +

    da

    bisdepNP

    NNqWxx

    112 f

    N

    d

    bisdep x

    qNW

    f2

    qNW bisdep f2

    N P

    D epletion La yer N eu tral R egi on

    xn 0 xp

    N eut ral Re gion

    0@ adNP NNxx||||

    PN

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    10/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-10

    EXAMPLE:A P+N junction has Na=1020 cm-3and Nd

    =1017cm-3. What is a) its built in potential, b)Wdep, c)xN,

    and d) xP?

    Solution:

    a)

    b)

    c)

    d)

    V1cm10

    cm1010lnV026.0ln

    620

    61720

    2

    i

    adbi

    n

    NN

    q

    kTf

    m12.010106.1

    11085.812222/1

    1719

    14

    d

    bisdep

    qNW

    f

    m12.0 depN Wx

    02.1m102.1 4 adNP NNxx

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    11/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-11

    4.3 Reverse-Biased PN Junction

    densitydopantlighterNNN ad

    1111+

    Does the depletion layerwiden or shr ink with

    increasing reverse bias?

    + V

    N P

    qN

    barrierpotential

    qN

    VW srbisdep

    +

    f 2|)|(2

    (b) reverse-biased

    qV

    Ec

    EcEfn

    Ev

    qfbi+ qV Efp

    Ev

    (a)V = 0

    Ec

    Ef

    Ev

    Ef

    Ev

    qfbiEc

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    12/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-12

    4.4 Capacitance-Voltage Character istics

    IsCdepa good thing?

    How to minimize junction capacitance?

    dep

    sdep

    WAC

    N P

    Nd Na

    Conductor Insulator Conductor

    Wde p

    Reverse biased PN junction is

    a capacitor.

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    13/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-13

    4.4 Capacitance-Voltage Character istics

    From this C-V data canNaandNdbe determined?

    222

    2

    2

    )(21

    AqN

    V

    A

    W

    C S

    bi

    s

    dep

    dep

    f

    +

    Vr

    1/Cdep

    2

    Increasing reverse bias

    Slope = 2/qNsA2

    fbi

    Capacitance data

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    14/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-14

    EXAMPLE:If the slope of the line in the previous slide is

    2x1023F-2 V-1, the intercept is 0.84V, and A is 1 mm2, find the

    lighter and heavier doping concentrations Nland Nh .

    Solution:

    ln 2i

    lh

    bi n

    NN

    q

    kT

    f

    318026.0

    84.0

    15

    202

    cm108.1106

    10

    eeNn

    N kT

    q

    l

    i

    h

    bif

    Is this an accurate way to determine Nl ? Nh ?

    315

    28141923

    2

    cm106)cm101085.812106.1102/(2

    )/(2

    AqslopeN sl

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    15/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-15

    4.5 Junction Breakdown

    AZener diodeis designed to operate in the breakdown mode.

    V

    I

    VB, breakdown

    PN

    A

    R

    Forward Current

    Small leakageCurrent

    voltage

    3.7 V

    R

    IC

    A

    B

    C

    D

    Zener diode

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    16/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-16

    4.5.1 Peak Electric Field

    2/1

    |)|(2

    )0(

    +

    rbi

    s

    p VqN

    f

    bicrits

    BqN

    V f

    2

    2

    N+ PNa

    Neutral Region

    0 xp(a)

    increasingreverse bias

    xxp

    (b)

    increasing reverse biasp

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    17/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-17

    4.5.2 Tunneling Breakdown

    Dominant if both sides of

    a junction are very heavily

    doped.

    V/cm106

    critpV

    I

    Breakdown

    Empty StatesFilled States-

    Ev

    Ec

    peGJ/H

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    18/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-18

    4.5.3 Avalanche Breakdownimpact ionization: an energetic

    electron generating electron and

    hole, which can also cause

    impact ionization.

    qNV critsB

    2

    2

    Impact ionization + positive

    feedbackavalanche breakdown

    da

    BN

    1N1

    N1V +

    EcE

    fn

    Ec

    Ev

    Efp

    originalelectron

    electron-holepair generation

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    19/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-19

    4.6 Forward BiasCarr ier I njection

    M inori ty carr ier injection

    +V

    N PEc

    EfEv

    Ec

    Efp

    Ev

    V= 0

    Ef n

    Forward biased

    qf

    bi

    qV

    -

    +

    qfbiqV

    V=0

    I=0

    Forward biased

    Dr if t and dif fusion cancel out

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    20/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-20

    4.6 Forward Bias

    Quasi-equi l ibr ium Boundary Condition

    kTEEkTEE

    c

    kTEE

    cfpfnfpcfnc eeNeNxn

    /)(/)(/)(

    P)(

    kTqV

    P

    kTEE

    P enen fpfn /

    0

    /)(

    0

    The minority carrierdensities are raised

    by eqV/kT

    Which side gets more

    carrier injection?

    Ec

    Efp

    Ev

    Efn

    0N 0P

    x

    Ec

    Efn

    Efp

    Ev

    x

    Efn

    xNxP

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    21/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-21

    4.6 Carr ier I njection Under Forward Bias

    Quasi-equi l ibr ium Boundary Condition

    )1()()( 00 kTqV

    PPPP ennxnxn

    )1()()( 00 kTqV

    NNNN eppxpxp

    kTVq

    a

    ikTVq

    P eN

    nenn

    2

    0)xP(

    kTVq

    d

    ikTVqN e

    Nnepp

    2

    0)( xP

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    22/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-22

    EXAMPLE: Carr ier I njection

    A PN junction has Na=1019cm-3and Nd=10

    16cm-3. The applied

    voltage is 0.6 V.

    Question: What are the minority carrier concentrations at the

    depletion-region edges?

    Solution:

    Question: What are the excess minority carrier concentrations?

    Solution:

    -311026.06.00 cm1010)( eenxn kTVqPP

    -314026.06.040 cm1010)( eepxp

    kTVq

    NN

    -311110 cm101010)()( PPP nxnxn

    -3144140 cm101010)()( NNN pxpxp

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    23/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-23

    4.7 Current Continuity Equation

    pq

    xxJxxJ pp D D+

    )()(

    pxA

    q

    xxJA

    q

    xJA

    pp D+D+

    )()(

    pq

    dx

    dJp

    Dx

    p

    Jp(x+ Dx)

    x

    area

    A

    Jp(x)

    Volume =ADx

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    24/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-24

    4.7 Current Continuity Equation

    Minority drift current is negligible;Jp=qDpdp/dx

    Lpand Lnare the diffusion lengths

    p

    qdx

    dJp

    p

    p

    pq

    dx

    pdqD

    2

    2

    22

    2

    ppp L

    p

    D

    p

    dx

    pd

    ppp DL

    22

    2

    nL

    n

    dx

    nd

    nnn DL

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    25/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-25

    4.8 Forward Biased Junction-- Excess Carr iers

    22

    2

    pL

    p

    dx

    pd

    0)( p

    )1()( /0 kTqV

    NN epxp

    pp LxLx BeAexp//

    )( +

    N

    LxxkTqV

    N xxeepxp pN ,)1()( //0

    P N+

    xP-xN

    0

    x

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    26/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-26

    P

    LxxkTqV

    P xxeenxn nP

    ,)1()(

    //

    0

    4.8 Excess Carr ier Distr ibutions

    0.5

    1.0

    3Ln 2Ln Ln 0 Lp 2Lp3Lp 4Lp

    N-side

    Nd= 21017

    cm-3

    pN' ex /L

    P-side

    nP'ex /L

    Na= 1017 cm -3

    n p

    N

    LxxkTqV

    N xxeepxp pN ,)1()( //0

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    27/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-27

    EXAMPLE: Carr ier Distri bution in Forward-biased PN Diode

    Sketch n'(x) on the P-side.313026.06.0

    17

    20/

    2

    0 cm1010

    10)1()1()( ee

    N

    nenxn kTqV

    a

    ikTqV

    PP

    N-typeNd= 5cm-3

    Dp=12 cm2/s

    p= 1 ms

    P-typeNa= 1017cm-3

    Dn=36.4cm2 /s

    n= 2 ms

    x

    N-side P-side1013cm-3

    2

    n ( =p )

    p( = n )

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    28/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-28

    How does Lncompare with a typical device size?

    m8510236 6 nnn DL

    What is p'(x) on the P- side?

    EXAMPLE: Carr ier Distri bution in Forward-biased PN Diode

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    29/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-29

    4.9 PN Diode I -V Character istics

    pN LxxkTVqN

    p

    p

    ppN eepL

    Dq

    dx

    xpdqDJ

    )1()(

    0

    nP LxxkTVqP

    n

    nnnP een

    L

    Dq

    dx

    xndqDJ

    )1(

    )(0

    xJ

    enL

    Dqp

    L

    DqxJxJ kTVqP

    n

    nN

    p

    p

    PnPNpN

    allat

    )1()()(currentTotal 00

    ++

    0P-side N-side

    Jtotal

    JpNJnP

    x

    0P-side N-side

    Jtotal

    JpNJnP

    Jn= JtotalJpJp= JtotalJn

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    30/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-30

    The PN Junction as a Temperature Sensor

    What causes the IV curves to shif t to lower V at higher T ?

    )1(0 kTVqeII

    +

    an

    n

    dp

    pi

    NLD

    NL

    DAqnI 20

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    31/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-31

    4.9.1 Contributions from the Depletion Region

    dep

    depi

    leakage

    WqnAII + 0

    Space-Charge Region (SCR) current

    kTqV

    i

    enpn 2/

    )1(

    :raten)(generatioionrecombinatNet

    2/ kTqV

    dep

    i en

    )1()1( 2//0 + kTqV

    dep

    depikTqV e

    WqnAeII

    Under forward bias, SCR current is an extracurrent with a slope 120mV/decade

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    32/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-32

    4.10 Charge Storage

    What is the relationship betweens(charge-storage time)

    and(carrier lifetime)?

    x

    N-side P-side1013cm-3

    2

    n'

    p

    IQ

    sQI sIQ

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    33/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu)Slide 4-33

    4.11 Small-signal Model of the Diode

    kTqVkTqV eIdVdeI

    dVd

    dVdI

    RG /0/0 )1(1

    What isG at 300K andIDC= 1 mA?

    Diffusion Capacitance:

    q

    kT/IG

    dV

    dI

    dV

    dQC

    DCsss

    Which is larger, diffusion or depletion capacitance?

    CRV

    I

    q

    kTIeI

    kT

    qDC

    kTqV /)( /0

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    34/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-34

    4.12 Solar CellsSolar Cells is also known

    asphotovoltaic cells.

    Converts sunlight to

    electricity with 10-30%

    conversion efficiency.

    1 m2solar cell generate

    about 150 W peak or 25 W

    continuous power.

    Low cost and highefficiency are needed for

    wide deployment.

    Part I I : Application to Optoelectronic Devices

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    35/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-35

    4.12.1 Solar Cell Basics

    sc

    kTVq IeII )1(0

    V0.7 V

    Isc Maximum

    power-output

    Solar Cell

    IV

    I

    Dark IV

    0

    Eq.(4.9.4)

    Eq.(4.12.1)

    N P

    -

    Short Circuitlight

    Isc

    +(a)

    Ec

    Ev

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    36/79

    Direct-Gap and Indirect-Gap Semiconductors

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-36

    Electrons have both particle and wave properties.

    An electron has energy E and wave vector k.

    indirect-gap semiconductordirect-gap semiconductor

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    37/79

    4.12.2 Light Absorption

    )(24.1

    (eV)EnergyPhoton

    m

    hc

    m

    x-e(x)intensityLight

    (1/cm): absorptioncoefficient

    1/: light penetration

    depth

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-37

    A thinner layer of direct-gap semiconductor can absorb most

    of solar radiation than indirect-gap semiconductor.But Si

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    38/79

    4.12.3 Short-Cir cui t Cur rent and Open-Circui t Voltage

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-38

    Dx

    p

    Jp(x+ Dx)

    x

    area

    A

    Jp(x)

    Volume =ADx

    If light shines on theN-type

    semiconductor and generates

    holes (and electrons) at the

    rate of G s-1cm-3 ,

    pp D

    G

    L

    p

    dx

    pd

    22

    2

    If the sample is uniform (no PN junction),

    d2p/dx2 = 0 p= GLp2/Dp= Gp

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    39/79

    Solar Cell Short-Cir cui t Current, Isc

    pLx

    p

    p

    p

    pp GeL

    Dq

    dx

    xpdqDJ

    /)(

    GDGLp pp

    p 2)(

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-39

    )1()( / pLx

    p eGxp

    0)0( p

    Assume very thin P+ layer and carrier generation in N region only.

    GAqLAJI ppsc )0(x

    NP+

    Isc

    0x

    P'

    L p

    Gp

    0

    G is really not uniform.Lpneeds be larger than the light

    penetration depth to collect most of the generated carriers.

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    40/79

    Open-Circui t Voltage

    GAqLeLD

    NnAqI p

    kTqV

    p

    p

    d

    i )1( /2

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-40

    1)e(assuming /qVoc kT

    Total current isISCplus the PV diode (dark) current:

    Solve for the open-circuit voltage (Voc) bysettingI=0

    GLeL

    D

    N

    np

    kTqV

    p

    p

    d

    i oc /2

    0

    )/ln(

    2

    idpoc nGNq

    kT

    V

    How to raise Voc ?

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    41/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-41

    4.12.4 Output Power

    FFVI ocsc erOutput Pow

    Theoretically, the highest efficiency (~24%) can be obtained with

    1.9eV >Eg>1.2eV. Larger Eg lead to too low Isc (low light

    absorption); smaller Eg leads to too low Voc.

    Tandem solar cel lsgets 35% efficiency using large andsmall Eg

    materials tailored to the short and long wavelength solar light.

    A particular operating point on the

    solar cell I-V curve maximizes theoutput power (I V).

    Si solar cell with 15-20% efficiency

    dominates the market now

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    42/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-42

    Light emitting diodes (LEDs)

    LEDs are made of compound semiconductors such as InP

    and GaN.

    Light is emitted when electron and hole undergo radiative

    recombination.

    Ec

    Ev

    Radiative

    recombination

    Non-radiative

    recombinationthrough traps

    4.13 Light Emitting Diodes and Solid-State Lighting

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    43/79

    Direct and Indirect Band Gap

    Direct band gap

    Example: GaAs

    Direct recombination is efficientas k conservation is satisfied.

    Indirect band gap

    Example: Si

    Direct recombination is rare as k

    conservation is not satisfied

    Trap

    Modern Semiconductor Devices for Integrated Circuits (C. Hu)

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    44/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-44

    4.13.1 LED Materials and Structure

    )(24.1energyphoton24.1m)(hwavelengtLED eVEgm

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    45/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-45

    4.13.1 LED Materials and Structure

    )(eVEg

    redyellowblue

    Wavelength

    (m)

    ColorLattice

    constant

    ()

    InAs 0.36 3.44 6.05

    InN 0.65 1.91 infrared 3.45InP 1.36 0.92

    violet

    5.87

    GaAs 1.42 0.87 5.66

    GaP 2.26 0.55 5.46

    AlP 3.39 0.51 5.45

    GaN 2.45 0.37 3.19AlN 6.20 0.20 UV 3.11

    Light-emitting diode materials

    compound semiconductors

    binarysemiconductors:- Ex: GaAs, efficient emitter

    ternarysemiconductor :- Ex: GaAs1-xPx , tunableEg (to

    vary the color)

    quaternarysemiconductors:- Ex: AlInGaP , tunable Egandlattice constant(for growing highquality epitaxial films on

    inexpensive substrates)

    Eg(eV)

    RedYellowGreenBlue

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    46/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-46

    Common LEDs

    Spectralrange

    MaterialSystem

    Substrate Example Applications

    Infrared InGaAsP InP Optical communication

    Infrared-Red

    GaAsP GaAsIndicator lamps. Remotecontrol

    Red-Yellow AlInGaP GaA orGaP

    Optical communication.

    High-brightness trafficsignal lights

    Green-Blue

    InGaNGaN or

    sapphire

    High brightness signallights.Video billboards

    Blue-UV AlInGaNGaN or

    sapphire Solid-state lighting

    Red-Blue

    Organicsemicon-ductors

    glass Displays

    AlInGaPQuantun Well

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    47/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-47

    4.13.2 Solid-State Lighting

    Incandescent

    lamp

    Compact

    fluorescent

    lamp

    Tube

    fluorescent

    lamp

    WhiteLED

    Theoretical limit at

    peak of eye sensitivity

    ( =555nm)

    Theoretical limit

    (white light)

    17 60 50-100 90-? 683 ~340

    luminosity(lumen, lm): a measure of visible light energynormalized to the sensitivity of the human eye at

    different wavelengths

    Luminous efficacyof lamps in lumen/watt

    Terms: luminositymeasured in lumens. luminous efficacy,

    Organic Light Emitting Diodes (OLED):

    has lower efficacy than nitride or aluminide based compound semiconductor LEDs.

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    48/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-48

    4.14 Diode Lasers

    (d)Net LightAbsorption

    (e)Net Light

    Amplification

    Stimulated emission: emitted photon has identical frequency anddirectionality as the stimulating photon; light wave is amplified.

    (b) Spontaneous

    Emission

    (c) Stimulated

    Emission

    (a) Absorption

    4.14.1 Light Amplification

    Light amplificationrequirespopulation inversion: electronoccupation probability islarger for higher E states than

    lower E states.

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    49/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-49

    4.14.1 Light Amplification in PN Diode

    gfpfn EEEqV

    Population inversionis achieved when

    Population inversion, qV > Eg

    Equilibrium, V=0

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    50/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-50

    121 GRR

    R1, R2: reflectivities of the two endsG : light amplification factor (gain)for a round-trip travel of the light

    through the diode

    Light intensity grows until , when the light intensity

    is just large enough to stimulate carrier recombinations at the same

    rate the carriers are injected by the diode current.

    121 GRR

    4.14.2 Optical Feedback and Laser

    lightout

    Cleavedcrystalplane

    P+

    N+

    Laser threshold is reached (l ight

    intensity grows by feedback)when

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    51/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-51

    4.14.2 Optical Feedback and Laser DiodeDistr ibuted Bragg

    ref lector (DBR) reflects

    light with multi-layers ofsemiconductors.Vertical-cavity sur face-

    emitting laser (VCSEL ) is

    shown on the left.Quantum-well laserhassmaller threshold currentbecause fewer carriersare needed to achievepopulation inversion inthe small volume of thethin small-Egwell.

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    52/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-52

    4.14.3 Laser Applications

    Red diode lasers: CD, DVD reader/writer

    Bluediode lasers: Blu-ray DVD (higher storage density)

    1.55 m inf rareddiode lasers:Fiber-optic communication

    Photodiodes: Reverse biased PN diode. Detects photo-

    generated current (similar to Isc of solar cell) for optical

    communication, DVD reader, etc.

    Avalanche photodiodes:Photodiodes operating near

    avalanche breakdown amplifies photocurrent by impact

    ionization.

    4.15 Photodiodes

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    53/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-53

    Two kinds of metal-semiconductor contacts:

    Rectifying Schottky diodes:metal on lightly

    doped silicon

    Low-resistance ohmic contacts: metal on

    heavily doped silicon

    Part I I I : Metal-Semiconductor Junction

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    54/79

    Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-54

    Bn I ncreases with I ncreasing Metal Work Function

    Theoretically,

    fBn=yMcSi

    yM

    cSi

    : Work Function

    of metal

    : Electron Affinity of SiqfBn Ec

    Ev

    Ef

    E0

    qyM

    cSi

    = 4.05 eV

    Vacuum level,

    4 16 S h ttk B i

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    55/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-55

    4.16 Schottky Barr iersEnergy Band Diagram of Schottky Contact

    Schottky barrier height, fB,is a function of the metal

    material.

    fBis the most important

    parameter. The sum of qfBnand qfBpis equal toEg .

    MetalDepletion

    layer Neutral region

    qBn

    Ec

    Ec

    Ef

    Ef

    Ev

    EvqBp

    N-Si

    P-Si

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    56/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-56

    Schottky barr ier heights for electrons and holes

    fBn increases with increasing metal work function

    Metal Mg Ti Cr W Mo Pd Au Pt

    fBn (V) 0.4 0.5 0.61 0.67 0.68 0.77 0.8 0.9

    fBp (V) 0.61 0.5 0.42 0.3

    Work

    Function 3.7 4.3 4.5 4.6 4.6 5.1 5.1 5.7

    ym (V)

    fBn + fBpEg

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    57/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-57

    A high density of

    energy states in the

    bandgap at the metal-

    semiconductor interface

    pinsEf to a narrowrange and Bn is

    typically 0.4 to 0.9 V

    Question: What is the

    typical range of fBp?

    Fermi Level Pinning

    qfBn Ec

    Ev

    Ef

    E0

    qyM

    cSi

    = 4.05 eV

    Vacuum level,

    +

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    58/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-58

    Schottky Contacts of Metal Sil icide on Si

    Silicide-Si interfaces are more stable than metal-silicon

    interfaces. After metal is deposited on Si, an annealing step is

    applied to form a silicide-Si contact. The term metal-silicon

    contactincludes and almost always means silicide-Si contacts.

    Silicide: A silicon and metal compound. It is conductive

    similar to a metal.

    Silicide ErSi1.7 HfSi MoSi2 ZrSi2 TiSi2 CoSi2 WSi2 NiSi2 Pd2Si PtSi

    f Bn (V) 0.28 0.45 0.55 0.55 0.61 0.65 0.67 0.67 0.75 0.87

    f Bp (V) 0.55 0.49 0.45 0.45 0.43 0.43 0.35 0.23

    fBn

    fBp

    U i C V D t t D t i

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    59/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-59

    Using C-V Data to Determine B

    AW

    C

    qN

    VW

    N

    NkTq

    EEqq

    dep

    s

    d

    bisdep

    d

    cBn

    fcBnbi

    f

    f

    ff

    +

    )(2

    ln

    )(

    Question:How should we plot the CV

    data to extract fbi?

    Ev

    EfEc

    qfbiqfBn

    Ev

    Ec

    Ef

    qfBn q(fbi+ V)

    qV

    U i CV D t t D t i

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    60/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-60

    Oncefbiis known, fB can

    be determined using

    22 )(21 AqNV

    C sd

    bi

    f +

    d

    cBnfcBnbi

    N

    NkTqEEqq ln)( fff

    Using CV Data to Determine B

    V

    1/C2

    fbi

    E

    v

    Ef

    Ec

    qfbi

    qfBn

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    61/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-61

    4.17 Thermionic Emission Theory

    2//0

    //23

    2

    /)(2/3

    2

    /)(

    A/cm100where,

    421

    /2/3

    22

    kTq

    o

    kTqV

    kTqVkTqnthxMS

    nthxnth

    kTVqnkTVq

    c

    B

    B

    BB

    eJeJ

    eeTh

    kqmqnvJ

    mkTvmkTv

    eh

    kTmeNn

    f

    f

    ff

    Efn

    -q(fB V)

    qfBqV

    MetalN-typeSiliconV

    Efm

    Ev

    Ec

    x

    vthx

    4 18 Schottk Diodes

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    62/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-62

    4.18 Schottky Diodes

    V

    I

    Reverse bias Forward bias

    V = 0

    Forwardbiased

    Reversebiased

    4 18 Schottky Diodes

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    63/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-63

    )1(

    )KA/(cm1004

    /

    00

    /

    0

    22

    3

    2

    /2

    0

    +

    kTqVkTqV

    SMMS

    n

    kTq

    eIIeIIII

    hkqmK

    eAKTI B

    f

    4.18 Schottky Diodes

    4 19 Applications of Schottly Diodes

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    64/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-64

    4.19 Applications of Schottly Diodes

    I0of a Schottky diode is 103to 108times larger than a PN

    junction diode, depending on fB . A largerI0means a smallerforward drop V.

    A Schottky diode is the preferred rectifier in low voltage,

    high current applications.

    I

    V

    PN junction

    Schottky

    fB

    I

    V

    PN junction

    Schottky diode

    B

    diode

    kTq

    kTqV

    BeAKTI

    eII

    /20

    /

    0 )1(

    f

    S it hi P S l

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    65/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-65

    Switching Power Supply

    ACDC AC AC DC

    utilitypower

    110V/220V

    PN Junctionrectifier

    Hi-voltage

    MOSFET

    inverter

    100kHzHi-voltage

    TransformerSchottkyrectifier

    Lo-voltage 50A1V

    feedback to modulate the pulse width to keepVout= 1V

    4 19 A li i f S h k di d

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    66/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-66

    There is no minority carrier injection at the Schottky

    junction. Therefore, Schottky diodes can operate at higher

    frequencies than PN junction diodes.

    4.19 Applications of Schottky diodes

    Question: What sets the lower limit in a Schottky diodesforward drop?

    Synchronous Rectif ier: For an even lower forward drop,

    replace the diode with a wide-W MOSFET which is not

    bound by the tradeoff between diode Vand leakage current.

    4 20 Quantum Mechanical Tunneling

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    67/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-67

    4.20 Quantum Mechanical Tunneling

    )( )(82exp2

    2

    EVh

    mTP H

    Tunneling probabil i ty:

    4 21 Oh i C t t

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    68/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-68

    4.21 Ohmic Contacts

    4 21 Oh i C t t

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    69/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-69

    dBn NVH

    ndthxdMS

    ns

    dBnsdep

    emkTqNPvqNJ

    qmh

    H

    qNWT

    /)(2/

    2

    1

    /4

    2/2/

    f

    f

    4.21 Ohmic Contacts

    d

    Bns

    dep qNW

    f2

    dBn NHeP f

    Tunneling

    probability:

    - -

    x

    Silicide N+Si

    Ev

    Ec, Ef

    fBn - -

    x

    VEfm

    Ev

    Ec, Ef

    fBnV

    4 21 Oh i C t t

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    70/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-70

    2//1 cm2

    dBndBn

    NH

    dthx

    NHMS

    c eNHqv

    e

    dV

    dJR

    ff

    4.21 Ohmic Contacts

    4 22 Chapter Summary

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    71/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-71

    4.22 Chapter Summary

    The potential barrier

    increases by 1 V if a 1 V

    reverse bias is applied

    junction capacitance

    depletion width

    2ln

    i

    adbi

    n

    NN

    q

    kTf

    qN

    barrierpotentialW sdep

    2

    dep

    sdep

    WAC

    Part I : PN Junction

    4 22 Chapter Summary

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    72/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-72

    4.22 Chapter Summary

    Under forward bias, minority carriers are injectedacross the jucntion.

    The quasi-equilibrium boundary condition of

    minority carrier densities is:

    Most of the minority carriers are injected into the

    more lightly doped side.

    kTVq

    Pp enxn 0)( kTVq

    NN epxp 0)(

    4 22 Chapter Summary

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    73/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-73

    4.22 Chapter Summary

    Steady-statecontinuity equation:

    Minority carriersdiffuse outwarde|x|/Lpand e|x|/LnLpandLnare the

    diffusion lengths22

    2

    ppp L

    p

    D

    p

    dx

    pd

    ppp DL )1(0

    kTVqeII

    +

    an

    n

    dp

    p

    i NL

    D

    NL

    DAqnI

    2

    0

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    74/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-74

    4.22 Chapter Summary

    q

    kT/IG DC

    Charge storage:

    Diffusion capacitance:

    Diode conductance:

    GC s

    sIQ

    4 22 Ch t S

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    75/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-75

    4.22 Chapter Summary

    Part I I : Optoelectronic Applications

    ~100um Si or Eg>1.2eV. Larger Eglead to too low Isc(low light absorption); smaller Eg

    leads to too low Open Circuit VoltageVoc.

    FFVI ocsc powercellSolar

    Si cells with ~15% efficiency dominate the market. >2x cost reduction

    (including package and installation) is required to achieve cost parity with

    base-load non-renewable electricity.

    4 22 Ch t S

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    76/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-76

    4.22 Chapter Summary

    Electron-hole recombination in direct-gap semiconductors such as GaAs

    produce light.

    Beyond displays, communication, and traffic lights, a new application is

    space lighting with luminous efficacy >5x higher than incandescent lamps.

    White light can be obtained with UV LED and phosphors. Cost still an issue.

    LED and Solid-State L ighting

    Tenary semiconductors such as GaAsP provide tunable Egand LED color.

    Quatenary semiconductors such as AlInGaP provide tunable Egand lattice

    constants for high quality epitaxial growth on inexpensive substrates.

    Organic semiconductor is an important low-cost LED material class.

    4 22 Ch t S

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    77/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-77

    4.22 Chapter Summary

    Light is amplified under the condition of population inversionstates at

    higher E have higher probability of occupation than states at lower E.

    When the round-trip gain (including loss at reflector) exceeds unity, laser

    threshold is reached.

    Laser Diodes

    Population inversion occurs when diode forward bias qV > Eg.

    Optical feedback is provided with cleaved surfaces or distributed Bragg

    reflectors.

    Quantum-well structures significantly reduce the threshold currents.

    Purity of laser light frequency enables long-distance fiber-optic

    communication. Purity of light direction allows focusing to tiny spots and

    enables DVD writer/reader and other application.

    4 22 Ch t S

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    78/79

    Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 4-78

    4.22 Chapter Summary

    Part I I I : Metal-Semiconductor Junction

    Schottky diodes have large reverse saturation current, determined by the

    Schottky barrier height fB, and therefore lower forward voltage at a given

    current density.

    kTq BeAKTI /20f

    2)/4(

    cm dnsB qNm

    hc eR

    f

    Ohmic contacts relies on tunneling.Low resistance contact requires

    low fBand higher doping concentration.

    I ncreases with I ncreasing Metal Work Function

  • 8/12/2019 FALLSEM2013 14 CP1853 07 Aug 2013 RM02 Chenming Hu Ch4 Slides

    79/79

    Bn I ncreases with I ncreasing Metal Work Function

    qfBn Ec

    Ev

    Ef

    E0

    qyM

    cSi

    = 4.05 eV

    Vacuum level,

    Ideally,

    fBn=yMcSi